blob: 9328de4f6a0a15347913a486a3875852f9297b3c [file] [log] [blame]
use hir::map::DefPathData;
use hir::def_id::{CrateNum, DefId, CRATE_DEF_INDEX, LOCAL_CRATE};
use ty::{self, DefIdTree, Ty, TyCtxt};
use middle::cstore::{ExternCrate, ExternCrateSource};
use syntax::ast;
use syntax::symbol::{keywords, LocalInternedString, Symbol};
use std::cell::Cell;
use std::fmt::Debug;
thread_local! {
static FORCE_ABSOLUTE: Cell<bool> = Cell::new(false);
static FORCE_IMPL_FILENAME_LINE: Cell<bool> = Cell::new(false);
static SHOULD_PREFIX_WITH_CRATE: Cell<bool> = Cell::new(false);
}
/// Enforces that item_path_str always returns an absolute path and
/// also enables "type-based" impl paths. This is used when building
/// symbols that contain types, where we want the crate name to be
/// part of the symbol.
pub fn with_forced_absolute_paths<F: FnOnce() -> R, R>(f: F) -> R {
FORCE_ABSOLUTE.with(|force| {
let old = force.get();
force.set(true);
let result = f();
force.set(old);
result
})
}
/// Force us to name impls with just the filename/line number. We
/// normally try to use types. But at some points, notably while printing
/// cycle errors, this can result in extra or suboptimal error output,
/// so this variable disables that check.
pub fn with_forced_impl_filename_line<F: FnOnce() -> R, R>(f: F) -> R {
FORCE_IMPL_FILENAME_LINE.with(|force| {
let old = force.get();
force.set(true);
let result = f();
force.set(old);
result
})
}
/// Add the `crate::` prefix to paths where appropriate.
pub fn with_crate_prefix<F: FnOnce() -> R, R>(f: F) -> R {
SHOULD_PREFIX_WITH_CRATE.with(|flag| {
let old = flag.get();
flag.set(true);
let result = f();
flag.set(old);
result
})
}
impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
/// Returns a string identifying this def-id. This string is
/// suitable for user output. It is relative to the current crate
/// root, unless with_forced_absolute_paths was used.
pub fn item_path_str(self, def_id: DefId) -> String {
let mode = FORCE_ABSOLUTE.with(|force| {
if force.get() {
RootMode::Absolute
} else {
RootMode::Local
}
});
let mut buffer = LocalPathBuffer::new(mode);
debug!("item_path_str: buffer={:?} def_id={:?}", buffer, def_id);
self.push_item_path(&mut buffer, def_id, false);
buffer.into_string()
}
/// Returns a string identifying this local node-id.
pub fn node_path_str(self, id: ast::NodeId) -> String {
self.item_path_str(self.hir().local_def_id(id))
}
/// Returns a string identifying this def-id. This string is
/// suitable for user output. It always begins with a crate identifier.
pub fn absolute_item_path_str(self, def_id: DefId) -> String {
let mut buffer = LocalPathBuffer::new(RootMode::Absolute);
debug!("absolute_item_path_str: buffer={:?} def_id={:?}", buffer, def_id);
self.push_item_path(&mut buffer, def_id, false);
buffer.into_string()
}
/// Returns the "path" to a particular crate. This can proceed in
/// various ways, depending on the `root_mode` of the `buffer`.
/// (See `RootMode` enum for more details.)
///
/// `pushed_prelude_crate` argument should be `true` when the buffer
/// has had a prelude crate pushed to it. If this is the case, then
/// we do not want to prepend `crate::` (as that would not be a valid
/// path).
pub fn push_krate_path<T>(self, buffer: &mut T, cnum: CrateNum, pushed_prelude_crate: bool)
where T: ItemPathBuffer + Debug
{
debug!(
"push_krate_path: buffer={:?} cnum={:?} LOCAL_CRATE={:?}",
buffer, cnum, LOCAL_CRATE
);
match *buffer.root_mode() {
RootMode::Local => {
// In local mode, when we encounter a crate other than
// LOCAL_CRATE, execution proceeds in one of two ways:
//
// 1. for a direct dependency, where user added an
// `extern crate` manually, we put the `extern
// crate` as the parent. So you wind up with
// something relative to the current crate.
// 2. for an extern inferred from a path or an indirect crate,
// where there is no explicit `extern crate`, we just prepend
// the crate name.
//
// Returns `None` for the local crate.
if cnum != LOCAL_CRATE {
let opt_extern_crate = self.extern_crate(cnum.as_def_id());
if let Some(ExternCrate {
src: ExternCrateSource::Extern(def_id),
direct: true,
..
}) = *opt_extern_crate
{
debug!("push_krate_path: def_id={:?}", def_id);
self.push_item_path(buffer, def_id, pushed_prelude_crate);
} else {
let name = self.crate_name(cnum).as_str();
debug!("push_krate_path: name={:?}", name);
buffer.push(&name);
}
} else if self.sess.rust_2018() && !pushed_prelude_crate {
SHOULD_PREFIX_WITH_CRATE.with(|flag| {
// We only add the `crate::` keyword where appropriate. In particular,
// when we've not previously pushed a prelude crate to this path.
if flag.get() {
buffer.push(&keywords::Crate.name().as_str())
}
})
}
}
RootMode::Absolute => {
// In absolute mode, just write the crate name
// unconditionally.
let name = self.original_crate_name(cnum).as_str();
debug!("push_krate_path: original_name={:?}", name);
buffer.push(&name);
}
}
}
/// If possible, this pushes a global path resolving to `external_def_id` that is visible
/// from at least one local module and returns true. If the crate defining `external_def_id` is
/// declared with an `extern crate`, the path is guaranteed to use the `extern crate`.
pub fn try_push_visible_item_path<T>(
self,
buffer: &mut T,
external_def_id: DefId,
pushed_prelude_crate: bool,
) -> bool
where T: ItemPathBuffer + Debug
{
debug!(
"try_push_visible_item_path: buffer={:?} external_def_id={:?}",
buffer, external_def_id
);
let visible_parent_map = self.visible_parent_map(LOCAL_CRATE);
let (mut cur_def, mut cur_path) = (external_def_id, Vec::<LocalInternedString>::new());
loop {
debug!(
"try_push_visible_item_path: cur_def={:?} cur_path={:?} CRATE_DEF_INDEX={:?}",
cur_def, cur_path, CRATE_DEF_INDEX,
);
// If `cur_def` is a direct or injected extern crate, push the path to the crate
// followed by the path to the item within the crate and return.
if cur_def.index == CRATE_DEF_INDEX {
match *self.extern_crate(cur_def) {
Some(ExternCrate {
src: ExternCrateSource::Extern(def_id),
direct: true,
..
}) => {
debug!("try_push_visible_item_path: def_id={:?}", def_id);
self.push_item_path(buffer, def_id, pushed_prelude_crate);
cur_path.iter().rev().for_each(|segment| buffer.push(&segment));
return true;
}
None => {
buffer.push(&self.crate_name(cur_def.krate).as_str());
cur_path.iter().rev().for_each(|segment| buffer.push(&segment));
return true;
}
_ => {},
}
}
let mut cur_def_key = self.def_key(cur_def);
debug!("try_push_visible_item_path: cur_def_key={:?}", cur_def_key);
// For a UnitStruct or TupleStruct we want the name of its parent rather than <unnamed>.
if let DefPathData::StructCtor = cur_def_key.disambiguated_data.data {
let parent = DefId {
krate: cur_def.krate,
index: cur_def_key.parent.expect("DefPathData::StructCtor missing a parent"),
};
cur_def_key = self.def_key(parent);
}
let visible_parent = visible_parent_map.get(&cur_def).cloned();
let actual_parent = self.parent(cur_def);
debug!(
"try_push_visible_item_path: visible_parent={:?} actual_parent={:?}",
visible_parent, actual_parent,
);
let data = cur_def_key.disambiguated_data.data;
let symbol = match data {
// In order to output a path that could actually be imported (valid and visible),
// we need to handle re-exports correctly.
//
// For example, take `std::os::unix::process::CommandExt`, this trait is actually
// defined at `std::sys::unix::ext::process::CommandExt` (at time of writing).
//
// `std::os::unix` rexports the contents of `std::sys::unix::ext`. `std::sys` is
// private so the "true" path to `CommandExt` isn't accessible.
//
// In this case, the `visible_parent_map` will look something like this:
//
// (child) -> (parent)
// `std::sys::unix::ext::process::CommandExt` -> `std::sys::unix::ext::process`
// `std::sys::unix::ext::process` -> `std::sys::unix::ext`
// `std::sys::unix::ext` -> `std::os`
//
// This is correct, as the visible parent of `std::sys::unix::ext` is in fact
// `std::os`.
//
// When printing the path to `CommandExt` and looking at the `cur_def_key` that
// corresponds to `std::sys::unix::ext`, we would normally print `ext` and then go
// to the parent - resulting in a mangled path like
// `std::os::ext::process::CommandExt`.
//
// Instead, we must detect that there was a re-export and instead print `unix`
// (which is the name `std::sys::unix::ext` was re-exported as in `std::os`). To
// do this, we compare the parent of `std::sys::unix::ext` (`std::sys::unix`) with
// the visible parent (`std::os`). If these do not match, then we iterate over
// the children of the visible parent (as was done when computing
// `visible_parent_map`), looking for the specific child we currently have and then
// have access to the re-exported name.
DefPathData::Module(module_name) if visible_parent != actual_parent => {
let mut name: Option<ast::Ident> = None;
if let Some(visible_parent) = visible_parent {
for child in self.item_children(visible_parent).iter() {
if child.def.def_id() == cur_def {
name = Some(child.ident);
}
}
}
name.map(|n| n.as_str()).unwrap_or(module_name.as_str())
},
_ => {
data.get_opt_name().map(|n| n.as_str()).unwrap_or_else(|| {
// Re-exported `extern crate` (#43189).
if let DefPathData::CrateRoot = data {
self.original_crate_name(cur_def.krate).as_str()
} else {
Symbol::intern("<unnamed>").as_str()
}
})
},
};
debug!("try_push_visible_item_path: symbol={:?}", symbol);
cur_path.push(symbol);
match visible_parent {
Some(def) => cur_def = def,
None => return false,
};
}
}
pub fn push_item_path<T>(self, buffer: &mut T, def_id: DefId, pushed_prelude_crate: bool)
where T: ItemPathBuffer + Debug
{
debug!(
"push_item_path: buffer={:?} def_id={:?} pushed_prelude_crate={:?}",
buffer, def_id, pushed_prelude_crate
);
match *buffer.root_mode() {
RootMode::Local if !def_id.is_local() =>
if self.try_push_visible_item_path(buffer, def_id, pushed_prelude_crate) { return },
_ => {}
}
let key = self.def_key(def_id);
debug!("push_item_path: key={:?}", key);
match key.disambiguated_data.data {
DefPathData::CrateRoot => {
assert!(key.parent.is_none());
self.push_krate_path(buffer, def_id.krate, pushed_prelude_crate);
}
DefPathData::Impl => {
self.push_impl_path(buffer, def_id, pushed_prelude_crate);
}
// Unclear if there is any value in distinguishing these.
// Probably eventually (and maybe we would even want
// finer-grained distinctions, e.g., between enum/struct).
data @ DefPathData::Misc |
data @ DefPathData::TypeNs(..) |
data @ DefPathData::Trait(..) |
data @ DefPathData::TraitAlias(..) |
data @ DefPathData::AssocTypeInTrait(..) |
data @ DefPathData::AssocTypeInImpl(..) |
data @ DefPathData::AssocExistentialInImpl(..) |
data @ DefPathData::ValueNs(..) |
data @ DefPathData::Module(..) |
data @ DefPathData::TypeParam(..) |
data @ DefPathData::LifetimeParam(..) |
data @ DefPathData::EnumVariant(..) |
data @ DefPathData::Field(..) |
data @ DefPathData::AnonConst |
data @ DefPathData::MacroDef(..) |
data @ DefPathData::ClosureExpr |
data @ DefPathData::ImplTrait |
data @ DefPathData::GlobalMetaData(..) => {
let parent_did = self.parent_def_id(def_id).unwrap();
// Keep track of whether we are one recursion away from the `CrateRoot` and
// pushing the name of a prelude crate. If we are, we'll want to know this when
// printing the `CrateRoot` so we don't prepend a `crate::` to paths.
let mut is_prelude_crate = false;
if let DefPathData::CrateRoot = self.def_key(parent_did).disambiguated_data.data {
if self.extern_prelude.contains_key(&data.as_interned_str().as_symbol()) {
is_prelude_crate = true;
}
}
self.push_item_path(
buffer, parent_did, pushed_prelude_crate || is_prelude_crate
);
buffer.push(&data.as_interned_str().as_symbol().as_str());
},
DefPathData::StructCtor => { // present `X` instead of `X::{{constructor}}`
let parent_def_id = self.parent_def_id(def_id).unwrap();
self.push_item_path(buffer, parent_def_id, pushed_prelude_crate);
}
}
}
fn push_impl_path<T>(
self,
buffer: &mut T,
impl_def_id: DefId,
pushed_prelude_crate: bool,
)
where T: ItemPathBuffer + Debug
{
debug!("push_impl_path: buffer={:?} impl_def_id={:?}", buffer, impl_def_id);
let parent_def_id = self.parent_def_id(impl_def_id).unwrap();
// Always use types for non-local impls, where types are always
// available, and filename/line-number is mostly uninteresting.
let use_types = !impl_def_id.is_local() || {
// Otherwise, use filename/line-number if forced.
let force_no_types = FORCE_IMPL_FILENAME_LINE.with(|f| f.get());
!force_no_types
};
if !use_types {
return self.push_impl_path_fallback(buffer, impl_def_id, pushed_prelude_crate);
}
// Decide whether to print the parent path for the impl.
// Logically, since impls are global, it's never needed, but
// users may find it useful. Currently, we omit the parent if
// the impl is either in the same module as the self-type or
// as the trait.
let self_ty = self.type_of(impl_def_id);
let in_self_mod = match characteristic_def_id_of_type(self_ty) {
None => false,
Some(ty_def_id) => self.parent_def_id(ty_def_id) == Some(parent_def_id),
};
let impl_trait_ref = self.impl_trait_ref(impl_def_id);
let in_trait_mod = match impl_trait_ref {
None => false,
Some(trait_ref) => self.parent_def_id(trait_ref.def_id) == Some(parent_def_id),
};
if !in_self_mod && !in_trait_mod {
// If the impl is not co-located with either self-type or
// trait-type, then fallback to a format that identifies
// the module more clearly.
self.push_item_path(buffer, parent_def_id, pushed_prelude_crate);
if let Some(trait_ref) = impl_trait_ref {
buffer.push(&format!("<impl {} for {}>", trait_ref, self_ty));
} else {
buffer.push(&format!("<impl {}>", self_ty));
}
return;
}
// Otherwise, try to give a good form that would be valid language
// syntax. Preferably using associated item notation.
if let Some(trait_ref) = impl_trait_ref {
// Trait impls.
buffer.push(&format!("<{} as {}>", self_ty, trait_ref));
return;
}
// Inherent impls. Try to print `Foo::bar` for an inherent
// impl on `Foo`, but fallback to `<Foo>::bar` if self-type is
// anything other than a simple path.
match self_ty.sty {
ty::Adt(adt_def, substs) => {
if substs.types().next().is_none() { // ignore regions
self.push_item_path(buffer, adt_def.did, pushed_prelude_crate);
} else {
buffer.push(&format!("<{}>", self_ty));
}
}
ty::Foreign(did) => self.push_item_path(buffer, did, pushed_prelude_crate),
ty::Bool |
ty::Char |
ty::Int(_) |
ty::Uint(_) |
ty::Float(_) |
ty::Str => {
buffer.push(&self_ty.to_string());
}
_ => {
buffer.push(&format!("<{}>", self_ty));
}
}
}
fn push_impl_path_fallback<T>(
self,
buffer: &mut T,
impl_def_id: DefId,
pushed_prelude_crate: bool,
)
where T: ItemPathBuffer + Debug
{
// If no type info is available, fall back to
// pretty printing some span information. This should
// only occur very early in the compiler pipeline.
let parent_def_id = self.parent_def_id(impl_def_id).unwrap();
self.push_item_path(buffer, parent_def_id, pushed_prelude_crate);
let node_id = self.hir().as_local_node_id(impl_def_id).unwrap();
let item = self.hir().expect_item(node_id);
let span_str = self.sess.source_map().span_to_string(item.span);
buffer.push(&format!("<impl at {}>", span_str));
}
/// Returns the def-id of `def_id`'s parent in the def tree. If
/// this returns `None`, then `def_id` represents a crate root or
/// inlined root.
pub fn parent_def_id(self, def_id: DefId) -> Option<DefId> {
let key = self.def_key(def_id);
key.parent.map(|index| DefId { krate: def_id.krate, index: index })
}
}
/// As a heuristic, when we see an impl, if we see that the
/// 'self-type' is a type defined in the same module as the impl,
/// we can omit including the path to the impl itself. This
/// function tries to find a "characteristic def-id" for a
/// type. It's just a heuristic so it makes some questionable
/// decisions and we may want to adjust it later.
pub fn characteristic_def_id_of_type(ty: Ty<'_>) -> Option<DefId> {
match ty.sty {
ty::Adt(adt_def, _) => Some(adt_def.did),
ty::Dynamic(data, ..) => data.principal_def_id(),
ty::Array(subty, _) |
ty::Slice(subty) => characteristic_def_id_of_type(subty),
ty::RawPtr(mt) => characteristic_def_id_of_type(mt.ty),
ty::Ref(_, ty, _) => characteristic_def_id_of_type(ty),
ty::Tuple(ref tys) => tys.iter()
.filter_map(|ty| characteristic_def_id_of_type(ty))
.next(),
ty::FnDef(def_id, _) |
ty::Closure(def_id, _) |
ty::Generator(def_id, _, _) |
ty::Foreign(def_id) => Some(def_id),
ty::Bool |
ty::Char |
ty::Int(_) |
ty::Uint(_) |
ty::Str |
ty::FnPtr(_) |
ty::Projection(_) |
ty::Placeholder(..) |
ty::UnnormalizedProjection(..) |
ty::Param(_) |
ty::Opaque(..) |
ty::Infer(_) |
ty::Bound(..) |
ty::Error |
ty::GeneratorWitness(..) |
ty::Never |
ty::Float(_) => None,
}
}
/// Unifying Trait for different kinds of item paths we might
/// construct. The basic interface is that components get pushed: the
/// instance can also customize how we handle the root of a crate.
pub trait ItemPathBuffer {
fn root_mode(&self) -> &RootMode;
fn push(&mut self, text: &str);
}
#[derive(Debug)]
pub enum RootMode {
/// Try to make a path relative to the local crate. In
/// particular, local paths have no prefix, and if the path comes
/// from an extern crate, start with the path to the `extern
/// crate` declaration.
Local,
/// Always prepend the crate name to the path, forming an absolute
/// path from within a given set of crates.
Absolute,
}
#[derive(Debug)]
struct LocalPathBuffer {
root_mode: RootMode,
str: String,
}
impl LocalPathBuffer {
fn new(root_mode: RootMode) -> LocalPathBuffer {
LocalPathBuffer {
root_mode,
str: String::new(),
}
}
fn into_string(self) -> String {
self.str
}
}
impl ItemPathBuffer for LocalPathBuffer {
fn root_mode(&self) -> &RootMode {
&self.root_mode
}
fn push(&mut self, text: &str) {
if !self.str.is_empty() {
self.str.push_str("::");
}
self.str.push_str(text);
}
}