blob: d9ca37c937bc76ab3b856f3ba8c98c0ae4311f6a [file] [log] [blame]
use self::collector::NodeCollector;
pub use self::def_collector::{DefCollector, MacroInvocationData};
pub use self::definitions::{Definitions, DefKey, DefPath, DefPathData,
DisambiguatedDefPathData, DefPathHash};
use dep_graph::{DepGraph, DepNode, DepKind, DepNodeIndex};
use hir::def_id::{CRATE_DEF_INDEX, DefId, LocalDefId, DefIndexAddressSpace};
use middle::cstore::CrateStoreDyn;
use rustc_target::spec::abi::Abi;
use rustc_data_structures::svh::Svh;
use rustc_data_structures::sync::join;
use syntax::ast::{self, Name, NodeId, CRATE_NODE_ID};
use syntax::source_map::Spanned;
use syntax::ext::base::MacroKind;
use syntax_pos::{Span, DUMMY_SP};
use hir::*;
use hir::itemlikevisit::ItemLikeVisitor;
use hir::print::Nested;
use util::nodemap::FxHashMap;
use util::common::time;
use std::io;
use std::result::Result::Err;
use ty::TyCtxt;
pub mod blocks;
mod collector;
mod def_collector;
pub mod definitions;
mod hir_id_validator;
pub const ITEM_LIKE_SPACE: DefIndexAddressSpace = DefIndexAddressSpace::Low;
pub const REGULAR_SPACE: DefIndexAddressSpace = DefIndexAddressSpace::High;
/// Represents an entry and its parent NodeId.
#[derive(Copy, Clone, Debug)]
pub struct Entry<'hir> {
parent: NodeId,
dep_node: DepNodeIndex,
node: Node<'hir>,
}
impl<'hir> Entry<'hir> {
fn parent_node(self) -> Option<NodeId> {
match self.node {
Node::Crate | Node::MacroDef(_) => None,
_ => Some(self.parent),
}
}
fn fn_decl(&self) -> Option<&FnDecl> {
match self.node {
Node::Item(ref item) => {
match item.node {
ItemKind::Fn(ref fn_decl, _, _, _) => Some(&fn_decl),
_ => None,
}
}
Node::TraitItem(ref item) => {
match item.node {
TraitItemKind::Method(ref method_sig, _) => Some(&method_sig.decl),
_ => None
}
}
Node::ImplItem(ref item) => {
match item.node {
ImplItemKind::Method(ref method_sig, _) => Some(&method_sig.decl),
_ => None,
}
}
Node::Expr(ref expr) => {
match expr.node {
ExprKind::Closure(_, ref fn_decl, ..) => Some(&fn_decl),
_ => None,
}
}
_ => None,
}
}
fn associated_body(self) -> Option<BodyId> {
match self.node {
Node::Item(item) => {
match item.node {
ItemKind::Const(_, body) |
ItemKind::Static(.., body) |
ItemKind::Fn(_, _, _, body) => Some(body),
_ => None,
}
}
Node::TraitItem(item) => {
match item.node {
TraitItemKind::Const(_, Some(body)) |
TraitItemKind::Method(_, TraitMethod::Provided(body)) => Some(body),
_ => None
}
}
Node::ImplItem(item) => {
match item.node {
ImplItemKind::Const(_, body) |
ImplItemKind::Method(_, body) => Some(body),
_ => None,
}
}
Node::AnonConst(constant) => Some(constant.body),
Node::Expr(expr) => {
match expr.node {
ExprKind::Closure(.., body, _, _) => Some(body),
_ => None,
}
}
_ => None
}
}
fn is_body_owner(self, node_id: NodeId) -> bool {
match self.associated_body() {
Some(b) => b.node_id == node_id,
None => false,
}
}
}
/// Stores a crate and any number of inlined items from other crates.
pub struct Forest {
krate: Crate,
pub dep_graph: DepGraph,
}
impl Forest {
pub fn new(krate: Crate, dep_graph: &DepGraph) -> Forest {
Forest {
krate,
dep_graph: dep_graph.clone(),
}
}
pub fn krate<'hir>(&'hir self) -> &'hir Crate {
self.dep_graph.read(DepNode::new_no_params(DepKind::Krate));
&self.krate
}
/// This is internally in the depedency tracking system.
/// Use the `krate` method to ensure your dependency on the
/// crate is tracked.
pub fn untracked_krate<'hir>(&'hir self) -> &'hir Crate {
&self.krate
}
}
/// Represents a mapping from Node IDs to AST elements and their parent
/// Node IDs
#[derive(Clone)]
pub struct Map<'hir> {
/// The backing storage for all the AST nodes.
pub forest: &'hir Forest,
/// Same as the dep_graph in forest, just available with one fewer
/// deref. This is a gratuitous micro-optimization.
pub dep_graph: DepGraph,
/// The SVH of the local crate.
pub crate_hash: Svh,
/// `NodeId`s are sequential integers from 0, so we can be
/// super-compact by storing them in a vector. Not everything with
/// a `NodeId` is in the map, but empirically the occupancy is about
/// 75-80%, so there's not too much overhead (certainly less than
/// a hashmap, since they (at the time of writing) have a maximum
/// of 75% occupancy).
///
/// Also, indexing is pretty quick when you've got a vector and
/// plain old integers.
map: Vec<Option<Entry<'hir>>>,
definitions: &'hir Definitions,
/// The reverse mapping of `node_to_hir_id`.
hir_to_node_id: FxHashMap<HirId, NodeId>,
}
impl<'hir> Map<'hir> {
/// Registers a read in the dependency graph of the AST node with
/// the given `id`. This needs to be called each time a public
/// function returns the HIR for a node -- in other words, when it
/// "reveals" the content of a node to the caller (who might not
/// otherwise have had access to those contents, and hence needs a
/// read recorded). If the function just returns a DefId or
/// NodeId, no actual content was returned, so no read is needed.
pub fn read(&self, id: NodeId) {
if let Some(entry) = self.map[id.as_usize()] {
self.dep_graph.read_index(entry.dep_node);
} else {
bug!("called `HirMap::read()` with invalid `NodeId`: {:?}", id)
}
}
#[inline]
pub fn definitions(&self) -> &'hir Definitions {
self.definitions
}
pub fn def_key(&self, def_id: DefId) -> DefKey {
assert!(def_id.is_local());
self.definitions.def_key(def_id.index)
}
pub fn def_path_from_id(&self, id: NodeId) -> Option<DefPath> {
self.opt_local_def_id(id).map(|def_id| {
self.def_path(def_id)
})
}
pub fn def_path(&self, def_id: DefId) -> DefPath {
assert!(def_id.is_local());
self.definitions.def_path(def_id.index)
}
#[inline]
pub fn local_def_id(&self, node: NodeId) -> DefId {
self.opt_local_def_id(node).unwrap_or_else(|| {
bug!("local_def_id: no entry for `{}`, which has a map of `{:?}`",
node, self.find_entry(node))
})
}
#[inline]
pub fn opt_local_def_id(&self, node: NodeId) -> Option<DefId> {
self.definitions.opt_local_def_id(node)
}
#[inline]
pub fn as_local_node_id(&self, def_id: DefId) -> Option<NodeId> {
self.definitions.as_local_node_id(def_id)
}
#[inline]
pub fn hir_to_node_id(&self, hir_id: HirId) -> NodeId {
self.hir_to_node_id[&hir_id]
}
#[inline]
pub fn node_to_hir_id(&self, node_id: NodeId) -> HirId {
self.definitions.node_to_hir_id(node_id)
}
#[inline]
pub fn def_index_to_hir_id(&self, def_index: DefIndex) -> HirId {
self.definitions.def_index_to_hir_id(def_index)
}
#[inline]
pub fn def_index_to_node_id(&self, def_index: DefIndex) -> NodeId {
self.definitions.as_local_node_id(DefId::local(def_index)).unwrap()
}
#[inline]
pub fn local_def_id_to_hir_id(&self, def_id: LocalDefId) -> HirId {
self.definitions.def_index_to_hir_id(def_id.to_def_id().index)
}
#[inline]
pub fn local_def_id_to_node_id(&self, def_id: LocalDefId) -> NodeId {
self.definitions.as_local_node_id(def_id.to_def_id()).unwrap()
}
pub fn describe_def(&self, node_id: NodeId) -> Option<Def> {
let node = if let Some(node) = self.find(node_id) {
node
} else {
return None
};
match node {
Node::Item(item) => {
let def_id = || self.local_def_id(item.id);
match item.node {
ItemKind::Static(_, m, _) => Some(Def::Static(def_id(), m == MutMutable)),
ItemKind::Const(..) => Some(Def::Const(def_id())),
ItemKind::Fn(..) => Some(Def::Fn(def_id())),
ItemKind::Mod(..) => Some(Def::Mod(def_id())),
ItemKind::Existential(..) => Some(Def::Existential(def_id())),
ItemKind::Ty(..) => Some(Def::TyAlias(def_id())),
ItemKind::Enum(..) => Some(Def::Enum(def_id())),
ItemKind::Struct(..) => Some(Def::Struct(def_id())),
ItemKind::Union(..) => Some(Def::Union(def_id())),
ItemKind::Trait(..) => Some(Def::Trait(def_id())),
ItemKind::TraitAlias(..) => Some(Def::TraitAlias(def_id())),
ItemKind::ExternCrate(_) |
ItemKind::Use(..) |
ItemKind::ForeignMod(..) |
ItemKind::GlobalAsm(..) |
ItemKind::Impl(..) => None,
}
}
Node::ForeignItem(item) => {
let def_id = self.local_def_id(item.id);
match item.node {
ForeignItemKind::Fn(..) => Some(Def::Fn(def_id)),
ForeignItemKind::Static(_, m) => Some(Def::Static(def_id, m)),
ForeignItemKind::Type => Some(Def::ForeignTy(def_id)),
}
}
Node::TraitItem(item) => {
let def_id = self.local_def_id(item.id);
match item.node {
TraitItemKind::Const(..) => Some(Def::AssociatedConst(def_id)),
TraitItemKind::Method(..) => Some(Def::Method(def_id)),
TraitItemKind::Type(..) => Some(Def::AssociatedTy(def_id)),
}
}
Node::ImplItem(item) => {
let def_id = self.local_def_id(item.id);
match item.node {
ImplItemKind::Const(..) => Some(Def::AssociatedConst(def_id)),
ImplItemKind::Method(..) => Some(Def::Method(def_id)),
ImplItemKind::Type(..) => Some(Def::AssociatedTy(def_id)),
ImplItemKind::Existential(..) => Some(Def::AssociatedExistential(def_id)),
}
}
Node::Variant(variant) => {
let def_id = self.local_def_id(variant.node.data.id());
Some(Def::Variant(def_id))
}
Node::Field(_) |
Node::AnonConst(_) |
Node::Expr(_) |
Node::Stmt(_) |
Node::PathSegment(_) |
Node::Ty(_) |
Node::TraitRef(_) |
Node::Pat(_) |
Node::Binding(_) |
Node::StructCtor(_) |
Node::Lifetime(_) |
Node::Visibility(_) |
Node::Block(_) |
Node::Crate => None,
Node::Local(local) => {
Some(Def::Local(local.id))
}
Node::MacroDef(macro_def) => {
Some(Def::Macro(self.local_def_id(macro_def.id),
MacroKind::Bang))
}
Node::GenericParam(param) => {
Some(match param.kind {
GenericParamKind::Lifetime { .. } => Def::Local(param.id),
GenericParamKind::Type { .. } => Def::TyParam(self.local_def_id(param.id)),
})
}
}
}
fn entry_count(&self) -> usize {
self.map.len()
}
fn find_entry(&self, id: NodeId) -> Option<Entry<'hir>> {
self.map.get(id.as_usize()).cloned().unwrap_or(None)
}
pub fn krate(&self) -> &'hir Crate {
self.forest.krate()
}
pub fn trait_item(&self, id: TraitItemId) -> &'hir TraitItem {
self.read(id.node_id);
// N.B., intentionally bypass `self.forest.krate()` so that we
// do not trigger a read of the whole krate here
self.forest.krate.trait_item(id)
}
pub fn impl_item(&self, id: ImplItemId) -> &'hir ImplItem {
self.read(id.node_id);
// N.B., intentionally bypass `self.forest.krate()` so that we
// do not trigger a read of the whole krate here
self.forest.krate.impl_item(id)
}
pub fn body(&self, id: BodyId) -> &'hir Body {
self.read(id.node_id);
// N.B., intentionally bypass `self.forest.krate()` so that we
// do not trigger a read of the whole krate here
self.forest.krate.body(id)
}
pub fn fn_decl(&self, node_id: ast::NodeId) -> Option<FnDecl> {
if let Some(entry) = self.find_entry(node_id) {
entry.fn_decl().cloned()
} else {
bug!("no entry for node_id `{}`", node_id)
}
}
/// Returns the `NodeId` that corresponds to the definition of
/// which this is the body of, i.e., a `fn`, `const` or `static`
/// item (possibly associated), a closure, or a `hir::AnonConst`.
pub fn body_owner(&self, BodyId { node_id }: BodyId) -> NodeId {
let parent = self.get_parent_node(node_id);
assert!(self.map[parent.as_usize()].map_or(false, |e| e.is_body_owner(node_id)));
parent
}
pub fn body_owner_def_id(&self, id: BodyId) -> DefId {
self.local_def_id(self.body_owner(id))
}
/// Given a node id, returns the `BodyId` associated with it,
/// if the node is a body owner, otherwise returns `None`.
pub fn maybe_body_owned_by(&self, id: NodeId) -> Option<BodyId> {
if let Some(entry) = self.find_entry(id) {
if self.dep_graph.is_fully_enabled() {
let hir_id_owner = self.node_to_hir_id(id).owner;
let def_path_hash = self.definitions.def_path_hash(hir_id_owner);
self.dep_graph.read(def_path_hash.to_dep_node(DepKind::HirBody));
}
entry.associated_body()
} else {
bug!("no entry for id `{}`", id)
}
}
/// Given a body owner's id, returns the `BodyId` associated with it.
pub fn body_owned_by(&self, id: NodeId) -> BodyId {
self.maybe_body_owned_by(id).unwrap_or_else(|| {
span_bug!(self.span(id), "body_owned_by: {} has no associated body",
self.node_to_string(id));
})
}
pub fn body_owner_kind(&self, id: NodeId) -> BodyOwnerKind {
match self.get(id) {
Node::Item(&Item { node: ItemKind::Const(..), .. }) |
Node::TraitItem(&TraitItem { node: TraitItemKind::Const(..), .. }) |
Node::ImplItem(&ImplItem { node: ImplItemKind::Const(..), .. }) |
Node::AnonConst(_) => {
BodyOwnerKind::Const
}
Node::Item(&Item { node: ItemKind::Static(_, m, _), .. }) => {
BodyOwnerKind::Static(m)
}
// Default to function if it's not a constant or static.
_ => BodyOwnerKind::Fn
}
}
pub fn ty_param_owner(&self, id: NodeId) -> NodeId {
match self.get(id) {
Node::Item(&Item { node: ItemKind::Trait(..), .. }) => id,
Node::GenericParam(_) => self.get_parent_node(id),
_ => bug!("ty_param_owner: {} not a type parameter", self.node_to_string(id))
}
}
pub fn ty_param_name(&self, id: NodeId) -> Name {
match self.get(id) {
Node::Item(&Item { node: ItemKind::Trait(..), .. }) => keywords::SelfUpper.name(),
Node::GenericParam(param) => param.name.ident().name,
_ => bug!("ty_param_name: {} not a type parameter", self.node_to_string(id)),
}
}
pub fn trait_impls(&self, trait_did: DefId) -> &'hir [NodeId] {
self.dep_graph.read(DepNode::new_no_params(DepKind::AllLocalTraitImpls));
// N.B., intentionally bypass `self.forest.krate()` so that we
// do not trigger a read of the whole krate here
self.forest.krate.trait_impls.get(&trait_did).map_or(&[], |xs| &xs[..])
}
pub fn trait_auto_impl(&self, trait_did: DefId) -> Option<NodeId> {
self.dep_graph.read(DepNode::new_no_params(DepKind::AllLocalTraitImpls));
// N.B., intentionally bypass `self.forest.krate()` so that we
// do not trigger a read of the whole krate here
self.forest.krate.trait_auto_impl.get(&trait_did).cloned()
}
pub fn trait_is_auto(&self, trait_did: DefId) -> bool {
self.trait_auto_impl(trait_did).is_some()
}
/// Get the attributes on the krate. This is preferable to
/// invoking `krate.attrs` because it registers a tighter
/// dep-graph access.
pub fn krate_attrs(&self) -> &'hir [ast::Attribute] {
let def_path_hash = self.definitions.def_path_hash(CRATE_DEF_INDEX);
self.dep_graph.read(def_path_hash.to_dep_node(DepKind::Hir));
&self.forest.krate.attrs
}
pub fn get_module(&self, module: DefId) -> (&'hir Mod, Span, NodeId)
{
let node_id = self.as_local_node_id(module).unwrap();
self.read(node_id);
match self.find_entry(node_id).unwrap().node {
Node::Item(&Item {
span,
node: ItemKind::Mod(ref m),
..
}) => (m, span, node_id),
Node::Crate => (&self.forest.krate.module, self.forest.krate.span, node_id),
_ => panic!("not a module")
}
}
pub fn visit_item_likes_in_module<V>(&self, module: DefId, visitor: &mut V)
where V: ItemLikeVisitor<'hir>
{
let node_id = self.as_local_node_id(module).unwrap();
// Read the module so we'll be re-executed if new items
// appear immediately under in the module. If some new item appears
// in some nested item in the module, we'll be re-executed due to reads
// in the expect_* calls the loops below
self.read(node_id);
let module = &self.forest.krate.modules[&node_id];
for id in &module.items {
visitor.visit_item(self.expect_item(*id));
}
for id in &module.trait_items {
visitor.visit_trait_item(self.expect_trait_item(id.node_id));
}
for id in &module.impl_items {
visitor.visit_impl_item(self.expect_impl_item(id.node_id));
}
}
/// Retrieve the Node corresponding to `id`, panicking if it cannot
/// be found.
pub fn get(&self, id: NodeId) -> Node<'hir> {
// read recorded by `find`
self.find(id).unwrap_or_else(|| bug!("couldn't find node id {} in the AST map", id))
}
pub fn get_if_local(&self, id: DefId) -> Option<Node<'hir>> {
self.as_local_node_id(id).map(|id| self.get(id)) // read recorded by `get`
}
pub fn get_generics(&self, id: DefId) -> Option<&'hir Generics> {
self.get_if_local(id).and_then(|node| {
match node {
Node::ImplItem(ref impl_item) => Some(&impl_item.generics),
Node::TraitItem(ref trait_item) => Some(&trait_item.generics),
Node::Item(ref item) => {
match item.node {
ItemKind::Fn(_, _, ref generics, _) |
ItemKind::Ty(_, ref generics) |
ItemKind::Enum(_, ref generics) |
ItemKind::Struct(_, ref generics) |
ItemKind::Union(_, ref generics) |
ItemKind::Trait(_, _, ref generics, ..) |
ItemKind::TraitAlias(ref generics, _) |
ItemKind::Impl(_, _, _, ref generics, ..) => Some(generics),
_ => None,
}
}
_ => None,
}
})
}
pub fn get_generics_span(&self, id: DefId) -> Option<Span> {
self.get_generics(id).map(|generics| generics.span).filter(|sp| *sp != DUMMY_SP)
}
/// Retrieve the Node corresponding to `id`, returning None if
/// cannot be found.
pub fn find(&self, id: NodeId) -> Option<Node<'hir>> {
let result = self.find_entry(id).and_then(|entry| {
if let Node::Crate = entry.node {
None
} else {
Some(entry.node)
}
});
if result.is_some() {
self.read(id);
}
result
}
/// Similar to `get_parent`; returns the parent node-id, or own `id` if there is
/// no parent. Note that the parent may be `CRATE_NODE_ID`, which is not itself
/// present in the map -- so passing the return value of get_parent_node to
/// get may actually panic.
/// This function returns the immediate parent in the AST, whereas get_parent
/// returns the enclosing item. Note that this might not be the actual parent
/// node in the AST - some kinds of nodes are not in the map and these will
/// never appear as the parent_node. So you can always walk the `parent_nodes`
/// from a node to the root of the ast (unless you get the same id back here
/// that can happen if the id is not in the map itself or is just weird).
pub fn get_parent_node(&self, id: NodeId) -> NodeId {
if self.dep_graph.is_fully_enabled() {
let hir_id_owner = self.node_to_hir_id(id).owner;
let def_path_hash = self.definitions.def_path_hash(hir_id_owner);
self.dep_graph.read(def_path_hash.to_dep_node(DepKind::HirBody));
}
self.find_entry(id).and_then(|x| x.parent_node()).unwrap_or(id)
}
/// Check if the node is an argument. An argument is a local variable whose
/// immediate parent is an item or a closure.
pub fn is_argument(&self, id: NodeId) -> bool {
match self.find(id) {
Some(Node::Binding(_)) => (),
_ => return false,
}
match self.find(self.get_parent_node(id)) {
Some(Node::Item(_)) |
Some(Node::TraitItem(_)) |
Some(Node::ImplItem(_)) => true,
Some(Node::Expr(e)) => {
match e.node {
ExprKind::Closure(..) => true,
_ => false,
}
}
_ => false,
}
}
/// If there is some error when walking the parents (e.g., a node does not
/// have a parent in the map or a node can't be found), then we return the
/// last good node id we found. Note that reaching the crate root (`id == 0`),
/// is not an error, since items in the crate module have the crate root as
/// parent.
fn walk_parent_nodes<F, F2>(&self,
start_id: NodeId,
found: F,
bail_early: F2)
-> Result<NodeId, NodeId>
where F: Fn(&Node<'hir>) -> bool, F2: Fn(&Node<'hir>) -> bool
{
let mut id = start_id;
loop {
let parent_node = self.get_parent_node(id);
if parent_node == CRATE_NODE_ID {
return Ok(CRATE_NODE_ID);
}
if parent_node == id {
return Err(id);
}
if let Some(entry) = self.find_entry(parent_node) {
if let Node::Crate = entry.node {
return Err(id);
}
if found(&entry.node) {
return Ok(parent_node);
} else if bail_early(&entry.node) {
return Err(parent_node);
}
id = parent_node;
} else {
return Err(id);
}
}
}
/// Retrieve the `NodeId` for `id`'s enclosing method, unless there's a
/// `while` or `loop` before reaching it, as block tail returns are not
/// available in them.
///
/// ```
/// fn foo(x: usize) -> bool {
/// if x == 1 {
/// true // `get_return_block` gets passed the `id` corresponding
/// } else { // to this, it will return `foo`'s `NodeId`.
/// false
/// }
/// }
/// ```
///
/// ```
/// fn foo(x: usize) -> bool {
/// loop {
/// true // `get_return_block` gets passed the `id` corresponding
/// } // to this, it will return `None`.
/// false
/// }
/// ```
pub fn get_return_block(&self, id: NodeId) -> Option<NodeId> {
let match_fn = |node: &Node<'_>| {
match *node {
Node::Item(_) |
Node::ForeignItem(_) |
Node::TraitItem(_) |
Node::Expr(Expr { node: ExprKind::Closure(..), ..}) |
Node::ImplItem(_) => true,
_ => false,
}
};
let match_non_returning_block = |node: &Node<'_>| {
match *node {
Node::Expr(ref expr) => {
match expr.node {
ExprKind::While(..) | ExprKind::Loop(..) | ExprKind::Ret(..) => true,
_ => false,
}
}
_ => false,
}
};
self.walk_parent_nodes(id, match_fn, match_non_returning_block).ok()
}
/// Retrieve the `NodeId` for `id`'s parent item, or `id` itself if no
/// parent item is in this map. The "parent item" is the closest parent node
/// in the HIR which is recorded by the map and is an item, either an item
/// in a module, trait, or impl.
pub fn get_parent(&self, id: NodeId) -> NodeId {
match self.walk_parent_nodes(id, |node| match *node {
Node::Item(_) |
Node::ForeignItem(_) |
Node::TraitItem(_) |
Node::ImplItem(_) => true,
_ => false,
}, |_| false) {
Ok(id) => id,
Err(id) => id,
}
}
/// Returns the `DefId` of `id`'s nearest module parent, or `id` itself if no
/// module parent is in this map.
pub fn get_module_parent(&self, id: NodeId) -> DefId {
self.local_def_id(self.get_module_parent_node(id))
}
/// Returns the `NodeId` of `id`'s nearest module parent, or `id` itself if no
/// module parent is in this map.
pub fn get_module_parent_node(&self, id: NodeId) -> NodeId {
match self.walk_parent_nodes(id, |node| match *node {
Node::Item(&Item { node: ItemKind::Mod(_), .. }) => true,
_ => false,
}, |_| false) {
Ok(id) => id,
Err(id) => id,
}
}
/// Returns the nearest enclosing scope. A scope is an item or block.
/// FIXME: it is not clear to me that all items qualify as scopes -- statics
/// and associated types probably shouldn't, for example. Behavior in this
/// regard should be expected to be highly unstable.
pub fn get_enclosing_scope(&self, id: NodeId) -> Option<NodeId> {
self.walk_parent_nodes(id, |node| match *node {
Node::Item(_) |
Node::ForeignItem(_) |
Node::TraitItem(_) |
Node::ImplItem(_) |
Node::Block(_) => true,
_ => false,
}, |_| false).ok()
}
pub fn get_parent_did(&self, id: NodeId) -> DefId {
self.local_def_id(self.get_parent(id))
}
pub fn get_foreign_abi(&self, id: NodeId) -> Abi {
let parent = self.get_parent(id);
if let Some(entry) = self.find_entry(parent) {
if let Entry {
node: Node::Item(Item { node: ItemKind::ForeignMod(ref nm), .. }), .. } = entry
{
self.read(id); // reveals some of the content of a node
return nm.abi;
}
}
bug!("expected foreign mod or inlined parent, found {}", self.node_to_string(parent))
}
pub fn expect_item(&self, id: NodeId) -> &'hir Item {
match self.find(id) { // read recorded by `find`
Some(Node::Item(item)) => item,
_ => bug!("expected item, found {}", self.node_to_string(id))
}
}
pub fn expect_impl_item(&self, id: NodeId) -> &'hir ImplItem {
match self.find(id) {
Some(Node::ImplItem(item)) => item,
_ => bug!("expected impl item, found {}", self.node_to_string(id))
}
}
pub fn expect_trait_item(&self, id: NodeId) -> &'hir TraitItem {
match self.find(id) {
Some(Node::TraitItem(item)) => item,
_ => bug!("expected trait item, found {}", self.node_to_string(id))
}
}
pub fn expect_variant_data(&self, id: NodeId) -> &'hir VariantData {
match self.find(id) {
Some(Node::Item(i)) => {
match i.node {
ItemKind::Struct(ref struct_def, _) |
ItemKind::Union(ref struct_def, _) => struct_def,
_ => bug!("struct ID bound to non-struct {}", self.node_to_string(id))
}
}
Some(Node::StructCtor(data)) => data,
Some(Node::Variant(variant)) => &variant.node.data,
_ => bug!("expected struct or variant, found {}", self.node_to_string(id))
}
}
pub fn expect_variant(&self, id: NodeId) -> &'hir Variant {
match self.find(id) {
Some(Node::Variant(variant)) => variant,
_ => bug!("expected variant, found {}", self.node_to_string(id)),
}
}
pub fn expect_foreign_item(&self, id: NodeId) -> &'hir ForeignItem {
match self.find(id) {
Some(Node::ForeignItem(item)) => item,
_ => bug!("expected foreign item, found {}", self.node_to_string(id))
}
}
pub fn expect_expr(&self, id: NodeId) -> &'hir Expr {
match self.find(id) { // read recorded by find
Some(Node::Expr(expr)) => expr,
_ => bug!("expected expr, found {}", self.node_to_string(id))
}
}
/// Returns the name associated with the given NodeId's AST.
pub fn name(&self, id: NodeId) -> Name {
match self.get(id) {
Node::Item(i) => i.ident.name,
Node::ForeignItem(fi) => fi.ident.name,
Node::ImplItem(ii) => ii.ident.name,
Node::TraitItem(ti) => ti.ident.name,
Node::Variant(v) => v.node.ident.name,
Node::Field(f) => f.ident.name,
Node::Lifetime(lt) => lt.name.ident().name,
Node::GenericParam(param) => param.name.ident().name,
Node::Binding(&Pat { node: PatKind::Binding(_,_,l,_), .. }) => l.name,
Node::StructCtor(_) => self.name(self.get_parent(id)),
_ => bug!("no name for {}", self.node_to_string(id))
}
}
/// Given a node ID, get a list of attributes associated with the AST
/// corresponding to the Node ID
pub fn attrs(&self, id: NodeId) -> &'hir [ast::Attribute] {
self.read(id); // reveals attributes on the node
let attrs = match self.find(id) {
Some(Node::Item(i)) => Some(&i.attrs[..]),
Some(Node::ForeignItem(fi)) => Some(&fi.attrs[..]),
Some(Node::TraitItem(ref ti)) => Some(&ti.attrs[..]),
Some(Node::ImplItem(ref ii)) => Some(&ii.attrs[..]),
Some(Node::Variant(ref v)) => Some(&v.node.attrs[..]),
Some(Node::Field(ref f)) => Some(&f.attrs[..]),
Some(Node::Expr(ref e)) => Some(&*e.attrs),
Some(Node::Stmt(ref s)) => Some(s.node.attrs()),
Some(Node::GenericParam(param)) => Some(&param.attrs[..]),
// unit/tuple structs take the attributes straight from
// the struct definition.
Some(Node::StructCtor(_)) => return self.attrs(self.get_parent(id)),
_ => None
};
attrs.unwrap_or(&[])
}
/// Returns an iterator that yields the node id's with paths that
/// match `parts`. (Requires `parts` is non-empty.)
///
/// For example, if given `parts` equal to `["bar", "quux"]`, then
/// the iterator will produce node id's for items with paths
/// such as `foo::bar::quux`, `bar::quux`, `other::bar::quux`, and
/// any other such items it can find in the map.
pub fn nodes_matching_suffix<'a>(&'a self, parts: &'a [String])
-> NodesMatchingSuffix<'a, 'hir> {
NodesMatchingSuffix {
map: self,
item_name: parts.last().unwrap(),
in_which: &parts[..parts.len() - 1],
idx: CRATE_NODE_ID,
}
}
pub fn span(&self, id: NodeId) -> Span {
self.read(id); // reveals span from node
match self.find_entry(id).map(|entry| entry.node) {
Some(Node::Item(item)) => item.span,
Some(Node::ForeignItem(foreign_item)) => foreign_item.span,
Some(Node::TraitItem(trait_method)) => trait_method.span,
Some(Node::ImplItem(impl_item)) => impl_item.span,
Some(Node::Variant(variant)) => variant.span,
Some(Node::Field(field)) => field.span,
Some(Node::AnonConst(constant)) => self.body(constant.body).value.span,
Some(Node::Expr(expr)) => expr.span,
Some(Node::Stmt(stmt)) => stmt.span,
Some(Node::PathSegment(seg)) => seg.ident.span,
Some(Node::Ty(ty)) => ty.span,
Some(Node::TraitRef(tr)) => tr.path.span,
Some(Node::Binding(pat)) => pat.span,
Some(Node::Pat(pat)) => pat.span,
Some(Node::Block(block)) => block.span,
Some(Node::StructCtor(_)) => self.expect_item(self.get_parent(id)).span,
Some(Node::Lifetime(lifetime)) => lifetime.span,
Some(Node::GenericParam(param)) => param.span,
Some(Node::Visibility(&Spanned {
node: VisibilityKind::Restricted { ref path, .. }, ..
})) => path.span,
Some(Node::Visibility(v)) => bug!("unexpected Visibility {:?}", v),
Some(Node::Local(local)) => local.span,
Some(Node::MacroDef(macro_def)) => macro_def.span,
Some(Node::Crate) => self.forest.krate.span,
None => bug!("hir::map::Map::span: id not in map: {:?}", id),
}
}
pub fn span_if_local(&self, id: DefId) -> Option<Span> {
self.as_local_node_id(id).map(|id| self.span(id))
}
pub fn node_to_string(&self, id: NodeId) -> String {
node_id_to_string(self, id, true)
}
pub fn node_to_user_string(&self, id: NodeId) -> String {
node_id_to_string(self, id, false)
}
pub fn node_to_pretty_string(&self, id: NodeId) -> String {
print::to_string(self, |s| s.print_node(self.get(id)))
}
}
pub struct NodesMatchingSuffix<'a, 'hir:'a> {
map: &'a Map<'hir>,
item_name: &'a String,
in_which: &'a [String],
idx: NodeId,
}
impl<'a, 'hir> NodesMatchingSuffix<'a, 'hir> {
/// Returns true only if some suffix of the module path for parent
/// matches `self.in_which`.
///
/// In other words: let `[x_0,x_1,...,x_k]` be `self.in_which`;
/// returns true if parent's path ends with the suffix
/// `x_0::x_1::...::x_k`.
fn suffix_matches(&self, parent: NodeId) -> bool {
let mut cursor = parent;
for part in self.in_which.iter().rev() {
let (mod_id, mod_name) = match find_first_mod_parent(self.map, cursor) {
None => return false,
Some((node_id, name)) => (node_id, name),
};
if mod_name != &**part {
return false;
}
cursor = self.map.get_parent(mod_id);
}
return true;
// Finds the first mod in parent chain for `id`, along with
// that mod's name.
//
// If `id` itself is a mod named `m` with parent `p`, then
// returns `Some(id, m, p)`. If `id` has no mod in its parent
// chain, then returns `None`.
fn find_first_mod_parent<'a>(map: &'a Map<'_>, mut id: NodeId) -> Option<(NodeId, Name)> {
loop {
if let Node::Item(item) = map.find(id)? {
if item_is_mod(&item) {
return Some((id, item.ident.name))
}
}
let parent = map.get_parent(id);
if parent == id { return None }
id = parent;
}
fn item_is_mod(item: &Item) -> bool {
match item.node {
ItemKind::Mod(_) => true,
_ => false,
}
}
}
}
// We are looking at some node `n` with a given name and parent
// id; do their names match what I am seeking?
fn matches_names(&self, parent_of_n: NodeId, name: Name) -> bool {
name == &**self.item_name && self.suffix_matches(parent_of_n)
}
}
impl<'a, 'hir> Iterator for NodesMatchingSuffix<'a, 'hir> {
type Item = NodeId;
fn next(&mut self) -> Option<NodeId> {
loop {
let idx = self.idx;
if idx.as_usize() >= self.map.entry_count() {
return None;
}
self.idx = NodeId::from_u32(self.idx.as_u32() + 1);
let name = match self.map.find_entry(idx).map(|entry| entry.node) {
Some(Node::Item(n)) => n.name(),
Some(Node::ForeignItem(n)) => n.name(),
Some(Node::TraitItem(n)) => n.name(),
Some(Node::ImplItem(n)) => n.name(),
Some(Node::Variant(n)) => n.name(),
Some(Node::Field(n)) => n.name(),
_ => continue,
};
if self.matches_names(self.map.get_parent(idx), name) {
return Some(idx)
}
}
}
}
trait Named {
fn name(&self) -> Name;
}
impl<T:Named> Named for Spanned<T> { fn name(&self) -> Name { self.node.name() } }
impl Named for Item { fn name(&self) -> Name { self.ident.name } }
impl Named for ForeignItem { fn name(&self) -> Name { self.ident.name } }
impl Named for VariantKind { fn name(&self) -> Name { self.ident.name } }
impl Named for StructField { fn name(&self) -> Name { self.ident.name } }
impl Named for TraitItem { fn name(&self) -> Name { self.ident.name } }
impl Named for ImplItem { fn name(&self) -> Name { self.ident.name } }
pub fn map_crate<'hir>(sess: &::session::Session,
cstore: &CrateStoreDyn,
forest: &'hir Forest,
definitions: &'hir Definitions)
-> Map<'hir> {
let ((map, crate_hash), hir_to_node_id) = join(|| {
let hcx = ::ich::StableHashingContext::new(sess, &forest.krate, definitions, cstore);
let mut collector = NodeCollector::root(sess,
&forest.krate,
&forest.dep_graph,
&definitions,
hcx);
intravisit::walk_crate(&mut collector, &forest.krate);
let crate_disambiguator = sess.local_crate_disambiguator();
let cmdline_args = sess.opts.dep_tracking_hash();
collector.finalize_and_compute_crate_hash(
crate_disambiguator,
cstore,
cmdline_args
)
}, || {
// Build the reverse mapping of `node_to_hir_id`.
definitions.node_to_hir_id.iter_enumerated()
.map(|(node_id, &hir_id)| (hir_id, node_id)).collect()
});
if log_enabled!(::log::Level::Debug) {
// This only makes sense for ordered stores; note the
// enumerate to count the number of entries.
let (entries_less_1, _) = map.iter().filter_map(|x| *x).enumerate().last()
.expect("AST map was empty after folding?");
let entries = entries_less_1 + 1;
let vector_length = map.len();
debug!("The AST map has {} entries with a maximum of {}: occupancy {:.1}%",
entries, vector_length, (entries as f64 / vector_length as f64) * 100.);
}
let map = Map {
forest,
dep_graph: forest.dep_graph.clone(),
crate_hash,
map,
hir_to_node_id,
definitions,
};
time(sess, "validate hir map", || {
hir_id_validator::check_crate(&map);
});
map
}
/// Identical to the `PpAnn` implementation for `hir::Crate`,
/// except it avoids creating a dependency on the whole crate.
impl<'hir> print::PpAnn for Map<'hir> {
fn nested(&self, state: &mut print::State<'_>, nested: print::Nested) -> io::Result<()> {
match nested {
Nested::Item(id) => state.print_item(self.expect_item(id.id)),
Nested::TraitItem(id) => state.print_trait_item(self.trait_item(id)),
Nested::ImplItem(id) => state.print_impl_item(self.impl_item(id)),
Nested::Body(id) => state.print_expr(&self.body(id).value),
Nested::BodyArgPat(id, i) => state.print_pat(&self.body(id).arguments[i].pat)
}
}
}
impl<'a> print::State<'a> {
pub fn print_node(&mut self, node: Node<'_>) -> io::Result<()> {
match node {
Node::Item(a) => self.print_item(&a),
Node::ForeignItem(a) => self.print_foreign_item(&a),
Node::TraitItem(a) => self.print_trait_item(a),
Node::ImplItem(a) => self.print_impl_item(a),
Node::Variant(a) => self.print_variant(&a),
Node::AnonConst(a) => self.print_anon_const(&a),
Node::Expr(a) => self.print_expr(&a),
Node::Stmt(a) => self.print_stmt(&a),
Node::PathSegment(a) => self.print_path_segment(&a),
Node::Ty(a) => self.print_type(&a),
Node::TraitRef(a) => self.print_trait_ref(&a),
Node::Binding(a) |
Node::Pat(a) => self.print_pat(&a),
Node::Block(a) => {
use syntax::print::pprust::PrintState;
// containing cbox, will be closed by print-block at }
self.cbox(print::indent_unit)?;
// head-ibox, will be closed by print-block after {
self.ibox(0)?;
self.print_block(&a)
}
Node::Lifetime(a) => self.print_lifetime(&a),
Node::Visibility(a) => self.print_visibility(&a),
Node::GenericParam(_) => bug!("cannot print Node::GenericParam"),
Node::Field(_) => bug!("cannot print StructField"),
// these cases do not carry enough information in the
// hir_map to reconstruct their full structure for pretty
// printing.
Node::StructCtor(_) => bug!("cannot print isolated StructCtor"),
Node::Local(a) => self.print_local_decl(&a),
Node::MacroDef(_) => bug!("cannot print MacroDef"),
Node::Crate => bug!("cannot print Crate"),
}
}
}
fn node_id_to_string(map: &Map<'_>, id: NodeId, include_id: bool) -> String {
let id_str = format!(" (id={})", id);
let id_str = if include_id { &id_str[..] } else { "" };
let path_str = || {
// This functionality is used for debugging, try to use TyCtxt to get
// the user-friendly path, otherwise fall back to stringifying DefPath.
::ty::tls::with_opt(|tcx| {
if let Some(tcx) = tcx {
tcx.node_path_str(id)
} else if let Some(path) = map.def_path_from_id(id) {
path.data.into_iter().map(|elem| {
elem.data.to_string()
}).collect::<Vec<_>>().join("::")
} else {
String::from("<missing path>")
}
})
};
match map.find(id) {
Some(Node::Item(item)) => {
let item_str = match item.node {
ItemKind::ExternCrate(..) => "extern crate",
ItemKind::Use(..) => "use",
ItemKind::Static(..) => "static",
ItemKind::Const(..) => "const",
ItemKind::Fn(..) => "fn",
ItemKind::Mod(..) => "mod",
ItemKind::ForeignMod(..) => "foreign mod",
ItemKind::GlobalAsm(..) => "global asm",
ItemKind::Ty(..) => "ty",
ItemKind::Existential(..) => "existential type",
ItemKind::Enum(..) => "enum",
ItemKind::Struct(..) => "struct",
ItemKind::Union(..) => "union",
ItemKind::Trait(..) => "trait",
ItemKind::TraitAlias(..) => "trait alias",
ItemKind::Impl(..) => "impl",
};
format!("{} {}{}", item_str, path_str(), id_str)
}
Some(Node::ForeignItem(_)) => {
format!("foreign item {}{}", path_str(), id_str)
}
Some(Node::ImplItem(ii)) => {
match ii.node {
ImplItemKind::Const(..) => {
format!("assoc const {} in {}{}", ii.ident, path_str(), id_str)
}
ImplItemKind::Method(..) => {
format!("method {} in {}{}", ii.ident, path_str(), id_str)
}
ImplItemKind::Type(_) => {
format!("assoc type {} in {}{}", ii.ident, path_str(), id_str)
}
ImplItemKind::Existential(_) => {
format!("assoc existential type {} in {}{}", ii.ident, path_str(), id_str)
}
}
}
Some(Node::TraitItem(ti)) => {
let kind = match ti.node {
TraitItemKind::Const(..) => "assoc constant",
TraitItemKind::Method(..) => "trait method",
TraitItemKind::Type(..) => "assoc type",
};
format!("{} {} in {}{}", kind, ti.ident, path_str(), id_str)
}
Some(Node::Variant(ref variant)) => {
format!("variant {} in {}{}",
variant.node.ident,
path_str(), id_str)
}
Some(Node::Field(ref field)) => {
format!("field {} in {}{}",
field.ident,
path_str(), id_str)
}
Some(Node::AnonConst(_)) => {
format!("const {}{}", map.node_to_pretty_string(id), id_str)
}
Some(Node::Expr(_)) => {
format!("expr {}{}", map.node_to_pretty_string(id), id_str)
}
Some(Node::Stmt(_)) => {
format!("stmt {}{}", map.node_to_pretty_string(id), id_str)
}
Some(Node::PathSegment(_)) => {
format!("path segment {}{}", map.node_to_pretty_string(id), id_str)
}
Some(Node::Ty(_)) => {
format!("type {}{}", map.node_to_pretty_string(id), id_str)
}
Some(Node::TraitRef(_)) => {
format!("trait_ref {}{}", map.node_to_pretty_string(id), id_str)
}
Some(Node::Binding(_)) => {
format!("local {}{}", map.node_to_pretty_string(id), id_str)
}
Some(Node::Pat(_)) => {
format!("pat {}{}", map.node_to_pretty_string(id), id_str)
}
Some(Node::Block(_)) => {
format!("block {}{}", map.node_to_pretty_string(id), id_str)
}
Some(Node::Local(_)) => {
format!("local {}{}", map.node_to_pretty_string(id), id_str)
}
Some(Node::StructCtor(_)) => {
format!("struct_ctor {}{}", path_str(), id_str)
}
Some(Node::Lifetime(_)) => {
format!("lifetime {}{}", map.node_to_pretty_string(id), id_str)
}
Some(Node::GenericParam(ref param)) => {
format!("generic_param {:?}{}", param, id_str)
}
Some(Node::Visibility(ref vis)) => {
format!("visibility {:?}{}", vis, id_str)
}
Some(Node::MacroDef(_)) => {
format!("macro {}{}", path_str(), id_str)
}
Some(Node::Crate) => String::from("root_crate"),
None => format!("unknown node{}", id_str),
}
}
pub fn describe_def(tcx: TyCtxt<'_, '_, '_>, def_id: DefId) -> Option<Def> {
if let Some(node_id) = tcx.hir().as_local_node_id(def_id) {
tcx.hir().describe_def(node_id)
} else {
bug!("Calling local describe_def query provider for upstream DefId: {:?}",
def_id)
}
}