blob: c9b4b2bb997178184d8a5dc8eaa5f2620f103cab [file] [log] [blame]
use hir::map::definitions::*;
use hir::def_id::{CRATE_DEF_INDEX, DefIndex, DefIndexAddressSpace};
use session::CrateDisambiguator;
use syntax::ast::*;
use syntax::ext::hygiene::Mark;
use syntax::visit;
use syntax::symbol::keywords;
use syntax::symbol::Symbol;
use syntax::parse::token::{self, Token};
use syntax_pos::Span;
use hir::map::{ITEM_LIKE_SPACE, REGULAR_SPACE};
/// Creates def ids for nodes in the AST.
pub struct DefCollector<'a> {
definitions: &'a mut Definitions,
parent_def: Option<DefIndex>,
expansion: Mark,
pub visit_macro_invoc: Option<&'a mut dyn FnMut(MacroInvocationData)>,
}
pub struct MacroInvocationData {
pub mark: Mark,
pub def_index: DefIndex,
}
impl<'a> DefCollector<'a> {
pub fn new(definitions: &'a mut Definitions, expansion: Mark) -> Self {
DefCollector {
definitions,
expansion,
parent_def: None,
visit_macro_invoc: None,
}
}
pub fn collect_root(&mut self,
crate_name: &str,
crate_disambiguator: CrateDisambiguator) {
let root = self.definitions.create_root_def(crate_name,
crate_disambiguator);
assert_eq!(root, CRATE_DEF_INDEX);
self.parent_def = Some(root);
}
fn create_def(&mut self,
node_id: NodeId,
data: DefPathData,
address_space: DefIndexAddressSpace,
span: Span)
-> DefIndex {
let parent_def = self.parent_def.unwrap();
debug!("create_def(node_id={:?}, data={:?}, parent_def={:?})", node_id, data, parent_def);
self.definitions
.create_def_with_parent(parent_def, node_id, data, address_space, self.expansion, span)
}
pub fn with_parent<F: FnOnce(&mut Self)>(&mut self, parent_def: DefIndex, f: F) {
let parent = self.parent_def;
self.parent_def = Some(parent_def);
f(self);
self.parent_def = parent;
}
fn visit_async_fn(
&mut self,
id: NodeId,
name: Name,
span: Span,
header: &FnHeader,
generics: &'a Generics,
decl: &'a FnDecl,
body: &'a Block,
) {
let (closure_id, return_impl_trait_id) = match header.asyncness {
IsAsync::Async {
closure_id,
return_impl_trait_id,
} => (closure_id, return_impl_trait_id),
_ => unreachable!(),
};
// For async functions, we need to create their inner defs inside of a
// closure to match their desugared representation.
let fn_def_data = DefPathData::ValueNs(name.as_interned_str());
let fn_def = self.create_def(id, fn_def_data, ITEM_LIKE_SPACE, span);
return self.with_parent(fn_def, |this| {
this.create_def(return_impl_trait_id, DefPathData::ImplTrait, REGULAR_SPACE, span);
visit::walk_generics(this, generics);
visit::walk_fn_decl(this, decl);
let closure_def = this.create_def(closure_id,
DefPathData::ClosureExpr,
REGULAR_SPACE,
span);
this.with_parent(closure_def, |this| {
visit::walk_block(this, body);
})
})
}
fn visit_macro_invoc(&mut self, id: NodeId) {
if let Some(ref mut visit) = self.visit_macro_invoc {
visit(MacroInvocationData {
mark: id.placeholder_to_mark(),
def_index: self.parent_def.unwrap(),
})
}
}
}
impl<'a> visit::Visitor<'a> for DefCollector<'a> {
fn visit_item(&mut self, i: &'a Item) {
debug!("visit_item: {:?}", i);
// Pick the def data. This need not be unique, but the more
// information we encapsulate into, the better
let def_data = match i.node {
ItemKind::Impl(..) => DefPathData::Impl,
ItemKind::Trait(..) => DefPathData::Trait(i.ident.as_interned_str()),
ItemKind::TraitAlias(..) => DefPathData::TraitAlias(i.ident.as_interned_str()),
ItemKind::Enum(..) | ItemKind::Struct(..) | ItemKind::Union(..) |
ItemKind::Existential(..) | ItemKind::ExternCrate(..) | ItemKind::ForeignMod(..) |
ItemKind::Ty(..) => DefPathData::TypeNs(i.ident.as_interned_str()),
ItemKind::Mod(..) if i.ident == keywords::Invalid.ident() => {
return visit::walk_item(self, i);
}
ItemKind::Fn(
ref decl,
ref header @ FnHeader { asyncness: IsAsync::Async { .. }, .. },
ref generics,
ref body,
) => {
return self.visit_async_fn(
i.id,
i.ident.name,
i.span,
header,
generics,
decl,
body,
)
}
ItemKind::Mod(..) => DefPathData::Module(i.ident.as_interned_str()),
ItemKind::Static(..) | ItemKind::Const(..) | ItemKind::Fn(..) =>
DefPathData::ValueNs(i.ident.as_interned_str()),
ItemKind::MacroDef(..) => DefPathData::MacroDef(i.ident.as_interned_str()),
ItemKind::Mac(..) => return self.visit_macro_invoc(i.id),
ItemKind::GlobalAsm(..) => DefPathData::Misc,
ItemKind::Use(..) => {
return visit::walk_item(self, i);
}
};
let def = self.create_def(i.id, def_data, ITEM_LIKE_SPACE, i.span);
self.with_parent(def, |this| {
match i.node {
ItemKind::Struct(ref struct_def, _) | ItemKind::Union(ref struct_def, _) => {
// If this is a tuple-like struct, register the constructor.
if !struct_def.is_struct() {
this.create_def(struct_def.id(),
DefPathData::StructCtor,
REGULAR_SPACE,
i.span);
}
}
_ => {}
}
visit::walk_item(this, i);
});
}
fn visit_use_tree(&mut self, use_tree: &'a UseTree, id: NodeId, _nested: bool) {
self.create_def(id, DefPathData::Misc, ITEM_LIKE_SPACE, use_tree.span);
visit::walk_use_tree(self, use_tree, id);
}
fn visit_foreign_item(&mut self, foreign_item: &'a ForeignItem) {
if let ForeignItemKind::Macro(_) = foreign_item.node {
return self.visit_macro_invoc(foreign_item.id);
}
let def = self.create_def(foreign_item.id,
DefPathData::ValueNs(foreign_item.ident.as_interned_str()),
REGULAR_SPACE,
foreign_item.span);
self.with_parent(def, |this| {
visit::walk_foreign_item(this, foreign_item);
});
}
fn visit_variant(&mut self, v: &'a Variant, g: &'a Generics, item_id: NodeId) {
let def = self.create_def(v.node.data.id(),
DefPathData::EnumVariant(v.node.ident.as_interned_str()),
REGULAR_SPACE,
v.span);
self.with_parent(def, |this| visit::walk_variant(this, v, g, item_id));
}
fn visit_variant_data(&mut self, data: &'a VariantData, _: Ident,
_: &'a Generics, _: NodeId, _: Span) {
for (index, field) in data.fields().iter().enumerate() {
let name = field.ident.map(|ident| ident.name)
.unwrap_or_else(|| Symbol::intern(&index.to_string()));
let def = self.create_def(field.id,
DefPathData::Field(name.as_interned_str()),
REGULAR_SPACE,
field.span);
self.with_parent(def, |this| this.visit_struct_field(field));
}
}
fn visit_generic_param(&mut self, param: &'a GenericParam) {
let name = param.ident.as_interned_str();
let def_path_data = match param.kind {
GenericParamKind::Lifetime { .. } => DefPathData::LifetimeParam(name),
GenericParamKind::Type { .. } => DefPathData::TypeParam(name),
};
self.create_def(param.id, def_path_data, REGULAR_SPACE, param.ident.span);
visit::walk_generic_param(self, param);
}
fn visit_trait_item(&mut self, ti: &'a TraitItem) {
let def_data = match ti.node {
TraitItemKind::Method(..) | TraitItemKind::Const(..) =>
DefPathData::ValueNs(ti.ident.as_interned_str()),
TraitItemKind::Type(..) => {
DefPathData::AssocTypeInTrait(ti.ident.as_interned_str())
},
TraitItemKind::Macro(..) => return self.visit_macro_invoc(ti.id),
};
let def = self.create_def(ti.id, def_data, ITEM_LIKE_SPACE, ti.span);
self.with_parent(def, |this| visit::walk_trait_item(this, ti));
}
fn visit_impl_item(&mut self, ii: &'a ImplItem) {
let def_data = match ii.node {
ImplItemKind::Method(MethodSig {
header: ref header @ FnHeader { asyncness: IsAsync::Async { .. }, .. },
ref decl,
}, ref body) => {
return self.visit_async_fn(
ii.id,
ii.ident.name,
ii.span,
header,
&ii.generics,
decl,
body,
)
}
ImplItemKind::Method(..) | ImplItemKind::Const(..) =>
DefPathData::ValueNs(ii.ident.as_interned_str()),
ImplItemKind::Type(..) => DefPathData::AssocTypeInImpl(ii.ident.as_interned_str()),
ImplItemKind::Existential(..) => {
DefPathData::AssocExistentialInImpl(ii.ident.as_interned_str())
},
ImplItemKind::Macro(..) => return self.visit_macro_invoc(ii.id),
};
let def = self.create_def(ii.id, def_data, ITEM_LIKE_SPACE, ii.span);
self.with_parent(def, |this| visit::walk_impl_item(this, ii));
}
fn visit_pat(&mut self, pat: &'a Pat) {
match pat.node {
PatKind::Mac(..) => return self.visit_macro_invoc(pat.id),
_ => visit::walk_pat(self, pat),
}
}
fn visit_anon_const(&mut self, constant: &'a AnonConst) {
let def = self.create_def(constant.id,
DefPathData::AnonConst,
REGULAR_SPACE,
constant.value.span);
self.with_parent(def, |this| visit::walk_anon_const(this, constant));
}
fn visit_expr(&mut self, expr: &'a Expr) {
let parent_def = self.parent_def;
match expr.node {
ExprKind::Mac(..) => return self.visit_macro_invoc(expr.id),
ExprKind::Closure(_, asyncness, ..) => {
let closure_def = self.create_def(expr.id,
DefPathData::ClosureExpr,
REGULAR_SPACE,
expr.span);
self.parent_def = Some(closure_def);
// Async closures desugar to closures inside of closures, so
// we must create two defs.
if let IsAsync::Async { closure_id, .. } = asyncness {
let async_def = self.create_def(closure_id,
DefPathData::ClosureExpr,
REGULAR_SPACE,
expr.span);
self.parent_def = Some(async_def);
}
}
ExprKind::Async(_, async_id, _) => {
let async_def = self.create_def(async_id,
DefPathData::ClosureExpr,
REGULAR_SPACE,
expr.span);
self.parent_def = Some(async_def);
}
_ => {}
};
visit::walk_expr(self, expr);
self.parent_def = parent_def;
}
fn visit_ty(&mut self, ty: &'a Ty) {
match ty.node {
TyKind::Mac(..) => return self.visit_macro_invoc(ty.id),
TyKind::ImplTrait(node_id, _) => {
self.create_def(node_id, DefPathData::ImplTrait, REGULAR_SPACE, ty.span);
}
_ => {}
}
visit::walk_ty(self, ty);
}
fn visit_stmt(&mut self, stmt: &'a Stmt) {
match stmt.node {
StmtKind::Mac(..) => self.visit_macro_invoc(stmt.id),
_ => visit::walk_stmt(self, stmt),
}
}
fn visit_token(&mut self, t: Token) {
if let Token::Interpolated(nt) = t {
if let token::NtExpr(ref expr) = nt.0 {
if let ExprKind::Mac(..) = expr.node {
self.visit_macro_invoc(expr.id);
}
}
}
}
}