blob: da08fbcf14432f384a097ccec4c13f569b1b85cb [file] [log] [blame]
//! An iterator over the type substructure.
//! WARNING: this does not keep track of the region depth.
use crate::ty::{self, Ty};
use smallvec::{self, SmallVec};
// The TypeWalker's stack is hot enough that it's worth going to some effort to
// avoid heap allocations.
pub type TypeWalkerArray<'tcx> = [Ty<'tcx>; 8];
pub type TypeWalkerStack<'tcx> = SmallVec<TypeWalkerArray<'tcx>>;
pub struct TypeWalker<'tcx> {
stack: TypeWalkerStack<'tcx>,
last_subtree: usize,
}
impl<'tcx> TypeWalker<'tcx> {
pub fn new(ty: Ty<'tcx>) -> TypeWalker<'tcx> {
TypeWalker { stack: smallvec![ty], last_subtree: 1 }
}
/// Skips the subtree of types corresponding to the last type
/// returned by `next()`.
///
/// Example: Imagine you are walking `Foo<Bar<int>, usize>`.
///
/// ```
/// let mut iter: TypeWalker = ...;
/// iter.next(); // yields Foo
/// iter.next(); // yields Bar<int>
/// iter.skip_current_subtree(); // skips int
/// iter.next(); // yields usize
/// ```
pub fn skip_current_subtree(&mut self) {
self.stack.truncate(self.last_subtree);
}
}
impl<'tcx> Iterator for TypeWalker<'tcx> {
type Item = Ty<'tcx>;
fn next(&mut self) -> Option<Ty<'tcx>> {
debug!("next(): stack={:?}", self.stack);
match self.stack.pop() {
None => None,
Some(ty) => {
self.last_subtree = self.stack.len();
push_subtypes(&mut self.stack, ty);
debug!("next: stack={:?}", self.stack);
Some(ty)
}
}
}
}
pub fn walk_shallow(ty: Ty<'_>) -> smallvec::IntoIter<TypeWalkerArray<'_>> {
let mut stack = SmallVec::new();
push_subtypes(&mut stack, ty);
stack.into_iter()
}
// We push types on the stack in reverse order so as to
// maintain a pre-order traversal. As of the time of this
// writing, the fact that the traversal is pre-order is not
// known to be significant to any code, but it seems like the
// natural order one would expect (basically, the order of the
// types as they are written).
fn push_subtypes<'tcx>(stack: &mut TypeWalkerStack<'tcx>, parent_ty: Ty<'tcx>) {
match parent_ty.kind {
ty::Bool
| ty::Char
| ty::Int(_)
| ty::Uint(_)
| ty::Float(_)
| ty::Str
| ty::Infer(_)
| ty::Param(_)
| ty::Never
| ty::Error
| ty::Placeholder(..)
| ty::Bound(..)
| ty::Foreign(..) => {}
ty::Array(ty, len) => {
if let ty::ConstKind::Unevaluated(_, substs, promoted) = len.val {
assert!(promoted.is_none());
stack.extend(substs.types().rev());
}
stack.push(len.ty);
stack.push(ty);
}
ty::Slice(ty) => {
stack.push(ty);
}
ty::RawPtr(ref mt) => {
stack.push(mt.ty);
}
ty::Ref(_, ty, _) => {
stack.push(ty);
}
ty::Projection(ref data) | ty::UnnormalizedProjection(ref data) => {
stack.extend(data.substs.types().rev());
}
ty::Dynamic(ref obj, ..) => {
stack.extend(obj.iter().rev().flat_map(|predicate| {
let (substs, opt_ty) = match *predicate.skip_binder() {
ty::ExistentialPredicate::Trait(tr) => (tr.substs, None),
ty::ExistentialPredicate::Projection(p) => (p.substs, Some(p.ty)),
ty::ExistentialPredicate::AutoTrait(_) =>
// Empty iterator
{
(ty::InternalSubsts::empty(), None)
}
};
substs.types().rev().chain(opt_ty)
}));
}
ty::Adt(_, substs) | ty::Opaque(_, substs) => {
stack.extend(substs.types().rev());
}
ty::Closure(_, ref substs) | ty::Generator(_, ref substs, _) => {
stack.extend(substs.types().rev());
}
ty::GeneratorWitness(ts) => {
stack.extend(ts.skip_binder().iter().cloned().rev());
}
ty::Tuple(..) => {
stack.extend(parent_ty.tuple_fields().rev());
}
ty::FnDef(_, substs) => {
stack.extend(substs.types().rev());
}
ty::FnPtr(sig) => {
stack.push(sig.skip_binder().output());
stack.extend(sig.skip_binder().inputs().iter().cloned().rev());
}
}
}