blob: d89cf8eb3e843aa59117a6565640626bf8bafd3b [file] [log] [blame]
//! Support code for rustdoc and external tools . You really don't
//! want to be using this unless you need to.
use super::*;
use std::collections::hash_map::Entry;
use std::collections::VecDeque;
use crate::infer::region_constraints::{Constraint, RegionConstraintData};
use crate::infer::InferCtxt;
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use crate::ty::fold::TypeFolder;
use crate::ty::{Region, RegionVid};
// FIXME(twk): this is obviously not nice to duplicate like that
#[derive(Eq, PartialEq, Hash, Copy, Clone, Debug)]
pub enum RegionTarget<'tcx> {
Region(Region<'tcx>),
RegionVid(RegionVid),
}
#[derive(Default, Debug, Clone)]
pub struct RegionDeps<'tcx> {
larger: FxHashSet<RegionTarget<'tcx>>,
smaller: FxHashSet<RegionTarget<'tcx>>,
}
pub enum AutoTraitResult<A> {
ExplicitImpl,
PositiveImpl(A),
NegativeImpl,
}
impl<A> AutoTraitResult<A> {
fn is_auto(&self) -> bool {
match *self {
AutoTraitResult::PositiveImpl(_) | AutoTraitResult::NegativeImpl => true,
_ => false,
}
}
}
pub struct AutoTraitInfo<'cx> {
pub full_user_env: ty::ParamEnv<'cx>,
pub region_data: RegionConstraintData<'cx>,
pub vid_to_region: FxHashMap<ty::RegionVid, ty::Region<'cx>>,
}
pub struct AutoTraitFinder<'tcx> {
tcx: TyCtxt<'tcx>,
}
impl<'tcx> AutoTraitFinder<'tcx> {
pub fn new(tcx: TyCtxt<'tcx>) -> Self {
AutoTraitFinder { tcx }
}
/// Makes a best effort to determine whether and under which conditions an auto trait is
/// implemented for a type. For example, if you have
///
/// ```
/// struct Foo<T> { data: Box<T> }
/// ```
///
/// then this might return that Foo<T>: Send if T: Send (encoded in the AutoTraitResult type).
/// The analysis attempts to account for custom impls as well as other complex cases. This
/// result is intended for use by rustdoc and other such consumers.
///
/// (Note that due to the coinductive nature of Send, the full and correct result is actually
/// quite simple to generate. That is, when a type has no custom impl, it is Send iff its field
/// types are all Send. So, in our example, we might have that Foo<T>: Send if Box<T>: Send.
/// But this is often not the best way to present to the user.)
///
/// Warning: The API should be considered highly unstable, and it may be refactored or removed
/// in the future.
pub fn find_auto_trait_generics<A>(
&self,
ty: Ty<'tcx>,
orig_env: ty::ParamEnv<'tcx>,
trait_did: DefId,
auto_trait_callback: impl Fn(&InferCtxt<'_, 'tcx>, AutoTraitInfo<'tcx>) -> A,
) -> AutoTraitResult<A> {
let tcx = self.tcx;
let trait_ref = ty::TraitRef {
def_id: trait_did,
substs: tcx.mk_substs_trait(ty, &[]),
};
let trait_pred = ty::Binder::bind(trait_ref);
let bail_out = tcx.infer_ctxt().enter(|infcx| {
let mut selcx = SelectionContext::with_negative(&infcx, true);
let result = selcx.select(&Obligation::new(
ObligationCause::dummy(),
orig_env,
trait_pred.to_poly_trait_predicate(),
));
match result {
Ok(Some(Vtable::VtableImpl(_))) => {
debug!(
"find_auto_trait_generics({:?}): \
manual impl found, bailing out",
trait_ref
);
true
}
_ => false
}
});
// If an explicit impl exists, it always takes priority over an auto impl
if bail_out {
return AutoTraitResult::ExplicitImpl;
}
return tcx.infer_ctxt().enter(|mut infcx| {
let mut fresh_preds = FxHashSet::default();
// Due to the way projections are handled by SelectionContext, we need to run
// evaluate_predicates twice: once on the original param env, and once on the result of
// the first evaluate_predicates call.
//
// The problem is this: most of rustc, including SelectionContext and traits::project,
// are designed to work with a concrete usage of a type (e.g., Vec<u8>
// fn<T>() { Vec<T> }. This information will generally never change - given
// the 'T' in fn<T>() { ... }, we'll never know anything else about 'T'.
// If we're unable to prove that 'T' implements a particular trait, we're done -
// there's nothing left to do but error out.
//
// However, synthesizing an auto trait impl works differently. Here, we start out with
// a set of initial conditions - the ParamEnv of the struct/enum/union we're dealing
// with - and progressively discover the conditions we need to fulfill for it to
// implement a certain auto trait. This ends up breaking two assumptions made by trait
// selection and projection:
//
// * We can always cache the result of a particular trait selection for the lifetime of
// an InfCtxt
// * Given a projection bound such as '<T as SomeTrait>::SomeItem = K', if 'T:
// SomeTrait' doesn't hold, then we don't need to care about the 'SomeItem = K'
//
// We fix the first assumption by manually clearing out all of the InferCtxt's caches
// in between calls to SelectionContext.select. This allows us to keep all of the
// intermediate types we create bound to the 'tcx lifetime, rather than needing to lift
// them between calls.
//
// We fix the second assumption by reprocessing the result of our first call to
// evaluate_predicates. Using the example of '<T as SomeTrait>::SomeItem = K', our first
// pass will pick up 'T: SomeTrait', but not 'SomeItem = K'. On our second pass,
// traits::project will see that 'T: SomeTrait' is in our ParamEnv, allowing
// SelectionContext to return it back to us.
let (new_env, user_env) = match self.evaluate_predicates(
&mut infcx,
trait_did,
ty,
orig_env,
orig_env,
&mut fresh_preds,
false,
) {
Some(e) => e,
None => return AutoTraitResult::NegativeImpl,
};
let (full_env, full_user_env) = self.evaluate_predicates(
&mut infcx,
trait_did,
ty,
new_env,
user_env,
&mut fresh_preds,
true,
).unwrap_or_else(|| {
panic!(
"Failed to fully process: {:?} {:?} {:?}",
ty, trait_did, orig_env
)
});
debug!(
"find_auto_trait_generics({:?}): fulfilling \
with {:?}",
trait_ref, full_env
);
infcx.clear_caches();
// At this point, we already have all of the bounds we need. FulfillmentContext is used
// to store all of the necessary region/lifetime bounds in the InferContext, as well as
// an additional sanity check.
let mut fulfill = FulfillmentContext::new();
fulfill.register_bound(
&infcx,
full_env,
ty,
trait_did,
ObligationCause::misc(DUMMY_SP, hir::DUMMY_HIR_ID),
);
fulfill.select_all_or_error(&infcx).unwrap_or_else(|e| {
panic!(
"Unable to fulfill trait {:?} for '{:?}': {:?}",
trait_did, ty, e
)
});
let body_id_map: FxHashMap<_, _> = infcx
.region_obligations
.borrow()
.iter()
.map(|&(id, _)| (id, vec![]))
.collect();
infcx.process_registered_region_obligations(&body_id_map, None, full_env);
let region_data = infcx
.borrow_region_constraints()
.region_constraint_data()
.clone();
let vid_to_region = self.map_vid_to_region(&region_data);
let info = AutoTraitInfo {
full_user_env,
region_data,
vid_to_region,
};
return AutoTraitResult::PositiveImpl(auto_trait_callback(&infcx, info));
});
}
}
impl AutoTraitFinder<'tcx> {
// The core logic responsible for computing the bounds for our synthesized impl.
//
// To calculate the bounds, we call SelectionContext.select in a loop. Like FulfillmentContext,
// we recursively select the nested obligations of predicates we encounter. However, whenever we
// encounter an UnimplementedError involving a type parameter, we add it to our ParamEnv. Since
// our goal is to determine when a particular type implements an auto trait, Unimplemented
// errors tell us what conditions need to be met.
//
// This method ends up working somewhat similarly to FulfillmentContext, but with a few key
// differences. FulfillmentContext works under the assumption that it's dealing with concrete
// user code. According, it considers all possible ways that a Predicate could be met - which
// isn't always what we want for a synthesized impl. For example, given the predicate 'T:
// Iterator', FulfillmentContext can end up reporting an Unimplemented error for T:
// IntoIterator - since there's an implementation of Iteratpr where T: IntoIterator,
// FulfillmentContext will drive SelectionContext to consider that impl before giving up. If we
// were to rely on FulfillmentContext's decision, we might end up synthesizing an impl like
// this:
// 'impl<T> Send for Foo<T> where T: IntoIterator'
//
// While it might be technically true that Foo implements Send where T: IntoIterator,
// the bound is overly restrictive - it's really only necessary that T: Iterator.
//
// For this reason, evaluate_predicates handles predicates with type variables specially. When
// we encounter an Unimplemented error for a bound such as 'T: Iterator', we immediately add it
// to our ParamEnv, and add it to our stack for recursive evaluation. When we later select it,
// we'll pick up any nested bounds, without ever inferring that 'T: IntoIterator' needs to
// hold.
//
// One additional consideration is supertrait bounds. Normally, a ParamEnv is only ever
// constructed once for a given type. As part of the construction process, the ParamEnv will
// have any supertrait bounds normalized - e.g., if we have a type 'struct Foo<T: Copy>', the
// ParamEnv will contain 'T: Copy' and 'T: Clone', since 'Copy: Clone'. When we construct our
// own ParamEnv, we need to do this ourselves, through traits::elaborate_predicates, or else
// SelectionContext will choke on the missing predicates. However, this should never show up in
// the final synthesized generics: we don't want our generated docs page to contain something
// like 'T: Copy + Clone', as that's redundant. Therefore, we keep track of a separate
// 'user_env', which only holds the predicates that will actually be displayed to the user.
fn evaluate_predicates(
&self,
infcx: &InferCtxt<'_, 'tcx>,
trait_did: DefId,
ty: Ty<'tcx>,
param_env: ty::ParamEnv<'tcx>,
user_env: ty::ParamEnv<'tcx>,
fresh_preds: &mut FxHashSet<ty::Predicate<'tcx>>,
only_projections: bool,
) -> Option<(ty::ParamEnv<'tcx>, ty::ParamEnv<'tcx>)> {
let tcx = infcx.tcx;
let mut select = SelectionContext::with_negative(&infcx, true);
let mut already_visited = FxHashSet::default();
let mut predicates = VecDeque::new();
predicates.push_back(ty::Binder::bind(ty::TraitPredicate {
trait_ref: ty::TraitRef {
def_id: trait_did,
substs: infcx.tcx.mk_substs_trait(ty, &[]),
},
}));
let mut computed_preds: FxHashSet<_> = param_env.caller_bounds.iter().cloned().collect();
let mut user_computed_preds: FxHashSet<_> =
user_env.caller_bounds.iter().cloned().collect();
let mut new_env = param_env;
let dummy_cause = ObligationCause::misc(DUMMY_SP, hir::DUMMY_HIR_ID);
while let Some(pred) = predicates.pop_front() {
infcx.clear_caches();
if !already_visited.insert(pred) {
continue;
}
// Call infcx.resolve_vars_if_possible to see if we can
// get rid of any inference variables.
let obligation = infcx.resolve_vars_if_possible(
&Obligation::new(dummy_cause.clone(), new_env, pred)
);
let result = select.select(&obligation);
match &result {
&Ok(Some(ref vtable)) => {
// If we see an explicit negative impl (e.g., 'impl !Send for MyStruct'),
// we immediately bail out, since it's impossible for us to continue.
match vtable {
Vtable::VtableImpl(VtableImplData { impl_def_id, .. }) => {
// Blame tidy for the weird bracket placement
if infcx.tcx.impl_polarity(*impl_def_id) == hir::ImplPolarity::Negative
{
debug!("evaluate_nested_obligations: Found explicit negative impl\
{:?}, bailing out", impl_def_id);
return None;
}
},
_ => {}
}
let obligations = vtable.clone().nested_obligations().into_iter();
if !self.evaluate_nested_obligations(
ty,
obligations,
&mut user_computed_preds,
fresh_preds,
&mut predicates,
&mut select,
only_projections,
) {
return None;
}
}
&Ok(None) => {}
&Err(SelectionError::Unimplemented) => {
if self.is_param_no_infer(pred.skip_binder().trait_ref.substs) {
already_visited.remove(&pred);
self.add_user_pred(
&mut user_computed_preds,
ty::Predicate::Trait(pred),
);
predicates.push_back(pred);
} else {
debug!(
"evaluate_nested_obligations: Unimplemented found, bailing: \
{:?} {:?} {:?}",
ty,
pred,
pred.skip_binder().trait_ref.substs
);
return None;
}
}
_ => panic!("Unexpected error for '{:?}': {:?}", ty, result),
};
computed_preds.extend(user_computed_preds.iter().cloned());
let normalized_preds =
elaborate_predicates(tcx, computed_preds.iter().cloned().collect());
new_env = ty::ParamEnv::new(
tcx.mk_predicates(normalized_preds),
param_env.reveal,
None
);
}
let final_user_env = ty::ParamEnv::new(
tcx.mk_predicates(user_computed_preds.into_iter()),
user_env.reveal,
None
);
debug!(
"evaluate_nested_obligations(ty={:?}, trait_did={:?}): succeeded with '{:?}' \
'{:?}'",
ty, trait_did, new_env, final_user_env
);
return Some((new_env, final_user_env));
}
// This method is designed to work around the following issue:
// When we compute auto trait bounds, we repeatedly call SelectionContext.select,
// progressively building a ParamEnv based on the results we get.
// However, our usage of SelectionContext differs from its normal use within the compiler,
// in that we capture and re-reprocess predicates from Unimplemented errors.
//
// This can lead to a corner case when dealing with region parameters.
// During our selection loop in evaluate_predicates, we might end up with
// two trait predicates that differ only in their region parameters:
// one containing a HRTB lifetime parameter, and one containing a 'normal'
// lifetime parameter. For example:
//
// T as MyTrait<'a>
// T as MyTrait<'static>
//
// If we put both of these predicates in our computed ParamEnv, we'll
// confuse SelectionContext, since it will (correctly) view both as being applicable.
//
// To solve this, we pick the 'more strict' lifetime bound - i.e., the HRTB
// Our end goal is to generate a user-visible description of the conditions
// under which a type implements an auto trait. A trait predicate involving
// a HRTB means that the type needs to work with any choice of lifetime,
// not just one specific lifetime (e.g., 'static).
fn add_user_pred<'c>(
&self,
user_computed_preds: &mut FxHashSet<ty::Predicate<'c>>,
new_pred: ty::Predicate<'c>,
) {
let mut should_add_new = true;
user_computed_preds.retain(|&old_pred| {
match (&new_pred, old_pred) {
(&ty::Predicate::Trait(new_trait), ty::Predicate::Trait(old_trait)) => {
if new_trait.def_id() == old_trait.def_id() {
let new_substs = new_trait.skip_binder().trait_ref.substs;
let old_substs = old_trait.skip_binder().trait_ref.substs;
if !new_substs.types().eq(old_substs.types()) {
// We can't compare lifetimes if the types are different,
// so skip checking old_pred
return true;
}
for (new_region, old_region) in
new_substs.regions().zip(old_substs.regions())
{
match (new_region, old_region) {
// If both predicates have an 'ReLateBound' (a HRTB) in the
// same spot, we do nothing
(
ty::RegionKind::ReLateBound(_, _),
ty::RegionKind::ReLateBound(_, _),
) => {}
(ty::RegionKind::ReLateBound(_, _), _) |
(_, ty::RegionKind::ReVar(_)) => {
// One of these is true:
// The new predicate has a HRTB in a spot where the old
// predicate does not (if they both had a HRTB, the previous
// match arm would have executed). A HRBT is a 'stricter'
// bound than anything else, so we want to keep the newer
// predicate (with the HRBT) in place of the old predicate.
//
// OR
//
// The old predicate has a region variable where the new
// predicate has some other kind of region. An region
// variable isn't something we can actually display to a user,
// so we choose ther new predicate (which doesn't have a region
// varaible).
//
// In both cases, we want to remove the old predicate,
// from user_computed_preds, and replace it with the new
// one. Having both the old and the new
// predicate in a ParamEnv would confuse SelectionContext
//
// We're currently in the predicate passed to 'retain',
// so we return 'false' to remove the old predicate from
// user_computed_preds
return false;
}
(_, ty::RegionKind::ReLateBound(_, _)) |
(ty::RegionKind::ReVar(_), _) => {
// This is the opposite situation as the previous arm.
// One of these is true:
//
// The old predicate has a HRTB lifetime in a place where the
// new predicate does not.
//
// OR
//
// The new predicate has a region variable where the old
// predicate has some other type of region.
//
// We want to leave the old
// predicate in user_computed_preds, and skip adding
// new_pred to user_computed_params.
should_add_new = false
},
_ => {}
}
}
}
}
_ => {}
}
return true;
});
if should_add_new {
user_computed_preds.insert(new_pred);
}
}
// This is very similar to handle_lifetimes. However, instead of matching ty::Region's
// to each other, we match ty::RegionVid's to ty::Region's
fn map_vid_to_region<'cx>(
&self,
regions: &RegionConstraintData<'cx>,
) -> FxHashMap<ty::RegionVid, ty::Region<'cx>> {
let mut vid_map: FxHashMap<RegionTarget<'cx>, RegionDeps<'cx>> = FxHashMap::default();
let mut finished_map = FxHashMap::default();
for constraint in regions.constraints.keys() {
match constraint {
&Constraint::VarSubVar(r1, r2) => {
{
let deps1 = vid_map.entry(RegionTarget::RegionVid(r1)).or_default();
deps1.larger.insert(RegionTarget::RegionVid(r2));
}
let deps2 = vid_map.entry(RegionTarget::RegionVid(r2)).or_default();
deps2.smaller.insert(RegionTarget::RegionVid(r1));
}
&Constraint::RegSubVar(region, vid) => {
{
let deps1 = vid_map.entry(RegionTarget::Region(region)).or_default();
deps1.larger.insert(RegionTarget::RegionVid(vid));
}
let deps2 = vid_map.entry(RegionTarget::RegionVid(vid)).or_default();
deps2.smaller.insert(RegionTarget::Region(region));
}
&Constraint::VarSubReg(vid, region) => {
finished_map.insert(vid, region);
}
&Constraint::RegSubReg(r1, r2) => {
{
let deps1 = vid_map.entry(RegionTarget::Region(r1)).or_default();
deps1.larger.insert(RegionTarget::Region(r2));
}
let deps2 = vid_map.entry(RegionTarget::Region(r2)).or_default();
deps2.smaller.insert(RegionTarget::Region(r1));
}
}
}
while !vid_map.is_empty() {
let target = vid_map.keys().next().expect("Keys somehow empty").clone();
let deps = vid_map.remove(&target).expect("Entry somehow missing");
for smaller in deps.smaller.iter() {
for larger in deps.larger.iter() {
match (smaller, larger) {
(&RegionTarget::Region(_), &RegionTarget::Region(_)) => {
if let Entry::Occupied(v) = vid_map.entry(*smaller) {
let smaller_deps = v.into_mut();
smaller_deps.larger.insert(*larger);
smaller_deps.larger.remove(&target);
}
if let Entry::Occupied(v) = vid_map.entry(*larger) {
let larger_deps = v.into_mut();
larger_deps.smaller.insert(*smaller);
larger_deps.smaller.remove(&target);
}
}
(&RegionTarget::RegionVid(v1), &RegionTarget::Region(r1)) => {
finished_map.insert(v1, r1);
}
(&RegionTarget::Region(_), &RegionTarget::RegionVid(_)) => {
// Do nothing - we don't care about regions that are smaller than vids
}
(&RegionTarget::RegionVid(_), &RegionTarget::RegionVid(_)) => {
if let Entry::Occupied(v) = vid_map.entry(*smaller) {
let smaller_deps = v.into_mut();
smaller_deps.larger.insert(*larger);
smaller_deps.larger.remove(&target);
}
if let Entry::Occupied(v) = vid_map.entry(*larger) {
let larger_deps = v.into_mut();
larger_deps.smaller.insert(*smaller);
larger_deps.smaller.remove(&target);
}
}
}
}
}
}
finished_map
}
fn is_param_no_infer(&self, substs: SubstsRef<'_>) -> bool {
return self.is_of_param(substs.type_at(0)) &&
!substs.types().any(|t| t.has_infer_types());
}
pub fn is_of_param(&self, ty: Ty<'_>) -> bool {
return match ty.sty {
ty::Param(_) => true,
ty::Projection(p) => self.is_of_param(p.self_ty()),
_ => false,
};
}
fn is_self_referential_projection(&self, p: ty::PolyProjectionPredicate<'_>) -> bool {
match p.ty().skip_binder().sty {
ty::Projection(proj) if proj == p.skip_binder().projection_ty => {
true
},
_ => false
}
}
fn evaluate_nested_obligations(
&self,
ty: Ty<'_>,
nested: impl Iterator<Item = Obligation<'tcx, ty::Predicate<'tcx>>>,
computed_preds: &mut FxHashSet<ty::Predicate<'tcx>>,
fresh_preds: &mut FxHashSet<ty::Predicate<'tcx>>,
predicates: &mut VecDeque<ty::PolyTraitPredicate<'tcx>>,
select: &mut SelectionContext<'_, 'tcx>,
only_projections: bool,
) -> bool {
let dummy_cause = ObligationCause::misc(DUMMY_SP, hir::DUMMY_HIR_ID);
for (obligation, mut predicate) in nested
.map(|o| (o.clone(), o.predicate))
{
let is_new_pred =
fresh_preds.insert(self.clean_pred(select.infcx(), predicate));
// Resolve any inference variables that we can, to help selection succeed
predicate = select.infcx().resolve_vars_if_possible(&predicate);
// We only add a predicate as a user-displayable bound if
// it involves a generic parameter, and doesn't contain
// any inference variables.
//
// Displaying a bound involving a concrete type (instead of a generic
// parameter) would be pointless, since it's always true
// (e.g. u8: Copy)
// Displaying an inference variable is impossible, since they're
// an internal compiler detail without a defined visual representation
//
// We check this by calling is_of_param on the relevant types
// from the various possible predicates
match &predicate {
&ty::Predicate::Trait(p) => {
if self.is_param_no_infer(p.skip_binder().trait_ref.substs)
&& !only_projections
&& is_new_pred {
self.add_user_pred(computed_preds, predicate);
}
predicates.push_back(p);
}
&ty::Predicate::Projection(p) => {
debug!("evaluate_nested_obligations: examining projection predicate {:?}",
predicate);
// As described above, we only want to display
// bounds which include a generic parameter but don't include
// an inference variable.
// Additionally, we check if we've seen this predicate before,
// to avoid rendering duplicate bounds to the user.
if self.is_param_no_infer(p.skip_binder().projection_ty.substs)
&& !p.ty().skip_binder().has_infer_types()
&& is_new_pred {
debug!("evaluate_nested_obligations: adding projection predicate\
to computed_preds: {:?}", predicate);
// Under unusual circumstances, we can end up with a self-refeential
// projection predicate. For example:
// <T as MyType>::Value == <T as MyType>::Value
// Not only is displaying this to the user pointless,
// having it in the ParamEnv will cause an issue if we try to call
// poly_project_and_unify_type on the predicate, since this kind of
// predicate will normally never end up in a ParamEnv.
//
// For these reasons, we ignore these weird predicates,
// ensuring that we're able to properly synthesize an auto trait impl
if self.is_self_referential_projection(p) {
debug!("evaluate_nested_obligations: encountered a projection
predicate equating a type with itself! Skipping");
} else {
self.add_user_pred(computed_preds, predicate);
}
}
// There are three possible cases when we project a predicate:
//
// 1. We encounter an error. This means that it's impossible for
// our current type to implement the auto trait - there's bound
// that we could add to our ParamEnv that would 'fix' this kind
// of error, as it's not caused by an unimplemented type.
//
// 2. We succesfully project the predicate (Ok(Some(_))), generating
// some subobligations. We then process these subobligations
// like any other generated sub-obligations.
//
// 3. We receieve an 'ambiguous' result (Ok(None))
// If we were actually trying to compile a crate,
// we would need to re-process this obligation later.
// However, all we care about is finding out what bounds
// are needed for our type to implement a particular auto trait.
// We've already added this obligation to our computed ParamEnv
// above (if it was necessary). Therefore, we don't need
// to do any further processing of the obligation.
//
// Note that we *must* try to project *all* projection predicates
// we encounter, even ones without inference variable.
// This ensures that we detect any projection errors,
// which indicate that our type can *never* implement the given
// auto trait. In that case, we will generate an explicit negative
// impl (e.g. 'impl !Send for MyType'). However, we don't
// try to process any of the generated subobligations -
// they contain no new information, since we already know
// that our type implements the projected-through trait,
// and can lead to weird region issues.
//
// Normally, we'll generate a negative impl as a result of encountering
// a type with an explicit negative impl of an auto trait
// (for example, raw pointers have !Send and !Sync impls)
// However, through some **interesting** manipulations of the type
// system, it's actually possible to write a type that never
// implements an auto trait due to a projection error, not a normal
// negative impl error. To properly handle this case, we need
// to ensure that we catch any potential projection errors,
// and turn them into an explicit negative impl for our type.
debug!("Projecting and unifying projection predicate {:?}",
predicate);
match poly_project_and_unify_type(select, &obligation.with(p)) {
Err(e) => {
debug!(
"evaluate_nested_obligations: Unable to unify predicate \
'{:?}' '{:?}', bailing out",
ty, e
);
return false;
}
Ok(Some(v)) => {
// We only care about sub-obligations
// when we started out trying to unify
// some inference variables. See the comment above
// for more infomration
if p.ty().skip_binder().has_infer_types() {
if !self.evaluate_nested_obligations(
ty,
v.clone().iter().cloned(),
computed_preds,
fresh_preds,
predicates,
select,
only_projections,
) {
return false;
}
}
}
Ok(None) => {
// It's ok not to make progress when hvave no inference variables -
// in that case, we were only performing unifcation to check if an
// error occured (which would indicate that it's impossible for our
// type to implement the auto trait).
// However, we should always make progress (either by generating
// subobligations or getting an error) when we started off with
// inference variables
if p.ty().skip_binder().has_infer_types() {
panic!("Unexpected result when selecting {:?} {:?}", ty, obligation)
}
}
}
}
&ty::Predicate::RegionOutlives(ref binder) => {
if select
.infcx()
.region_outlives_predicate(&dummy_cause, binder)
.is_err()
{
return false;
}
}
&ty::Predicate::TypeOutlives(ref binder) => {
match (
binder.no_bound_vars(),
binder.map_bound_ref(|pred| pred.0).no_bound_vars(),
) {
(None, Some(t_a)) => {
select.infcx().register_region_obligation_with_cause(
t_a,
select.infcx().tcx.lifetimes.re_static,
&dummy_cause,
);
}
(Some(ty::OutlivesPredicate(t_a, r_b)), _) => {
select.infcx().register_region_obligation_with_cause(
t_a,
r_b,
&dummy_cause,
);
}
_ => {}
};
}
_ => panic!("Unexpected predicate {:?} {:?}", ty, predicate),
};
}
return true;
}
pub fn clean_pred(
&self,
infcx: &InferCtxt<'_, 'tcx>,
p: ty::Predicate<'tcx>,
) -> ty::Predicate<'tcx> {
infcx.freshen(p)
}
}
// Replaces all ReVars in a type with ty::Region's, using the provided map
pub struct RegionReplacer<'a, 'tcx> {
vid_to_region: &'a FxHashMap<ty::RegionVid, ty::Region<'tcx>>,
tcx: TyCtxt<'tcx>,
}
impl<'a, 'tcx> TypeFolder<'tcx> for RegionReplacer<'a, 'tcx> {
fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
self.tcx
}
fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
(match r {
&ty::ReVar(vid) => self.vid_to_region.get(&vid).cloned(),
_ => None,
}).unwrap_or_else(|| r.super_fold_with(self))
}
}