blob: 3db0644d1ef3c4abc4d8353c5371b6837dc163ec [file] [log] [blame]
// Copyright 2017 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// compile-flags:--test
#![feature(rustc_private, flt2dec)]
extern crate core;
extern crate rand;
use std::i16;
use std::mem;
use std::str;
use core::num::flt2dec::MAX_SIG_DIGITS;
use core::num::flt2dec::strategy::grisu::format_exact_opt;
use core::num::flt2dec::strategy::grisu::format_shortest_opt;
use core::num::flt2dec::{decode, DecodableFloat, FullDecoded, Decoded};
use rand::{Rand, XorShiftRng};
use rand::distributions::{IndependentSample, Range};
pub fn decode_finite<T: DecodableFloat>(v: T) -> Decoded {
match decode(v).1 {
FullDecoded::Finite(decoded) => decoded,
full_decoded => panic!("expected finite, got {:?} instead", full_decoded)
}
}
fn iterate<F, G, V>(func: &str, k: usize, n: usize, mut f: F, mut g: G, mut v: V) -> (usize, usize)
where F: FnMut(&Decoded, &mut [u8]) -> Option<(usize, i16)>,
G: FnMut(&Decoded, &mut [u8]) -> (usize, i16),
V: FnMut(usize) -> Decoded {
assert!(k <= 1024);
let mut npassed = 0; // f(x) = Some(g(x))
let mut nignored = 0; // f(x) = None
for i in 0..n {
if (i & 0xfffff) == 0 {
println!("in progress, {:x}/{:x} (ignored={} passed={} failed={})",
i, n, nignored, npassed, i - nignored - npassed);
}
let decoded = v(i);
let mut buf1 = [0; 1024];
if let Some((len1, e1)) = f(&decoded, &mut buf1[..k]) {
let mut buf2 = [0; 1024];
let (len2, e2) = g(&decoded, &mut buf2[..k]);
if e1 == e2 && &buf1[..len1] == &buf2[..len2] {
npassed += 1;
} else {
println!("equivalence test failed, {:x}/{:x}: {:?} f(i)={}e{} g(i)={}e{}",
i, n, decoded, str::from_utf8(&buf1[..len1]).unwrap(), e1,
str::from_utf8(&buf2[..len2]).unwrap(), e2);
}
} else {
nignored += 1;
}
}
println!("{}({}): done, ignored={} passed={} failed={}",
func, k, nignored, npassed, n - nignored - npassed);
assert!(nignored + npassed == n,
"{}({}): {} out of {} values returns an incorrect value!",
func, k, n - nignored - npassed, n);
(npassed, nignored)
}
pub fn f32_random_equivalence_test<F, G>(f: F, g: G, k: usize, n: usize)
where F: FnMut(&Decoded, &mut [u8]) -> Option<(usize, i16)>,
G: FnMut(&Decoded, &mut [u8]) -> (usize, i16) {
let mut rng: XorShiftRng = Rand::rand(&mut rand::thread_rng());
let f32_range = Range::new(0x0000_0001u32, 0x7f80_0000);
iterate("f32_random_equivalence_test", k, n, f, g, |_| {
let i: u32 = f32_range.ind_sample(&mut rng);
let x: f32 = unsafe {mem::transmute(i)};
decode_finite(x)
});
}
pub fn f64_random_equivalence_test<F, G>(f: F, g: G, k: usize, n: usize)
where F: FnMut(&Decoded, &mut [u8]) -> Option<(usize, i16)>,
G: FnMut(&Decoded, &mut [u8]) -> (usize, i16) {
let mut rng: XorShiftRng = Rand::rand(&mut rand::thread_rng());
let f64_range = Range::new(0x0000_0000_0000_0001u64, 0x7ff0_0000_0000_0000);
iterate("f64_random_equivalence_test", k, n, f, g, |_| {
let i: u64 = f64_range.ind_sample(&mut rng);
let x: f64 = unsafe {mem::transmute(i)};
decode_finite(x)
});
}
pub fn f32_exhaustive_equivalence_test<F, G>(f: F, g: G, k: usize)
where F: FnMut(&Decoded, &mut [u8]) -> Option<(usize, i16)>,
G: FnMut(&Decoded, &mut [u8]) -> (usize, i16) {
// we have only 2^23 * (2^8 - 1) - 1 = 2,139,095,039 positive finite f32 values,
// so why not simply testing all of them?
//
// this is of course very stressful (and thus should be behind an `#[ignore]` attribute),
// but with `-C opt-level=3 -C lto` this only takes about an hour or so.
// iterate from 0x0000_0001 to 0x7f7f_ffff, i.e. all finite ranges
let (npassed, nignored) = iterate("f32_exhaustive_equivalence_test",
k, 0x7f7f_ffff, f, g, |i: usize| {
let x: f32 = unsafe {mem::transmute(i as u32 + 1)};
decode_finite(x)
});
assert_eq!((npassed, nignored), (2121451881, 17643158));
}
#[test]
fn shortest_random_equivalence_test() {
use core::num::flt2dec::strategy::dragon::format_shortest as fallback;
f64_random_equivalence_test(format_shortest_opt, fallback, MAX_SIG_DIGITS, 10_000);
f32_random_equivalence_test(format_shortest_opt, fallback, MAX_SIG_DIGITS, 10_000);
}
#[test] #[ignore] // it is too expensive
fn shortest_f32_exhaustive_equivalence_test() {
// it is hard to directly test the optimality of the output, but we can at least test if
// two different algorithms agree to each other.
//
// this reports the progress and the number of f32 values returned `None`.
// with `--nocapture` (and plenty of time and appropriate rustc flags), this should print:
// `done, ignored=17643158 passed=2121451881 failed=0`.
use core::num::flt2dec::strategy::dragon::format_shortest as fallback;
f32_exhaustive_equivalence_test(format_shortest_opt, fallback, MAX_SIG_DIGITS);
}
#[test] #[ignore] // it is too expensive
fn shortest_f64_hard_random_equivalence_test() {
// this again probably has to use appropriate rustc flags.
use core::num::flt2dec::strategy::dragon::format_shortest as fallback;
f64_random_equivalence_test(format_shortest_opt, fallback,
MAX_SIG_DIGITS, 100_000_000);
}
#[test]
fn exact_f32_random_equivalence_test() {
use core::num::flt2dec::strategy::dragon::format_exact as fallback;
for k in 1..21 {
f32_random_equivalence_test(|d, buf| format_exact_opt(d, buf, i16::MIN),
|d, buf| fallback(d, buf, i16::MIN), k, 1_000);
}
}
#[test]
fn exact_f64_random_equivalence_test() {
use core::num::flt2dec::strategy::dragon::format_exact as fallback;
for k in 1..21 {
f64_random_equivalence_test(|d, buf| format_exact_opt(d, buf, i16::MIN),
|d, buf| fallback(d, buf, i16::MIN), k, 1_000);
}
}