blob: 0097558eae6c1488ff6922173ccf361f8deea21a [file] [log] [blame]
//! Support code for rustc's built in unit-test and micro-benchmarking
//! framework.
//!
//! Almost all user code will only be interested in `Bencher` and
//! `black_box`. All other interactions (such as writing tests and
//! benchmarks themselves) should be done via the `#[test]` and
//! `#[bench]` attributes.
//!
//! See the [Testing Chapter](../book/ch11-00-testing.html) of the book for more details.
// Currently, not much of this is meant for users. It is intended to
// support the simplest interface possible for representing and
// running tests while providing a base that other test frameworks may
// build off of.
// N.B., this is also specified in this crate's Cargo.toml, but libsyntax contains logic specific to
// this crate, which relies on this attribute (rather than the value of `--crate-name` passed by
// cargo) to detect this crate.
#![crate_name = "test"]
#![unstable(feature = "test", issue = "50297")]
#![doc(html_root_url = "https://doc.rust-lang.org/nightly/", test(attr(deny(warnings))))]
#![feature(asm)]
#![cfg_attr(any(unix, target_os = "cloudabi"), feature(libc))]
#![feature(rustc_private)]
#![feature(nll)]
#![feature(bool_to_option)]
#![feature(set_stdio)]
#![feature(panic_unwind)]
#![feature(staged_api)]
#![feature(termination_trait_lib)]
#![feature(test)]
// Public reexports
pub use self::ColorConfig::*;
pub use self::types::*;
pub use self::types::TestName::*;
pub use self::options::{ColorConfig, Options, OutputFormat, RunIgnored, ShouldPanic};
pub use self::bench::{Bencher, black_box};
pub use self::console::run_tests_console;
pub use cli::TestOpts;
// Module to be used by rustc to compile tests in libtest
pub mod test {
pub use crate::{
bench::Bencher,
cli::{parse_opts, TestOpts},
helpers::metrics::{Metric, MetricMap},
options::{ShouldPanic, Options, RunIgnored, RunStrategy},
test_result::{TestResult, TrFailed, TrFailedMsg, TrIgnored, TrOk},
time::{TestTimeOptions, TestExecTime},
types::{
DynTestFn, DynTestName, StaticBenchFn, StaticTestFn, StaticTestName,
TestDesc, TestDescAndFn, TestName, TestType,
},
assert_test_result, filter_tests, run_test, test_main, test_main_static,
};
}
use std::{
env,
io,
io::prelude::Write,
panic::{self, catch_unwind, AssertUnwindSafe, PanicInfo},
process,
process::{Command, Termination},
sync::mpsc::{channel, Sender},
sync::{Arc, Mutex},
thread,
time::{Duration, Instant},
};
pub mod stats;
pub mod bench;
mod formatters;
mod cli;
mod console;
mod event;
mod helpers;
mod time;
mod types;
mod options;
mod test_result;
#[cfg(test)]
mod tests;
use test_result::*;
use time::TestExecTime;
use options::{RunStrategy, Concurrent};
use event::{CompletedTest, TestEvent};
use helpers::sink::Sink;
use helpers::concurrency::get_concurrency;
use helpers::exit_code::get_exit_code;
// Process exit code to be used to indicate test failures.
const ERROR_EXIT_CODE: i32 = 101;
const SECONDARY_TEST_INVOKER_VAR: &'static str = "__RUST_TEST_INVOKE";
// The default console test runner. It accepts the command line
// arguments and a vector of test_descs.
pub fn test_main(args: &[String], tests: Vec<TestDescAndFn>, options: Option<Options>) {
let mut opts = match cli::parse_opts(args) {
Some(Ok(o)) => o,
Some(Err(msg)) => {
eprintln!("error: {}", msg);
process::exit(ERROR_EXIT_CODE);
}
None => return,
};
if let Some(options) = options {
opts.options = options;
}
if opts.list {
if let Err(e) = console::list_tests_console(&opts, tests) {
eprintln!("error: io error when listing tests: {:?}", e);
process::exit(ERROR_EXIT_CODE);
}
} else {
match console::run_tests_console(&opts, tests) {
Ok(true) => {}
Ok(false) => process::exit(ERROR_EXIT_CODE),
Err(e) => {
eprintln!("error: io error when listing tests: {:?}", e);
process::exit(ERROR_EXIT_CODE);
}
}
}
}
/// A variant optimized for invocation with a static test vector.
/// This will panic (intentionally) when fed any dynamic tests.
///
/// This is the entry point for the main function generated by `rustc --test`
/// when panic=unwind.
pub fn test_main_static(tests: &[&TestDescAndFn]) {
let args = env::args().collect::<Vec<_>>();
let owned_tests: Vec<_> = tests.iter().map(make_owned_test).collect();
test_main(&args, owned_tests, None)
}
/// A variant optimized for invocation with a static test vector.
/// This will panic (intentionally) when fed any dynamic tests.
///
/// Runs tests in panic=abort mode, which involves spawning subprocesses for
/// tests.
///
/// This is the entry point for the main function generated by `rustc --test`
/// when panic=abort.
pub fn test_main_static_abort(tests: &[&TestDescAndFn]) {
// If we're being run in SpawnedSecondary mode, run the test here. run_test
// will then exit the process.
if let Ok(name) = env::var(SECONDARY_TEST_INVOKER_VAR) {
let test = tests
.iter()
.filter(|test| test.desc.name.as_slice() == name)
.map(make_owned_test)
.next()
.expect("couldn't find a test with the provided name");
let TestDescAndFn { desc, testfn } = test;
let testfn = match testfn {
StaticTestFn(f) => f,
_ => panic!("only static tests are supported"),
};
run_test_in_spawned_subprocess(desc, Box::new(testfn));
}
let args = env::args().collect::<Vec<_>>();
let owned_tests: Vec<_> = tests.iter().map(make_owned_test).collect();
test_main(&args, owned_tests, Some(Options::new().panic_abort(true)))
}
/// Clones static values for putting into a dynamic vector, which test_main()
/// needs to hand out ownership of tests to parallel test runners.
///
/// This will panic when fed any dynamic tests, because they cannot be cloned.
fn make_owned_test(test: &&TestDescAndFn) -> TestDescAndFn {
match test.testfn {
StaticTestFn(f) => TestDescAndFn {
testfn: StaticTestFn(f),
desc: test.desc.clone(),
},
StaticBenchFn(f) => TestDescAndFn {
testfn: StaticBenchFn(f),
desc: test.desc.clone(),
},
_ => panic!("non-static tests passed to test::test_main_static"),
}
}
/// Invoked when unit tests terminate. Should panic if the unit
/// Tests is considered a failure. By default, invokes `report()`
/// and checks for a `0` result.
pub fn assert_test_result<T: Termination>(result: T) {
let code = result.report();
assert_eq!(
code, 0,
"the test returned a termination value with a non-zero status code ({}) \
which indicates a failure",
code
);
}
pub fn run_tests<F>(
opts: &TestOpts,
tests: Vec<TestDescAndFn>,
mut notify_about_test_event: F
) -> io::Result<()>
where
F: FnMut(TestEvent) -> io::Result<()>,
{
use std::collections::{self, HashMap};
use std::hash::BuildHasherDefault;
use std::sync::mpsc::RecvTimeoutError;
// Use a deterministic hasher
type TestMap =
HashMap<TestDesc, Instant, BuildHasherDefault<collections::hash_map::DefaultHasher>>;
let tests_len = tests.len();
let mut filtered_tests = filter_tests(opts, tests);
if !opts.bench_benchmarks {
filtered_tests = convert_benchmarks_to_tests(filtered_tests);
}
let filtered_tests = {
let mut filtered_tests = filtered_tests;
for test in filtered_tests.iter_mut() {
test.desc.name = test.desc.name.with_padding(test.testfn.padding());
}
filtered_tests
};
let filtered_out = tests_len - filtered_tests.len();
let event = TestEvent::TeFilteredOut(filtered_out);
notify_about_test_event(event)?;
let filtered_descs = filtered_tests.iter().map(|t| t.desc.clone()).collect();
let event = TestEvent::TeFiltered(filtered_descs);
notify_about_test_event(event)?;
let (filtered_tests, filtered_benchs): (Vec<_>, _) =
filtered_tests.into_iter().partition(|e| match e.testfn {
StaticTestFn(_) | DynTestFn(_) => true,
_ => false,
});
let concurrency = opts.test_threads.unwrap_or_else(get_concurrency);
let mut remaining = filtered_tests;
remaining.reverse();
let mut pending = 0;
let (tx, rx) = channel::<CompletedTest>();
let run_strategy = if opts.options.panic_abort && !opts.force_run_in_process {
RunStrategy::SpawnPrimary
} else {
RunStrategy::InProcess
};
let mut running_tests: TestMap = HashMap::default();
fn get_timed_out_tests(running_tests: &mut TestMap) -> Vec<TestDesc> {
let now = Instant::now();
let timed_out = running_tests
.iter()
.filter_map(|(desc, timeout)| {
if &now >= timeout {
Some(desc.clone())
} else {
None
}
})
.collect();
for test in &timed_out {
running_tests.remove(test);
}
timed_out
};
fn calc_timeout(running_tests: &TestMap) -> Option<Duration> {
running_tests.values().min().map(|next_timeout| {
let now = Instant::now();
if *next_timeout >= now {
*next_timeout - now
} else {
Duration::new(0, 0)
}
})
};
if concurrency == 1 {
while !remaining.is_empty() {
let test = remaining.pop().unwrap();
let event = TestEvent::TeWait(test.desc.clone());
notify_about_test_event(event)?;
run_test(opts, !opts.run_tests, test, run_strategy, tx.clone(), Concurrent::No);
let completed_test = rx.recv().unwrap();
let event = TestEvent::TeResult(completed_test);
notify_about_test_event(event)?;
}
} else {
while pending > 0 || !remaining.is_empty() {
while pending < concurrency && !remaining.is_empty() {
let test = remaining.pop().unwrap();
let timeout = time::get_default_test_timeout();
running_tests.insert(test.desc.clone(), timeout);
let event = TestEvent::TeWait(test.desc.clone());
notify_about_test_event(event)?; //here no pad
run_test(opts, !opts.run_tests, test, run_strategy, tx.clone(), Concurrent::Yes);
pending += 1;
}
let mut res;
loop {
if let Some(timeout) = calc_timeout(&running_tests) {
res = rx.recv_timeout(timeout);
for test in get_timed_out_tests(&mut running_tests) {
let event = TestEvent::TeTimeout(test);
notify_about_test_event(event)?;
}
match res {
Err(RecvTimeoutError::Timeout) => {
// Result is not yet ready, continue waiting.
}
_ => {
// We've got a result, stop the loop.
break;
}
}
} else {
res = rx.recv().map_err(|_| RecvTimeoutError::Disconnected);
break;
}
}
let completed_test = res.unwrap();
running_tests.remove(&completed_test.desc);
let event = TestEvent::TeResult(completed_test);
notify_about_test_event(event)?;
pending -= 1;
}
}
if opts.bench_benchmarks {
// All benchmarks run at the end, in serial.
for b in filtered_benchs {
let event = TestEvent::TeWait(b.desc.clone());
notify_about_test_event(event)?;
run_test(opts, false, b, run_strategy, tx.clone(), Concurrent::No);
let completed_test = rx.recv().unwrap();
let event = TestEvent::TeResult(completed_test);
notify_about_test_event(event)?;
}
}
Ok(())
}
pub fn filter_tests(opts: &TestOpts, tests: Vec<TestDescAndFn>) -> Vec<TestDescAndFn> {
let mut filtered = tests;
let matches_filter = |test: &TestDescAndFn, filter: &str| {
let test_name = test.desc.name.as_slice();
match opts.filter_exact {
true => test_name == filter,
false => test_name.contains(filter),
}
};
// Remove tests that don't match the test filter
if let Some(ref filter) = opts.filter {
filtered.retain(|test| matches_filter(test, filter));
}
// Skip tests that match any of the skip filters
filtered.retain(|test| !opts.skip.iter().any(|sf| matches_filter(test, sf)));
// Excludes #[should_panic] tests
if opts.exclude_should_panic {
filtered.retain(|test| test.desc.should_panic == ShouldPanic::No);
}
// maybe unignore tests
match opts.run_ignored {
RunIgnored::Yes => {
filtered
.iter_mut()
.for_each(|test| test.desc.ignore = false);
}
RunIgnored::Only => {
filtered.retain(|test| test.desc.ignore);
filtered
.iter_mut()
.for_each(|test| test.desc.ignore = false);
}
RunIgnored::No => {}
}
// Sort the tests alphabetically
filtered.sort_by(|t1, t2| t1.desc.name.as_slice().cmp(t2.desc.name.as_slice()));
filtered
}
pub fn convert_benchmarks_to_tests(tests: Vec<TestDescAndFn>) -> Vec<TestDescAndFn> {
// convert benchmarks to tests, if we're not benchmarking them
tests
.into_iter()
.map(|x| {
let testfn = match x.testfn {
DynBenchFn(bench) => DynTestFn(Box::new(move || {
bench::run_once(|b| __rust_begin_short_backtrace(|| bench.run(b)))
})),
StaticBenchFn(benchfn) => DynTestFn(Box::new(move || {
bench::run_once(|b| __rust_begin_short_backtrace(|| benchfn(b)))
})),
f => f,
};
TestDescAndFn {
desc: x.desc,
testfn,
}
})
.collect()
}
pub fn run_test(
opts: &TestOpts,
force_ignore: bool,
test: TestDescAndFn,
strategy: RunStrategy,
monitor_ch: Sender<CompletedTest>,
concurrency: Concurrent,
) {
let TestDescAndFn { desc, testfn } = test;
// Emscripten can catch panics but other wasm targets cannot
let ignore_because_no_process_support = desc.should_panic != ShouldPanic::No
&& cfg!(target_arch = "wasm32") && !cfg!(target_os = "emscripten");
if force_ignore || desc.ignore || ignore_because_no_process_support {
let message = CompletedTest::new(desc, TrIgnored, None, Vec::new());
monitor_ch.send(message).unwrap();
return;
}
struct TestRunOpts {
pub strategy: RunStrategy,
pub nocapture: bool,
pub concurrency: Concurrent,
pub time: Option<time::TestTimeOptions>,
}
fn run_test_inner(
desc: TestDesc,
monitor_ch: Sender<CompletedTest>,
testfn: Box<dyn FnOnce() + Send>,
opts: TestRunOpts,
) {
let concurrency = opts.concurrency;
let name = desc.name.clone();
let runtest = move || {
match opts.strategy {
RunStrategy::InProcess =>
run_test_in_process(
desc,
opts.nocapture,
opts.time.is_some(),
testfn,
monitor_ch,
opts.time
),
RunStrategy::SpawnPrimary =>
spawn_test_subprocess(desc, opts.time.is_some(), monitor_ch, opts.time),
}
};
// If the platform is single-threaded we're just going to run
// the test synchronously, regardless of the concurrency
// level.
let supports_threads = !cfg!(target_os = "emscripten") && !cfg!(target_arch = "wasm32");
if concurrency == Concurrent::Yes && supports_threads {
let cfg = thread::Builder::new().name(name.as_slice().to_owned());
cfg.spawn(runtest).unwrap();
} else {
runtest();
}
}
let test_run_opts = TestRunOpts {
strategy,
nocapture: opts.nocapture,
concurrency,
time: opts.time_options
};
match testfn {
DynBenchFn(bencher) => {
// Benchmarks aren't expected to panic, so we run them all in-process.
crate::bench::benchmark(desc, monitor_ch, opts.nocapture, |harness| {
bencher.run(harness)
});
}
StaticBenchFn(benchfn) => {
// Benchmarks aren't expected to panic, so we run them all in-process.
crate::bench::benchmark(desc, monitor_ch, opts.nocapture, |harness| {
(benchfn.clone())(harness)
});
}
DynTestFn(f) => {
match strategy {
RunStrategy::InProcess => (),
_ => panic!("Cannot run dynamic test fn out-of-process"),
};
run_test_inner(
desc,
monitor_ch,
Box::new(move || __rust_begin_short_backtrace(f)),
test_run_opts,
);
}
StaticTestFn(f) => run_test_inner(
desc,
monitor_ch,
Box::new(move || __rust_begin_short_backtrace(f)),
test_run_opts,
),
}
}
/// Fixed frame used to clean the backtrace with `RUST_BACKTRACE=1`.
#[inline(never)]
fn __rust_begin_short_backtrace<F: FnOnce()>(f: F) {
f()
}
fn run_test_in_process(
desc: TestDesc,
nocapture: bool,
report_time: bool,
testfn: Box<dyn FnOnce() + Send>,
monitor_ch: Sender<CompletedTest>,
time_opts: Option<time::TestTimeOptions>,
) {
// Buffer for capturing standard I/O
let data = Arc::new(Mutex::new(Vec::new()));
let oldio = if !nocapture {
Some((
io::set_print(Some(Sink::new_boxed(&data))),
io::set_panic(Some(Sink::new_boxed(&data))),
))
} else {
None
};
let start = report_time.then(Instant::now);
let result = catch_unwind(AssertUnwindSafe(testfn));
let exec_time = start.map(|start| {
let duration = start.elapsed();
TestExecTime(duration)
});
if let Some((printio, panicio)) = oldio {
io::set_print(printio);
io::set_panic(panicio);
}
let test_result = match result {
Ok(()) => calc_result(&desc, Ok(()), &time_opts, &exec_time),
Err(e) => calc_result(&desc, Err(e.as_ref()), &time_opts, &exec_time),
};
let stdout = data.lock().unwrap().to_vec();
let message = CompletedTest::new(desc.clone(), test_result, exec_time, stdout);
monitor_ch.send(message).unwrap();
}
fn spawn_test_subprocess(
desc: TestDesc,
report_time: bool,
monitor_ch: Sender<CompletedTest>,
time_opts: Option<time::TestTimeOptions>,
) {
let (result, test_output, exec_time) = (|| {
let args = env::args().collect::<Vec<_>>();
let current_exe = &args[0];
let start = report_time.then(Instant::now);
let output = match Command::new(current_exe)
.env(SECONDARY_TEST_INVOKER_VAR, desc.name.as_slice())
.output() {
Ok(out) => out,
Err(e) => {
let err = format!("Failed to spawn {} as child for test: {:?}", args[0], e);
return (TrFailed, err.into_bytes(), None);
}
};
let exec_time = start.map(|start| {
let duration = start.elapsed();
TestExecTime(duration)
});
let std::process::Output { stdout, stderr, status } = output;
let mut test_output = stdout;
formatters::write_stderr_delimiter(&mut test_output, &desc.name);
test_output.extend_from_slice(&stderr);
let result = match (|| -> Result<TestResult, String> {
let exit_code = get_exit_code(status)?;
Ok(get_result_from_exit_code(&desc, exit_code, &time_opts, &exec_time))
})() {
Ok(r) => r,
Err(e) => {
write!(&mut test_output, "Unexpected error: {}", e).unwrap();
TrFailed
}
};
(result, test_output, exec_time)
})();
let message = CompletedTest::new(desc.clone(), result, exec_time, test_output);
monitor_ch.send(message).unwrap();
}
fn run_test_in_spawned_subprocess(
desc: TestDesc,
testfn: Box<dyn FnOnce() + Send>,
) -> ! {
let builtin_panic_hook = panic::take_hook();
let record_result = Arc::new(move |panic_info: Option<&'_ PanicInfo<'_>>| {
let test_result = match panic_info {
Some(info) => calc_result(&desc, Err(info.payload()), &None, &None),
None => calc_result(&desc, Ok(()), &None, &None),
};
// We don't support serializing TrFailedMsg, so just
// print the message out to stderr.
if let TrFailedMsg(msg) = &test_result {
eprintln!("{}", msg);
}
if let Some(info) = panic_info {
builtin_panic_hook(info);
}
if let TrOk = test_result {
process::exit(test_result::TR_OK);
} else {
process::exit(test_result::TR_FAILED);
}
});
let record_result2 = record_result.clone();
panic::set_hook(Box::new(move |info| record_result2(Some(&info))));
testfn();
record_result(None);
unreachable!("panic=abort callback should have exited the process")
}