blob: dec504c0d97452830d8e3d320c13e0752a294ea0 [file] [log] [blame]
use crate::mbe::macro_parser;
use crate::mbe::{TokenTree, KleeneOp, KleeneToken, SequenceRepetition, Delimited};
use syntax::ast;
use syntax::print::pprust;
use syntax::sess::ParseSess;
use syntax::symbol::kw;
use syntax::token::{self, Token};
use syntax::tokenstream;
use syntax_pos::Span;
use rustc_data_structures::sync::Lrc;
/// Takes a `tokenstream::TokenStream` and returns a `Vec<self::TokenTree>`. Specifically, this
/// takes a generic `TokenStream`, such as is used in the rest of the compiler, and returns a
/// collection of `TokenTree` for use in parsing a macro.
///
/// # Parameters
///
/// - `input`: a token stream to read from, the contents of which we are parsing.
/// - `expect_matchers`: `parse` can be used to parse either the "patterns" or the "body" of a
/// macro. Both take roughly the same form _except_ that in a pattern, metavars are declared with
/// their "matcher" type. For example `$var:expr` or `$id:ident`. In this example, `expr` and
/// `ident` are "matchers". They are not present in the body of a macro rule -- just in the
/// pattern, so we pass a parameter to indicate whether to expect them or not.
/// - `sess`: the parsing session. Any errors will be emitted to this session.
/// - `features`, `attrs`: language feature flags and attributes so that we know whether to use
/// unstable features or not.
/// - `edition`: which edition are we in.
/// - `macro_node_id`: the NodeId of the macro we are parsing.
///
/// # Returns
///
/// A collection of `self::TokenTree`. There may also be some errors emitted to `sess`.
pub(super) fn parse(
input: tokenstream::TokenStream,
expect_matchers: bool,
sess: &ParseSess,
) -> Vec<TokenTree> {
// Will contain the final collection of `self::TokenTree`
let mut result = Vec::new();
// For each token tree in `input`, parse the token into a `self::TokenTree`, consuming
// additional trees if need be.
let mut trees = input.trees();
while let Some(tree) = trees.next() {
// Given the parsed tree, if there is a metavar and we are expecting matchers, actually
// parse out the matcher (i.e., in `$id:ident` this would parse the `:` and `ident`).
let tree = parse_tree(
tree,
&mut trees,
expect_matchers,
sess,
);
match tree {
TokenTree::MetaVar(start_sp, ident) if expect_matchers => {
let span = match trees.next() {
Some(tokenstream::TokenTree::Token(Token { kind: token::Colon, span })) => {
match trees.next() {
Some(tokenstream::TokenTree::Token(token)) => match token.ident() {
Some((kind, _)) => {
let span = token.span.with_lo(start_sp.lo());
result.push(TokenTree::MetaVarDecl(span, ident, kind));
continue;
}
_ => token.span,
},
tree => tree.as_ref().map(tokenstream::TokenTree::span).unwrap_or(span),
}
}
tree => tree.as_ref().map(tokenstream::TokenTree::span).unwrap_or(start_sp),
};
sess.missing_fragment_specifiers.borrow_mut().insert(span);
result.push(TokenTree::MetaVarDecl(span, ident, ast::Ident::invalid()));
}
// Not a metavar or no matchers allowed, so just return the tree
_ => result.push(tree),
}
}
result
}
/// Takes a `tokenstream::TokenTree` and returns a `self::TokenTree`. Specifically, this takes a
/// generic `TokenTree`, such as is used in the rest of the compiler, and returns a `TokenTree`
/// for use in parsing a macro.
///
/// Converting the given tree may involve reading more tokens.
///
/// # Parameters
///
/// - `tree`: the tree we wish to convert.
/// - `trees`: an iterator over trees. We may need to read more tokens from it in order to finish
/// converting `tree`
/// - `expect_matchers`: same as for `parse` (see above).
/// - `sess`: the parsing session. Any errors will be emitted to this session.
/// - `features`, `attrs`: language feature flags and attributes so that we know whether to use
/// unstable features or not.
fn parse_tree(
tree: tokenstream::TokenTree,
trees: &mut impl Iterator<Item = tokenstream::TokenTree>,
expect_matchers: bool,
sess: &ParseSess,
) -> TokenTree {
// Depending on what `tree` is, we could be parsing different parts of a macro
match tree {
// `tree` is a `$` token. Look at the next token in `trees`
tokenstream::TokenTree::Token(Token { kind: token::Dollar, span }) => match trees.next() {
// `tree` is followed by a delimited set of token trees. This indicates the beginning
// of a repetition sequence in the macro (e.g. `$(pat)*`).
Some(tokenstream::TokenTree::Delimited(span, delim, tts)) => {
// Must have `(` not `{` or `[`
if delim != token::Paren {
let tok = pprust::token_kind_to_string(&token::OpenDelim(delim));
let msg = format!("expected `(`, found `{}`", tok);
sess.span_diagnostic.span_err(span.entire(), &msg);
}
// Parse the contents of the sequence itself
let sequence = parse(
tts.into(),
expect_matchers,
sess,
);
// Get the Kleene operator and optional separator
let (separator, kleene) = parse_sep_and_kleene_op(trees, span.entire(), sess);
// Count the number of captured "names" (i.e., named metavars)
let name_captures = macro_parser::count_names(&sequence);
TokenTree::Sequence(
span,
Lrc::new(SequenceRepetition {
tts: sequence,
separator,
kleene,
num_captures: name_captures,
}),
)
}
// `tree` is followed by an `ident`. This could be `$meta_var` or the `$crate` special
// metavariable that names the crate of the invocation.
Some(tokenstream::TokenTree::Token(token)) if token.is_ident() => {
let (ident, is_raw) = token.ident().unwrap();
let span = ident.span.with_lo(span.lo());
if ident.name == kw::Crate && !is_raw {
TokenTree::token(token::Ident(kw::DollarCrate, is_raw), span)
} else {
TokenTree::MetaVar(span, ident)
}
}
// `tree` is followed by a random token. This is an error.
Some(tokenstream::TokenTree::Token(token)) => {
let msg =
format!("expected identifier, found `{}`", pprust::token_to_string(&token),);
sess.span_diagnostic.span_err(token.span, &msg);
TokenTree::MetaVar(token.span, ast::Ident::invalid())
}
// There are no more tokens. Just return the `$` we already have.
None => TokenTree::token(token::Dollar, span),
},
// `tree` is an arbitrary token. Keep it.
tokenstream::TokenTree::Token(token) => TokenTree::Token(token),
// `tree` is the beginning of a delimited set of tokens (e.g., `(` or `{`). We need to
// descend into the delimited set and further parse it.
tokenstream::TokenTree::Delimited(span, delim, tts) => TokenTree::Delimited(
span,
Lrc::new(Delimited {
delim,
tts: parse(
tts.into(),
expect_matchers,
sess,
),
}),
),
}
}
/// Takes a token and returns `Some(KleeneOp)` if the token is `+` `*` or `?`. Otherwise, return
/// `None`.
fn kleene_op(token: &Token) -> Option<KleeneOp> {
match token.kind {
token::BinOp(token::Star) => Some(KleeneOp::ZeroOrMore),
token::BinOp(token::Plus) => Some(KleeneOp::OneOrMore),
token::Question => Some(KleeneOp::ZeroOrOne),
_ => None,
}
}
/// Parse the next token tree of the input looking for a KleeneOp. Returns
///
/// - Ok(Ok((op, span))) if the next token tree is a KleeneOp
/// - Ok(Err(tok, span)) if the next token tree is a token but not a KleeneOp
/// - Err(span) if the next token tree is not a token
fn parse_kleene_op(
input: &mut impl Iterator<Item = tokenstream::TokenTree>,
span: Span,
) -> Result<Result<(KleeneOp, Span), Token>, Span> {
match input.next() {
Some(tokenstream::TokenTree::Token(token)) => match kleene_op(&token) {
Some(op) => Ok(Ok((op, token.span))),
None => Ok(Err(token)),
},
tree => Err(tree.as_ref().map(tokenstream::TokenTree::span).unwrap_or(span)),
}
}
/// Attempt to parse a single Kleene star, possibly with a separator.
///
/// For example, in a pattern such as `$(a),*`, `a` is the pattern to be repeated, `,` is the
/// separator, and `*` is the Kleene operator. This function is specifically concerned with parsing
/// the last two tokens of such a pattern: namely, the optional separator and the Kleene operator
/// itself. Note that here we are parsing the _macro_ itself, rather than trying to match some
/// stream of tokens in an invocation of a macro.
///
/// This function will take some input iterator `input` corresponding to `span` and a parsing
/// session `sess`. If the next one (or possibly two) tokens in `input` correspond to a Kleene
/// operator and separator, then a tuple with `(separator, KleeneOp)` is returned. Otherwise, an
/// error with the appropriate span is emitted to `sess` and a dummy value is returned.
fn parse_sep_and_kleene_op(
input: &mut impl Iterator<Item = tokenstream::TokenTree>,
span: Span,
sess: &ParseSess,
) -> (Option<Token>, KleeneToken) {
// We basically look at two token trees here, denoted as #1 and #2 below
let span = match parse_kleene_op(input, span) {
// #1 is a `?`, `+`, or `*` KleeneOp
Ok(Ok((op, span))) => return (None, KleeneToken::new(op, span)),
// #1 is a separator followed by #2, a KleeneOp
Ok(Err(token)) => match parse_kleene_op(input, token.span) {
// #2 is the `?` Kleene op, which does not take a separator (error)
Ok(Ok((KleeneOp::ZeroOrOne, span))) => {
// Error!
sess.span_diagnostic.span_err(
token.span,
"the `?` macro repetition operator does not take a separator",
);
// Return a dummy
return (None, KleeneToken::new(KleeneOp::ZeroOrMore, span));
}
// #2 is a KleeneOp :D
Ok(Ok((op, span))) => return (Some(token), KleeneToken::new(op, span)),
// #2 is a random token or not a token at all :(
Ok(Err(Token { span, .. })) | Err(span) => span,
},
// #1 is not a token
Err(span) => span,
};
// If we ever get to this point, we have experienced an "unexpected token" error
sess.span_diagnostic.span_err(span, "expected one of: `*`, `+`, or `?`");
// Return a dummy
(None, KleeneToken::new(KleeneOp::ZeroOrMore, span))
}