blob: af7afab6b9b4b690bb6998299c89ac304333692a [file] [log] [blame]
//! Code related to parsing literals.
use crate::ast::{self, Lit, LitKind};
use crate::symbol::{kw, sym, Symbol};
use crate::token::{self, Token};
use crate::tokenstream::TokenTree;
use log::debug;
use rustc_data_structures::sync::Lrc;
use syntax_pos::Span;
use rustc_lexer::unescape::{unescape_char, unescape_byte};
use rustc_lexer::unescape::{unescape_str, unescape_byte_str};
use rustc_lexer::unescape::{unescape_raw_str, unescape_raw_byte_str};
use std::ascii;
pub enum LitError {
NotLiteral,
LexerError,
InvalidSuffix,
InvalidIntSuffix,
InvalidFloatSuffix,
NonDecimalFloat(u32),
IntTooLarge,
}
impl LitKind {
/// Converts literal token into a semantic literal.
fn from_lit_token(lit: token::Lit) -> Result<LitKind, LitError> {
let token::Lit { kind, symbol, suffix } = lit;
if suffix.is_some() && !kind.may_have_suffix() {
return Err(LitError::InvalidSuffix);
}
Ok(match kind {
token::Bool => {
assert!(symbol.is_bool_lit());
LitKind::Bool(symbol == kw::True)
}
token::Byte => return unescape_byte(&symbol.as_str())
.map(LitKind::Byte).map_err(|_| LitError::LexerError),
token::Char => return unescape_char(&symbol.as_str())
.map(LitKind::Char).map_err(|_| LitError::LexerError),
// There are some valid suffixes for integer and float literals,
// so all the handling is done internally.
token::Integer => return integer_lit(symbol, suffix),
token::Float => return float_lit(symbol, suffix),
token::Str => {
// If there are no characters requiring special treatment we can
// reuse the symbol from the token. Otherwise, we must generate a
// new symbol because the string in the LitKind is different to the
// string in the token.
let s = symbol.as_str();
let symbol = if s.contains(&['\\', '\r'][..]) {
let mut buf = String::with_capacity(s.len());
let mut error = Ok(());
unescape_str(&s, &mut |_, unescaped_char| {
match unescaped_char {
Ok(c) => buf.push(c),
Err(_) => error = Err(LitError::LexerError),
}
});
error?;
Symbol::intern(&buf)
} else {
symbol
};
LitKind::Str(symbol, ast::StrStyle::Cooked)
}
token::StrRaw(n) => {
// Ditto.
let s = symbol.as_str();
let symbol = if s.contains('\r') {
let mut buf = String::with_capacity(s.len());
let mut error = Ok(());
unescape_raw_str(&s, &mut |_, unescaped_char| {
match unescaped_char {
Ok(c) => buf.push(c),
Err(_) => error = Err(LitError::LexerError),
}
});
error?;
buf.shrink_to_fit();
Symbol::intern(&buf)
} else {
symbol
};
LitKind::Str(symbol, ast::StrStyle::Raw(n))
}
token::ByteStr => {
let s = symbol.as_str();
let mut buf = Vec::with_capacity(s.len());
let mut error = Ok(());
unescape_byte_str(&s, &mut |_, unescaped_byte| {
match unescaped_byte {
Ok(c) => buf.push(c),
Err(_) => error = Err(LitError::LexerError),
}
});
error?;
buf.shrink_to_fit();
LitKind::ByteStr(Lrc::new(buf))
}
token::ByteStrRaw(_) => {
let s = symbol.as_str();
let bytes = if s.contains('\r') {
let mut buf = Vec::with_capacity(s.len());
let mut error = Ok(());
unescape_raw_byte_str(&s, &mut |_, unescaped_byte| {
match unescaped_byte {
Ok(c) => buf.push(c),
Err(_) => error = Err(LitError::LexerError),
}
});
error?;
buf.shrink_to_fit();
buf
} else {
symbol.to_string().into_bytes()
};
LitKind::ByteStr(Lrc::new(bytes))
},
token::Err => LitKind::Err(symbol),
})
}
/// Attempts to recover a token from semantic literal.
/// This function is used when the original token doesn't exist (e.g. the literal is created
/// by an AST-based macro) or unavailable (e.g. from HIR pretty-printing).
pub fn to_lit_token(&self) -> token::Lit {
let (kind, symbol, suffix) = match *self {
LitKind::Str(symbol, ast::StrStyle::Cooked) => {
// Don't re-intern unless the escaped string is different.
let s = symbol.as_str();
let escaped = s.escape_default().to_string();
let symbol = if s == escaped { symbol } else { Symbol::intern(&escaped) };
(token::Str, symbol, None)
}
LitKind::Str(symbol, ast::StrStyle::Raw(n)) => {
(token::StrRaw(n), symbol, None)
}
LitKind::ByteStr(ref bytes) => {
let string = bytes.iter().cloned().flat_map(ascii::escape_default)
.map(Into::<char>::into).collect::<String>();
(token::ByteStr, Symbol::intern(&string), None)
}
LitKind::Byte(byte) => {
let string: String = ascii::escape_default(byte).map(Into::<char>::into).collect();
(token::Byte, Symbol::intern(&string), None)
}
LitKind::Char(ch) => {
let string: String = ch.escape_default().map(Into::<char>::into).collect();
(token::Char, Symbol::intern(&string), None)
}
LitKind::Int(n, ty) => {
let suffix = match ty {
ast::LitIntType::Unsigned(ty) => Some(ty.name()),
ast::LitIntType::Signed(ty) => Some(ty.name()),
ast::LitIntType::Unsuffixed => None,
};
(token::Integer, sym::integer(n), suffix)
}
LitKind::Float(symbol, ty) => {
let suffix = match ty {
ast::LitFloatType::Suffixed(ty) => Some(ty.name()),
ast::LitFloatType::Unsuffixed => None,
};
(token::Float, symbol, suffix)
}
LitKind::Bool(value) => {
let symbol = if value { kw::True } else { kw::False };
(token::Bool, symbol, None)
}
LitKind::Err(symbol) => {
(token::Err, symbol, None)
}
};
token::Lit::new(kind, symbol, suffix)
}
}
impl Lit {
/// Converts literal token into an AST literal.
pub fn from_lit_token(token: token::Lit, span: Span) -> Result<Lit, LitError> {
Ok(Lit { token, kind: LitKind::from_lit_token(token)?, span })
}
/// Converts arbitrary token into an AST literal.
pub fn from_token(token: &Token) -> Result<Lit, LitError> {
let lit = match token.kind {
token::Ident(name, false) if name.is_bool_lit() =>
token::Lit::new(token::Bool, name, None),
token::Literal(lit) =>
lit,
token::Interpolated(ref nt) => {
if let token::NtExpr(expr) | token::NtLiteral(expr) = &**nt {
if let ast::ExprKind::Lit(lit) = &expr.kind {
return Ok(lit.clone());
}
}
return Err(LitError::NotLiteral);
}
_ => return Err(LitError::NotLiteral)
};
Lit::from_lit_token(lit, token.span)
}
/// Attempts to recover an AST literal from semantic literal.
/// This function is used when the original token doesn't exist (e.g. the literal is created
/// by an AST-based macro) or unavailable (e.g. from HIR pretty-printing).
pub fn from_lit_kind(kind: LitKind, span: Span) -> Lit {
Lit { token: kind.to_lit_token(), kind, span }
}
/// Losslessly convert an AST literal into a token stream.
pub fn token_tree(&self) -> TokenTree {
let token = match self.token.kind {
token::Bool => token::Ident(self.token.symbol, false),
_ => token::Literal(self.token),
};
TokenTree::token(token, self.span)
}
}
fn strip_underscores(symbol: Symbol) -> Symbol {
// Do not allocate a new string unless necessary.
let s = symbol.as_str();
if s.contains('_') {
let mut s = s.to_string();
s.retain(|c| c != '_');
return Symbol::intern(&s);
}
symbol
}
fn filtered_float_lit(symbol: Symbol, suffix: Option<Symbol>, base: u32)
-> Result<LitKind, LitError> {
debug!("filtered_float_lit: {:?}, {:?}, {:?}", symbol, suffix, base);
if base != 10 {
return Err(LitError::NonDecimalFloat(base));
}
Ok(match suffix {
Some(suf) => LitKind::Float(symbol, ast::LitFloatType::Suffixed(match suf {
sym::f32 => ast::FloatTy::F32,
sym::f64 => ast::FloatTy::F64,
_ => return Err(LitError::InvalidFloatSuffix),
})),
None => LitKind::Float(symbol, ast::LitFloatType::Unsuffixed)
})
}
fn float_lit(symbol: Symbol, suffix: Option<Symbol>) -> Result<LitKind, LitError> {
debug!("float_lit: {:?}, {:?}", symbol, suffix);
filtered_float_lit(strip_underscores(symbol), suffix, 10)
}
fn integer_lit(symbol: Symbol, suffix: Option<Symbol>) -> Result<LitKind, LitError> {
debug!("integer_lit: {:?}, {:?}", symbol, suffix);
let symbol = strip_underscores(symbol);
let s = symbol.as_str();
let base = match s.as_bytes() {
[b'0', b'x', ..] => 16,
[b'0', b'o', ..] => 8,
[b'0', b'b', ..] => 2,
_ => 10,
};
let ty = match suffix {
Some(suf) => match suf {
sym::isize => ast::LitIntType::Signed(ast::IntTy::Isize),
sym::i8 => ast::LitIntType::Signed(ast::IntTy::I8),
sym::i16 => ast::LitIntType::Signed(ast::IntTy::I16),
sym::i32 => ast::LitIntType::Signed(ast::IntTy::I32),
sym::i64 => ast::LitIntType::Signed(ast::IntTy::I64),
sym::i128 => ast::LitIntType::Signed(ast::IntTy::I128),
sym::usize => ast::LitIntType::Unsigned(ast::UintTy::Usize),
sym::u8 => ast::LitIntType::Unsigned(ast::UintTy::U8),
sym::u16 => ast::LitIntType::Unsigned(ast::UintTy::U16),
sym::u32 => ast::LitIntType::Unsigned(ast::UintTy::U32),
sym::u64 => ast::LitIntType::Unsigned(ast::UintTy::U64),
sym::u128 => ast::LitIntType::Unsigned(ast::UintTy::U128),
// `1f64` and `2f32` etc. are valid float literals, and
// `fxxx` looks more like an invalid float literal than invalid integer literal.
_ if suf.as_str().starts_with('f') => return filtered_float_lit(symbol, suffix, base),
_ => return Err(LitError::InvalidIntSuffix),
}
_ => ast::LitIntType::Unsuffixed
};
let s = &s[if base != 10 { 2 } else { 0 } ..];
u128::from_str_radix(s, base).map(|i| LitKind::Int(i, ty)).map_err(|_| {
// Small bases are lexed as if they were base 10, e.g, the string
// might be `0b10201`. This will cause the conversion above to fail,
// but these kinds of errors are already reported by the lexer.
let from_lexer =
base < 10 && s.chars().any(|c| c.to_digit(10).map_or(false, |d| d >= base));
if from_lexer { LitError::LexerError } else { LitError::IntTooLarge }
})
}