blob: 0096b827ca456df7bd19801054c3e89fe31ed0a9 [file] [log] [blame]
use crate::fmt;
use crate::io::{self, Error, ErrorKind};
use crate::net::{Ipv4Addr, Ipv6Addr, SocketAddr, ToSocketAddrs};
use crate::sys_common::net as net_imp;
use crate::sys_common::{AsInner, FromInner, IntoInner};
use crate::time::Duration;
/// A UDP socket.
///
/// After creating a `UdpSocket` by [`bind`]ing it to a socket address, data can be
/// [sent to] and [received from] any other socket address.
///
/// Although UDP is a connectionless protocol, this implementation provides an interface
/// to set an address where data should be sent and received from. After setting a remote
/// address with [`connect`], data can be sent to and received from that address with
/// [`send`] and [`recv`].
///
/// As stated in the User Datagram Protocol's specification in [IETF RFC 768], UDP is
/// an unordered, unreliable protocol; refer to [`TcpListener`] and [`TcpStream`] for TCP
/// primitives.
///
/// [`bind`]: #method.bind
/// [`connect`]: #method.connect
/// [IETF RFC 768]: https://tools.ietf.org/html/rfc768
/// [`recv`]: #method.recv
/// [received from]: #method.recv_from
/// [`send`]: #method.send
/// [sent to]: #method.send_to
/// [`TcpListener`]: ../../std/net/struct.TcpListener.html
/// [`TcpStream`]: ../../std/net/struct.TcpStream.html
///
/// # Examples
///
/// ```no_run
/// use std::net::UdpSocket;
///
/// fn main() -> std::io::Result<()> {
/// {
/// let mut socket = UdpSocket::bind("127.0.0.1:34254")?;
///
/// // Receives a single datagram message on the socket. If `buf` is too small to hold
/// // the message, it will be cut off.
/// let mut buf = [0; 10];
/// let (amt, src) = socket.recv_from(&mut buf)?;
///
/// // Redeclare `buf` as slice of the received data and send reverse data back to origin.
/// let buf = &mut buf[..amt];
/// buf.reverse();
/// socket.send_to(buf, &src)?;
/// } // the socket is closed here
/// Ok(())
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub struct UdpSocket(net_imp::UdpSocket);
impl UdpSocket {
/// Creates a UDP socket from the given address.
///
/// The address type can be any implementor of [`ToSocketAddrs`] trait. See
/// its documentation for concrete examples.
///
/// If `addr` yields multiple addresses, `bind` will be attempted with
/// each of the addresses until one succeeds and returns the socket. If none
/// of the addresses succeed in creating a socket, the error returned from
/// the last attempt (the last address) is returned.
///
/// [`ToSocketAddrs`]: ../../std/net/trait.ToSocketAddrs.html
///
/// # Examples
///
/// Creates a UDP socket bound to `127.0.0.1:3400`:
///
/// ```no_run
/// use std::net::UdpSocket;
///
/// let socket = UdpSocket::bind("127.0.0.1:3400").expect("couldn't bind to address");
/// ```
///
/// Creates a UDP socket bound to `127.0.0.1:3400`. If the socket cannot be
/// bound to that address, create a UDP socket bound to `127.0.0.1:3401`:
///
/// ```no_run
/// use std::net::{SocketAddr, UdpSocket};
///
/// let addrs = [
/// SocketAddr::from(([127, 0, 0, 1], 3400)),
/// SocketAddr::from(([127, 0, 0, 1], 3401)),
/// ];
/// let socket = UdpSocket::bind(&addrs[..]).expect("couldn't bind to address");
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn bind<A: ToSocketAddrs>(addr: A) -> io::Result<UdpSocket> {
super::each_addr(addr, net_imp::UdpSocket::bind).map(UdpSocket)
}
/// Receives a single datagram message on the socket. On success, returns the number
/// of bytes read and the origin.
///
/// The function must be called with valid byte array `buf` of sufficient size to
/// hold the message bytes. If a message is too long to fit in the supplied buffer,
/// excess bytes may be discarded.
///
/// # Examples
///
/// ```no_run
/// use std::net::UdpSocket;
///
/// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address");
/// let mut buf = [0; 10];
/// let (number_of_bytes, src_addr) = socket.recv_from(&mut buf)
/// .expect("Didn't receive data");
/// let filled_buf = &mut buf[..number_of_bytes];
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn recv_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> {
self.0.recv_from(buf)
}
/// Receives a single datagram message on the socket, without removing it from the
/// queue. On success, returns the number of bytes read and the origin.
///
/// The function must be called with valid byte array `buf` of sufficient size to
/// hold the message bytes. If a message is too long to fit in the supplied buffer,
/// excess bytes may be discarded.
///
/// Successive calls return the same data. This is accomplished by passing
/// `MSG_PEEK` as a flag to the underlying `recvfrom` system call.
///
/// Do not use this function to implement busy waiting, instead use `libc::poll` to
/// synchronize IO events on one or more sockets.
///
/// # Examples
///
/// ```no_run
/// use std::net::UdpSocket;
///
/// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address");
/// let mut buf = [0; 10];
/// let (number_of_bytes, src_addr) = socket.peek_from(&mut buf)
/// .expect("Didn't receive data");
/// let filled_buf = &mut buf[..number_of_bytes];
/// ```
#[stable(feature = "peek", since = "1.18.0")]
pub fn peek_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> {
self.0.peek_from(buf)
}
/// Sends data on the socket to the given address. On success, returns the
/// number of bytes written.
///
/// Address type can be any implementor of [`ToSocketAddrs`] trait. See its
/// documentation for concrete examples.
///
/// It is possible for `addr` to yield multiple addresses, but `send_to`
/// will only send data to the first address yielded by `addr`.
///
/// This will return an error when the IP version of the local socket
/// does not match that returned from [`ToSocketAddrs`].
///
/// See issue #34202 for more details.
///
/// [`ToSocketAddrs`]: ../../std/net/trait.ToSocketAddrs.html
///
/// # Examples
///
/// ```no_run
/// use std::net::UdpSocket;
///
/// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address");
/// socket.send_to(&[0; 10], "127.0.0.1:4242").expect("couldn't send data");
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn send_to<A: ToSocketAddrs>(&self, buf: &[u8], addr: A) -> io::Result<usize> {
match addr.to_socket_addrs()?.next() {
Some(addr) => self.0.send_to(buf, &addr),
None => Err(Error::new(ErrorKind::InvalidInput, "no addresses to send data to")),
}
}
/// Returns the socket address of the remote peer this socket was connected to.
///
/// # Examples
///
/// ```no_run
/// use std::net::{Ipv4Addr, SocketAddr, SocketAddrV4, UdpSocket};
///
/// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address");
/// socket.connect("192.168.0.1:41203").expect("couldn't connect to address");
/// assert_eq!(socket.peer_addr().unwrap(),
/// SocketAddr::V4(SocketAddrV4::new(Ipv4Addr::new(192, 168, 0, 1), 41203)));
/// ```
///
/// If the socket isn't connected, it will return a [`NotConnected`] error.
///
/// [`NotConnected`]: ../../std/io/enum.ErrorKind.html#variant.NotConnected
///
/// ```no_run
/// use std::net::UdpSocket;
///
/// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address");
/// assert_eq!(socket.peer_addr().unwrap_err().kind(),
/// std::io::ErrorKind::NotConnected);
/// ```
#[stable(feature = "udp_peer_addr", since = "1.40.0")]
pub fn peer_addr(&self) -> io::Result<SocketAddr> {
self.0.peer_addr()
}
/// Returns the socket address that this socket was created from.
///
/// # Examples
///
/// ```no_run
/// use std::net::{Ipv4Addr, SocketAddr, SocketAddrV4, UdpSocket};
///
/// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address");
/// assert_eq!(socket.local_addr().unwrap(),
/// SocketAddr::V4(SocketAddrV4::new(Ipv4Addr::new(127, 0, 0, 1), 34254)));
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn local_addr(&self) -> io::Result<SocketAddr> {
self.0.socket_addr()
}
/// Creates a new independently owned handle to the underlying socket.
///
/// The returned `UdpSocket` is a reference to the same socket that this
/// object references. Both handles will read and write the same port, and
/// options set on one socket will be propagated to the other.
///
/// # Examples
///
/// ```no_run
/// use std::net::UdpSocket;
///
/// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address");
/// let socket_clone = socket.try_clone().expect("couldn't clone the socket");
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn try_clone(&self) -> io::Result<UdpSocket> {
self.0.duplicate().map(UdpSocket)
}
/// Sets the read timeout to the timeout specified.
///
/// If the value specified is [`None`], then [`read`] calls will block
/// indefinitely. An [`Err`] is returned if the zero [`Duration`] is
/// passed to this method.
///
/// # Platform-specific behavior
///
/// Platforms may return a different error code whenever a read times out as
/// a result of setting this option. For example Unix typically returns an
/// error of the kind [`WouldBlock`], but Windows may return [`TimedOut`].
///
/// [`None`]: ../../std/option/enum.Option.html#variant.None
/// [`Err`]: ../../std/result/enum.Result.html#variant.Err
/// [`read`]: ../../std/io/trait.Read.html#tymethod.read
/// [`Duration`]: ../../std/time/struct.Duration.html
/// [`WouldBlock`]: ../../std/io/enum.ErrorKind.html#variant.WouldBlock
/// [`TimedOut`]: ../../std/io/enum.ErrorKind.html#variant.TimedOut
///
/// # Examples
///
/// ```no_run
/// use std::net::UdpSocket;
///
/// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address");
/// socket.set_read_timeout(None).expect("set_read_timeout call failed");
/// ```
///
/// An [`Err`] is returned if the zero [`Duration`] is passed to this
/// method:
///
/// ```no_run
/// use std::io;
/// use std::net::UdpSocket;
/// use std::time::Duration;
///
/// let socket = UdpSocket::bind("127.0.0.1:34254").unwrap();
/// let result = socket.set_read_timeout(Some(Duration::new(0, 0)));
/// let err = result.unwrap_err();
/// assert_eq!(err.kind(), io::ErrorKind::InvalidInput)
/// ```
#[stable(feature = "socket_timeout", since = "1.4.0")]
pub fn set_read_timeout(&self, dur: Option<Duration>) -> io::Result<()> {
self.0.set_read_timeout(dur)
}
/// Sets the write timeout to the timeout specified.
///
/// If the value specified is [`None`], then [`write`] calls will block
/// indefinitely. An [`Err`] is returned if the zero [`Duration`] is
/// passed to this method.
///
/// # Platform-specific behavior
///
/// Platforms may return a different error code whenever a write times out
/// as a result of setting this option. For example Unix typically returns
/// an error of the kind [`WouldBlock`], but Windows may return [`TimedOut`].
///
/// [`None`]: ../../std/option/enum.Option.html#variant.None
/// [`Err`]: ../../std/result/enum.Result.html#variant.Err
/// [`write`]: ../../std/io/trait.Write.html#tymethod.write
/// [`Duration`]: ../../std/time/struct.Duration.html
/// [`WouldBlock`]: ../../std/io/enum.ErrorKind.html#variant.WouldBlock
/// [`TimedOut`]: ../../std/io/enum.ErrorKind.html#variant.TimedOut
///
/// # Examples
///
/// ```no_run
/// use std::net::UdpSocket;
///
/// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address");
/// socket.set_write_timeout(None).expect("set_write_timeout call failed");
/// ```
///
/// An [`Err`] is returned if the zero [`Duration`] is passed to this
/// method:
///
/// ```no_run
/// use std::io;
/// use std::net::UdpSocket;
/// use std::time::Duration;
///
/// let socket = UdpSocket::bind("127.0.0.1:34254").unwrap();
/// let result = socket.set_write_timeout(Some(Duration::new(0, 0)));
/// let err = result.unwrap_err();
/// assert_eq!(err.kind(), io::ErrorKind::InvalidInput)
/// ```
#[stable(feature = "socket_timeout", since = "1.4.0")]
pub fn set_write_timeout(&self, dur: Option<Duration>) -> io::Result<()> {
self.0.set_write_timeout(dur)
}
/// Returns the read timeout of this socket.
///
/// If the timeout is [`None`], then [`read`] calls will block indefinitely.
///
/// [`None`]: ../../std/option/enum.Option.html#variant.None
/// [`read`]: ../../std/io/trait.Read.html#tymethod.read
///
/// # Examples
///
/// ```no_run
/// use std::net::UdpSocket;
///
/// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address");
/// socket.set_read_timeout(None).expect("set_read_timeout call failed");
/// assert_eq!(socket.read_timeout().unwrap(), None);
/// ```
#[stable(feature = "socket_timeout", since = "1.4.0")]
pub fn read_timeout(&self) -> io::Result<Option<Duration>> {
self.0.read_timeout()
}
/// Returns the write timeout of this socket.
///
/// If the timeout is [`None`], then [`write`] calls will block indefinitely.
///
/// [`None`]: ../../std/option/enum.Option.html#variant.None
/// [`write`]: ../../std/io/trait.Write.html#tymethod.write
///
/// # Examples
///
/// ```no_run
/// use std::net::UdpSocket;
///
/// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address");
/// socket.set_write_timeout(None).expect("set_write_timeout call failed");
/// assert_eq!(socket.write_timeout().unwrap(), None);
/// ```
#[stable(feature = "socket_timeout", since = "1.4.0")]
pub fn write_timeout(&self) -> io::Result<Option<Duration>> {
self.0.write_timeout()
}
/// Sets the value of the `SO_BROADCAST` option for this socket.
///
/// When enabled, this socket is allowed to send packets to a broadcast
/// address.
///
/// # Examples
///
/// ```no_run
/// use std::net::UdpSocket;
///
/// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address");
/// socket.set_broadcast(false).expect("set_broadcast call failed");
/// ```
#[stable(feature = "net2_mutators", since = "1.9.0")]
pub fn set_broadcast(&self, broadcast: bool) -> io::Result<()> {
self.0.set_broadcast(broadcast)
}
/// Gets the value of the `SO_BROADCAST` option for this socket.
///
/// For more information about this option, see
/// [`set_broadcast`][link].
///
/// [link]: #method.set_broadcast
///
/// # Examples
///
/// ```no_run
/// use std::net::UdpSocket;
///
/// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address");
/// socket.set_broadcast(false).expect("set_broadcast call failed");
/// assert_eq!(socket.broadcast().unwrap(), false);
/// ```
#[stable(feature = "net2_mutators", since = "1.9.0")]
pub fn broadcast(&self) -> io::Result<bool> {
self.0.broadcast()
}
/// Sets the value of the `IP_MULTICAST_LOOP` option for this socket.
///
/// If enabled, multicast packets will be looped back to the local socket.
/// Note that this may not have any effect on IPv6 sockets.
///
/// # Examples
///
/// ```no_run
/// use std::net::UdpSocket;
///
/// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address");
/// socket.set_multicast_loop_v4(false).expect("set_multicast_loop_v4 call failed");
/// ```
#[stable(feature = "net2_mutators", since = "1.9.0")]
pub fn set_multicast_loop_v4(&self, multicast_loop_v4: bool) -> io::Result<()> {
self.0.set_multicast_loop_v4(multicast_loop_v4)
}
/// Gets the value of the `IP_MULTICAST_LOOP` option for this socket.
///
/// For more information about this option, see
/// [`set_multicast_loop_v4`][link].
///
/// [link]: #method.set_multicast_loop_v4
///
/// # Examples
///
/// ```no_run
/// use std::net::UdpSocket;
///
/// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address");
/// socket.set_multicast_loop_v4(false).expect("set_multicast_loop_v4 call failed");
/// assert_eq!(socket.multicast_loop_v4().unwrap(), false);
/// ```
#[stable(feature = "net2_mutators", since = "1.9.0")]
pub fn multicast_loop_v4(&self) -> io::Result<bool> {
self.0.multicast_loop_v4()
}
/// Sets the value of the `IP_MULTICAST_TTL` option for this socket.
///
/// Indicates the time-to-live value of outgoing multicast packets for
/// this socket. The default value is 1 which means that multicast packets
/// don't leave the local network unless explicitly requested.
///
/// Note that this may not have any effect on IPv6 sockets.
///
/// # Examples
///
/// ```no_run
/// use std::net::UdpSocket;
///
/// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address");
/// socket.set_multicast_ttl_v4(42).expect("set_multicast_ttl_v4 call failed");
/// ```
#[stable(feature = "net2_mutators", since = "1.9.0")]
pub fn set_multicast_ttl_v4(&self, multicast_ttl_v4: u32) -> io::Result<()> {
self.0.set_multicast_ttl_v4(multicast_ttl_v4)
}
/// Gets the value of the `IP_MULTICAST_TTL` option for this socket.
///
/// For more information about this option, see
/// [`set_multicast_ttl_v4`][link].
///
/// [link]: #method.set_multicast_ttl_v4
///
/// # Examples
///
/// ```no_run
/// use std::net::UdpSocket;
///
/// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address");
/// socket.set_multicast_ttl_v4(42).expect("set_multicast_ttl_v4 call failed");
/// assert_eq!(socket.multicast_ttl_v4().unwrap(), 42);
/// ```
#[stable(feature = "net2_mutators", since = "1.9.0")]
pub fn multicast_ttl_v4(&self) -> io::Result<u32> {
self.0.multicast_ttl_v4()
}
/// Sets the value of the `IPV6_MULTICAST_LOOP` option for this socket.
///
/// Controls whether this socket sees the multicast packets it sends itself.
/// Note that this may not have any affect on IPv4 sockets.
///
/// # Examples
///
/// ```no_run
/// use std::net::UdpSocket;
///
/// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address");
/// socket.set_multicast_loop_v6(false).expect("set_multicast_loop_v6 call failed");
/// ```
#[stable(feature = "net2_mutators", since = "1.9.0")]
pub fn set_multicast_loop_v6(&self, multicast_loop_v6: bool) -> io::Result<()> {
self.0.set_multicast_loop_v6(multicast_loop_v6)
}
/// Gets the value of the `IPV6_MULTICAST_LOOP` option for this socket.
///
/// For more information about this option, see
/// [`set_multicast_loop_v6`][link].
///
/// [link]: #method.set_multicast_loop_v6
///
/// # Examples
///
/// ```no_run
/// use std::net::UdpSocket;
///
/// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address");
/// socket.set_multicast_loop_v6(false).expect("set_multicast_loop_v6 call failed");
/// assert_eq!(socket.multicast_loop_v6().unwrap(), false);
/// ```
#[stable(feature = "net2_mutators", since = "1.9.0")]
pub fn multicast_loop_v6(&self) -> io::Result<bool> {
self.0.multicast_loop_v6()
}
/// Sets the value for the `IP_TTL` option on this socket.
///
/// This value sets the time-to-live field that is used in every packet sent
/// from this socket.
///
/// # Examples
///
/// ```no_run
/// use std::net::UdpSocket;
///
/// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address");
/// socket.set_ttl(42).expect("set_ttl call failed");
/// ```
#[stable(feature = "net2_mutators", since = "1.9.0")]
pub fn set_ttl(&self, ttl: u32) -> io::Result<()> {
self.0.set_ttl(ttl)
}
/// Gets the value of the `IP_TTL` option for this socket.
///
/// For more information about this option, see [`set_ttl`][link].
///
/// [link]: #method.set_ttl
///
/// # Examples
///
/// ```no_run
/// use std::net::UdpSocket;
///
/// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address");
/// socket.set_ttl(42).expect("set_ttl call failed");
/// assert_eq!(socket.ttl().unwrap(), 42);
/// ```
#[stable(feature = "net2_mutators", since = "1.9.0")]
pub fn ttl(&self) -> io::Result<u32> {
self.0.ttl()
}
/// Executes an operation of the `IP_ADD_MEMBERSHIP` type.
///
/// This function specifies a new multicast group for this socket to join.
/// The address must be a valid multicast address, and `interface` is the
/// address of the local interface with which the system should join the
/// multicast group. If it's equal to `INADDR_ANY` then an appropriate
/// interface is chosen by the system.
#[stable(feature = "net2_mutators", since = "1.9.0")]
pub fn join_multicast_v4(&self, multiaddr: &Ipv4Addr, interface: &Ipv4Addr) -> io::Result<()> {
self.0.join_multicast_v4(multiaddr, interface)
}
/// Executes an operation of the `IPV6_ADD_MEMBERSHIP` type.
///
/// This function specifies a new multicast group for this socket to join.
/// The address must be a valid multicast address, and `interface` is the
/// index of the interface to join/leave (or 0 to indicate any interface).
#[stable(feature = "net2_mutators", since = "1.9.0")]
pub fn join_multicast_v6(&self, multiaddr: &Ipv6Addr, interface: u32) -> io::Result<()> {
self.0.join_multicast_v6(multiaddr, interface)
}
/// Executes an operation of the `IP_DROP_MEMBERSHIP` type.
///
/// For more information about this option, see
/// [`join_multicast_v4`][link].
///
/// [link]: #method.join_multicast_v4
#[stable(feature = "net2_mutators", since = "1.9.0")]
pub fn leave_multicast_v4(&self, multiaddr: &Ipv4Addr, interface: &Ipv4Addr) -> io::Result<()> {
self.0.leave_multicast_v4(multiaddr, interface)
}
/// Executes an operation of the `IPV6_DROP_MEMBERSHIP` type.
///
/// For more information about this option, see
/// [`join_multicast_v6`][link].
///
/// [link]: #method.join_multicast_v6
#[stable(feature = "net2_mutators", since = "1.9.0")]
pub fn leave_multicast_v6(&self, multiaddr: &Ipv6Addr, interface: u32) -> io::Result<()> {
self.0.leave_multicast_v6(multiaddr, interface)
}
/// Gets the value of the `SO_ERROR` option on this socket.
///
/// This will retrieve the stored error in the underlying socket, clearing
/// the field in the process. This can be useful for checking errors between
/// calls.
///
/// # Examples
///
/// ```no_run
/// use std::net::UdpSocket;
///
/// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address");
/// match socket.take_error() {
/// Ok(Some(error)) => println!("UdpSocket error: {:?}", error),
/// Ok(None) => println!("No error"),
/// Err(error) => println!("UdpSocket.take_error failed: {:?}", error),
/// }
/// ```
#[stable(feature = "net2_mutators", since = "1.9.0")]
pub fn take_error(&self) -> io::Result<Option<io::Error>> {
self.0.take_error()
}
/// Connects this UDP socket to a remote address, allowing the `send` and
/// `recv` syscalls to be used to send data and also applies filters to only
/// receive data from the specified address.
///
/// If `addr` yields multiple addresses, `connect` will be attempted with
/// each of the addresses until the underlying OS function returns no
/// error. Note that usually, a successful `connect` call does not specify
/// that there is a remote server listening on the port, rather, such an
/// error would only be detected after the first send. If the OS returns an
/// error for each of the specified addresses, the error returned from the
/// last connection attempt (the last address) is returned.
///
/// # Examples
///
/// Creates a UDP socket bound to `127.0.0.1:3400` and connect the socket to
/// `127.0.0.1:8080`:
///
/// ```no_run
/// use std::net::UdpSocket;
///
/// let socket = UdpSocket::bind("127.0.0.1:3400").expect("couldn't bind to address");
/// socket.connect("127.0.0.1:8080").expect("connect function failed");
/// ```
///
/// Unlike in the TCP case, passing an array of addresses to the `connect`
/// function of a UDP socket is not a useful thing to do: The OS will be
/// unable to determine whether something is listening on the remote
/// address without the application sending data.
#[stable(feature = "net2_mutators", since = "1.9.0")]
pub fn connect<A: ToSocketAddrs>(&self, addr: A) -> io::Result<()> {
super::each_addr(addr, |addr| self.0.connect(addr))
}
/// Sends data on the socket to the remote address to which it is connected.
///
/// The [`connect`] method will connect this socket to a remote address. This
/// method will fail if the socket is not connected.
///
/// [`connect`]: #method.connect
///
/// # Examples
///
/// ```no_run
/// use std::net::UdpSocket;
///
/// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address");
/// socket.connect("127.0.0.1:8080").expect("connect function failed");
/// socket.send(&[0, 1, 2]).expect("couldn't send message");
/// ```
#[stable(feature = "net2_mutators", since = "1.9.0")]
pub fn send(&self, buf: &[u8]) -> io::Result<usize> {
self.0.send(buf)
}
/// Receives a single datagram message on the socket from the remote address to
/// which it is connected. On success, returns the number of bytes read.
///
/// The function must be called with valid byte array `buf` of sufficient size to
/// hold the message bytes. If a message is too long to fit in the supplied buffer,
/// excess bytes may be discarded.
///
/// The [`connect`] method will connect this socket to a remote address. This
/// method will fail if the socket is not connected.
///
/// [`connect`]: #method.connect
///
/// # Examples
///
/// ```no_run
/// use std::net::UdpSocket;
///
/// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address");
/// socket.connect("127.0.0.1:8080").expect("connect function failed");
/// let mut buf = [0; 10];
/// match socket.recv(&mut buf) {
/// Ok(received) => println!("received {} bytes {:?}", received, &buf[..received]),
/// Err(e) => println!("recv function failed: {:?}", e),
/// }
/// ```
#[stable(feature = "net2_mutators", since = "1.9.0")]
pub fn recv(&self, buf: &mut [u8]) -> io::Result<usize> {
self.0.recv(buf)
}
/// Receives single datagram on the socket from the remote address to which it is
/// connected, without removing the message from input queue. On success, returns
/// the number of bytes peeked.
///
/// The function must be called with valid byte array `buf` of sufficient size to
/// hold the message bytes. If a message is too long to fit in the supplied buffer,
/// excess bytes may be discarded.
///
/// Successive calls return the same data. This is accomplished by passing
/// `MSG_PEEK` as a flag to the underlying `recv` system call.
///
/// Do not use this function to implement busy waiting, instead use `libc::poll` to
/// synchronize IO events on one or more sockets.
///
/// The [`connect`] method will connect this socket to a remote address. This
/// method will fail if the socket is not connected.
///
/// [`connect`]: #method.connect
///
/// # Errors
///
/// This method will fail if the socket is not connected. The `connect` method
/// will connect this socket to a remote address.
///
/// # Examples
///
/// ```no_run
/// use std::net::UdpSocket;
///
/// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address");
/// socket.connect("127.0.0.1:8080").expect("connect function failed");
/// let mut buf = [0; 10];
/// match socket.peek(&mut buf) {
/// Ok(received) => println!("received {} bytes", received),
/// Err(e) => println!("peek function failed: {:?}", e),
/// }
/// ```
#[stable(feature = "peek", since = "1.18.0")]
pub fn peek(&self, buf: &mut [u8]) -> io::Result<usize> {
self.0.peek(buf)
}
/// Moves this UDP socket into or out of nonblocking mode.
///
/// This will result in `recv`, `recv_from`, `send`, and `send_to`
/// operations becoming nonblocking, i.e., immediately returning from their
/// calls. If the IO operation is successful, `Ok` is returned and no
/// further action is required. If the IO operation could not be completed
/// and needs to be retried, an error with kind
/// [`io::ErrorKind::WouldBlock`] is returned.
///
/// On Unix platforms, calling this method corresponds to calling `fcntl`
/// `FIONBIO`. On Windows calling this method corresponds to calling
/// `ioctlsocket` `FIONBIO`.
///
/// [`io::ErrorKind::WouldBlock`]: ../io/enum.ErrorKind.html#variant.WouldBlock
///
/// # Examples
///
/// Creates a UDP socket bound to `127.0.0.1:7878` and read bytes in
/// nonblocking mode:
///
/// ```no_run
/// use std::io;
/// use std::net::UdpSocket;
///
/// let socket = UdpSocket::bind("127.0.0.1:7878").unwrap();
/// socket.set_nonblocking(true).unwrap();
///
/// # fn wait_for_fd() { unimplemented!() }
/// let mut buf = [0; 10];
/// let (num_bytes_read, _) = loop {
/// match socket.recv_from(&mut buf) {
/// Ok(n) => break n,
/// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
/// // wait until network socket is ready, typically implemented
/// // via platform-specific APIs such as epoll or IOCP
/// wait_for_fd();
/// }
/// Err(e) => panic!("encountered IO error: {}", e),
/// }
/// };
/// println!("bytes: {:?}", &buf[..num_bytes_read]);
/// ```
#[stable(feature = "net2_mutators", since = "1.9.0")]
pub fn set_nonblocking(&self, nonblocking: bool) -> io::Result<()> {
self.0.set_nonblocking(nonblocking)
}
}
impl AsInner<net_imp::UdpSocket> for UdpSocket {
fn as_inner(&self) -> &net_imp::UdpSocket {
&self.0
}
}
impl FromInner<net_imp::UdpSocket> for UdpSocket {
fn from_inner(inner: net_imp::UdpSocket) -> UdpSocket {
UdpSocket(inner)
}
}
impl IntoInner<net_imp::UdpSocket> for UdpSocket {
fn into_inner(self) -> net_imp::UdpSocket {
self.0
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Debug for UdpSocket {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.0.fmt(f)
}
}
#[cfg(all(test, not(any(target_os = "cloudabi", target_os = "emscripten", target_env = "sgx"))))]
mod tests {
use crate::io::ErrorKind;
use crate::net::test::{next_test_ip4, next_test_ip6};
use crate::net::*;
use crate::sync::mpsc::channel;
use crate::sys_common::AsInner;
use crate::thread;
use crate::time::{Duration, Instant};
fn each_ip(f: &mut dyn FnMut(SocketAddr, SocketAddr)) {
f(next_test_ip4(), next_test_ip4());
f(next_test_ip6(), next_test_ip6());
}
macro_rules! t {
($e:expr) => {
match $e {
Ok(t) => t,
Err(e) => panic!("received error for `{}`: {}", stringify!($e), e),
}
};
}
#[test]
fn bind_error() {
match UdpSocket::bind("1.1.1.1:9999") {
Ok(..) => panic!(),
Err(e) => assert_eq!(e.kind(), ErrorKind::AddrNotAvailable),
}
}
#[test]
fn socket_smoke_test_ip4() {
each_ip(&mut |server_ip, client_ip| {
let (tx1, rx1) = channel();
let (tx2, rx2) = channel();
let _t = thread::spawn(move || {
let client = t!(UdpSocket::bind(&client_ip));
rx1.recv().unwrap();
t!(client.send_to(&[99], &server_ip));
tx2.send(()).unwrap();
});
let server = t!(UdpSocket::bind(&server_ip));
tx1.send(()).unwrap();
let mut buf = [0];
let (nread, src) = t!(server.recv_from(&mut buf));
assert_eq!(nread, 1);
assert_eq!(buf[0], 99);
assert_eq!(src, client_ip);
rx2.recv().unwrap();
})
}
#[test]
fn socket_name() {
each_ip(&mut |addr, _| {
let server = t!(UdpSocket::bind(&addr));
assert_eq!(addr, t!(server.local_addr()));
})
}
#[test]
fn socket_peer() {
each_ip(&mut |addr1, addr2| {
let server = t!(UdpSocket::bind(&addr1));
assert_eq!(server.peer_addr().unwrap_err().kind(), ErrorKind::NotConnected);
t!(server.connect(&addr2));
assert_eq!(addr2, t!(server.peer_addr()));
})
}
#[test]
fn udp_clone_smoke() {
each_ip(&mut |addr1, addr2| {
let sock1 = t!(UdpSocket::bind(&addr1));
let sock2 = t!(UdpSocket::bind(&addr2));
let _t = thread::spawn(move || {
let mut buf = [0, 0];
assert_eq!(sock2.recv_from(&mut buf).unwrap(), (1, addr1));
assert_eq!(buf[0], 1);
t!(sock2.send_to(&[2], &addr1));
});
let sock3 = t!(sock1.try_clone());
let (tx1, rx1) = channel();
let (tx2, rx2) = channel();
let _t = thread::spawn(move || {
rx1.recv().unwrap();
t!(sock3.send_to(&[1], &addr2));
tx2.send(()).unwrap();
});
tx1.send(()).unwrap();
let mut buf = [0, 0];
assert_eq!(sock1.recv_from(&mut buf).unwrap(), (1, addr2));
rx2.recv().unwrap();
})
}
#[test]
fn udp_clone_two_read() {
each_ip(&mut |addr1, addr2| {
let sock1 = t!(UdpSocket::bind(&addr1));
let sock2 = t!(UdpSocket::bind(&addr2));
let (tx1, rx) = channel();
let tx2 = tx1.clone();
let _t = thread::spawn(move || {
t!(sock2.send_to(&[1], &addr1));
rx.recv().unwrap();
t!(sock2.send_to(&[2], &addr1));
rx.recv().unwrap();
});
let sock3 = t!(sock1.try_clone());
let (done, rx) = channel();
let _t = thread::spawn(move || {
let mut buf = [0, 0];
t!(sock3.recv_from(&mut buf));
tx2.send(()).unwrap();
done.send(()).unwrap();
});
let mut buf = [0, 0];
t!(sock1.recv_from(&mut buf));
tx1.send(()).unwrap();
rx.recv().unwrap();
})
}
#[test]
fn udp_clone_two_write() {
each_ip(&mut |addr1, addr2| {
let sock1 = t!(UdpSocket::bind(&addr1));
let sock2 = t!(UdpSocket::bind(&addr2));
let (tx, rx) = channel();
let (serv_tx, serv_rx) = channel();
let _t = thread::spawn(move || {
let mut buf = [0, 1];
rx.recv().unwrap();
t!(sock2.recv_from(&mut buf));
serv_tx.send(()).unwrap();
});
let sock3 = t!(sock1.try_clone());
let (done, rx) = channel();
let tx2 = tx.clone();
let _t = thread::spawn(move || {
match sock3.send_to(&[1], &addr2) {
Ok(..) => {
let _ = tx2.send(());
}
Err(..) => {}
}
done.send(()).unwrap();
});
match sock1.send_to(&[2], &addr2) {
Ok(..) => {
let _ = tx.send(());
}
Err(..) => {}
}
drop(tx);
rx.recv().unwrap();
serv_rx.recv().unwrap();
})
}
#[test]
fn debug() {
let name = if cfg!(windows) { "socket" } else { "fd" };
let socket_addr = next_test_ip4();
let udpsock = t!(UdpSocket::bind(&socket_addr));
let udpsock_inner = udpsock.0.socket().as_inner();
let compare =
format!("UdpSocket {{ addr: {:?}, {}: {:?} }}", socket_addr, name, udpsock_inner);
assert_eq!(format!("{:?}", udpsock), compare);
}
// FIXME: re-enabled openbsd/netbsd tests once their socket timeout code
// no longer has rounding errors.
// VxWorks ignores SO_SNDTIMEO.
#[cfg_attr(any(target_os = "netbsd", target_os = "openbsd", target_os = "vxworks"), ignore)]
#[test]
fn timeouts() {
let addr = next_test_ip4();
let stream = t!(UdpSocket::bind(&addr));
let dur = Duration::new(15410, 0);
assert_eq!(None, t!(stream.read_timeout()));
t!(stream.set_read_timeout(Some(dur)));
assert_eq!(Some(dur), t!(stream.read_timeout()));
assert_eq!(None, t!(stream.write_timeout()));
t!(stream.set_write_timeout(Some(dur)));
assert_eq!(Some(dur), t!(stream.write_timeout()));
t!(stream.set_read_timeout(None));
assert_eq!(None, t!(stream.read_timeout()));
t!(stream.set_write_timeout(None));
assert_eq!(None, t!(stream.write_timeout()));
}
#[test]
fn test_read_timeout() {
let addr = next_test_ip4();
let stream = t!(UdpSocket::bind(&addr));
t!(stream.set_read_timeout(Some(Duration::from_millis(1000))));
let mut buf = [0; 10];
let start = Instant::now();
loop {
let kind = stream.recv_from(&mut buf).err().expect("expected error").kind();
if kind != ErrorKind::Interrupted {
assert!(
kind == ErrorKind::WouldBlock || kind == ErrorKind::TimedOut,
"unexpected_error: {:?}",
kind
);
break;
}
}
assert!(start.elapsed() > Duration::from_millis(400));
}
#[test]
fn test_read_with_timeout() {
let addr = next_test_ip4();
let stream = t!(UdpSocket::bind(&addr));
t!(stream.set_read_timeout(Some(Duration::from_millis(1000))));
t!(stream.send_to(b"hello world", &addr));
let mut buf = [0; 11];
t!(stream.recv_from(&mut buf));
assert_eq!(b"hello world", &buf[..]);
let start = Instant::now();
loop {
let kind = stream.recv_from(&mut buf).err().expect("expected error").kind();
if kind != ErrorKind::Interrupted {
assert!(
kind == ErrorKind::WouldBlock || kind == ErrorKind::TimedOut,
"unexpected_error: {:?}",
kind
);
break;
}
}
assert!(start.elapsed() > Duration::from_millis(400));
}
// Ensure the `set_read_timeout` and `set_write_timeout` calls return errors
// when passed zero Durations
#[test]
fn test_timeout_zero_duration() {
let addr = next_test_ip4();
let socket = t!(UdpSocket::bind(&addr));
let result = socket.set_write_timeout(Some(Duration::new(0, 0)));
let err = result.unwrap_err();
assert_eq!(err.kind(), ErrorKind::InvalidInput);
let result = socket.set_read_timeout(Some(Duration::new(0, 0)));
let err = result.unwrap_err();
assert_eq!(err.kind(), ErrorKind::InvalidInput);
}
#[test]
fn connect_send_recv() {
let addr = next_test_ip4();
let socket = t!(UdpSocket::bind(&addr));
t!(socket.connect(addr));
t!(socket.send(b"hello world"));
let mut buf = [0; 11];
t!(socket.recv(&mut buf));
assert_eq!(b"hello world", &buf[..]);
}
#[test]
fn connect_send_peek_recv() {
each_ip(&mut |addr, _| {
let socket = t!(UdpSocket::bind(&addr));
t!(socket.connect(addr));
t!(socket.send(b"hello world"));
for _ in 1..3 {
let mut buf = [0; 11];
let size = t!(socket.peek(&mut buf));
assert_eq!(b"hello world", &buf[..]);
assert_eq!(size, 11);
}
let mut buf = [0; 11];
let size = t!(socket.recv(&mut buf));
assert_eq!(b"hello world", &buf[..]);
assert_eq!(size, 11);
})
}
#[test]
fn peek_from() {
each_ip(&mut |addr, _| {
let socket = t!(UdpSocket::bind(&addr));
t!(socket.send_to(b"hello world", &addr));
for _ in 1..3 {
let mut buf = [0; 11];
let (size, _) = t!(socket.peek_from(&mut buf));
assert_eq!(b"hello world", &buf[..]);
assert_eq!(size, 11);
}
let mut buf = [0; 11];
let (size, _) = t!(socket.recv_from(&mut buf));
assert_eq!(b"hello world", &buf[..]);
assert_eq!(size, 11);
})
}
#[test]
fn ttl() {
let ttl = 100;
let addr = next_test_ip4();
let stream = t!(UdpSocket::bind(&addr));
t!(stream.set_ttl(ttl));
assert_eq!(ttl, t!(stream.ttl()));
}
#[test]
fn set_nonblocking() {
each_ip(&mut |addr, _| {
let socket = t!(UdpSocket::bind(&addr));
t!(socket.set_nonblocking(true));
t!(socket.set_nonblocking(false));
t!(socket.connect(addr));
t!(socket.set_nonblocking(false));
t!(socket.set_nonblocking(true));
let mut buf = [0];
match socket.recv(&mut buf) {
Ok(_) => panic!("expected error"),
Err(ref e) if e.kind() == ErrorKind::WouldBlock => {}
Err(e) => panic!("unexpected error {}", e),
}
})
}
}