blob: ea8a6ff2b2e527d8644c96631efee3207bcbfe88 [file] [log] [blame]
use crate::ty::{self, Ty, TyCtxt, InferConst};
use crate::ty::error::TypeError;
use crate::ty::relate::{self, Relate, TypeRelation, RelateResult};
/// A type "A" *matches* "B" if the fresh types in B could be
/// substituted with values so as to make it equal to A. Matching is
/// intended to be used only on freshened types, and it basically
/// indicates if the non-freshened versions of A and B could have been
/// unified.
///
/// It is only an approximation. If it yields false, unification would
/// definitely fail, but a true result doesn't mean unification would
/// succeed. This is because we don't track the "side-constraints" on
/// type variables, nor do we track if the same freshened type appears
/// more than once. To some extent these approximations could be
/// fixed, given effort.
///
/// Like subtyping, matching is really a binary relation, so the only
/// important thing about the result is Ok/Err. Also, matching never
/// affects any type variables or unification state.
pub struct Match<'tcx> {
tcx: TyCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
}
impl Match<'tcx> {
pub fn new(tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> Match<'tcx> {
Match { tcx, param_env }
}
}
impl TypeRelation<'tcx> for Match<'tcx> {
fn tag(&self) -> &'static str { "Match" }
fn tcx(&self) -> TyCtxt<'tcx> { self.tcx }
fn param_env(&self) -> ty::ParamEnv<'tcx> { self.param_env }
fn a_is_expected(&self) -> bool { true } // irrelevant
fn relate_with_variance<T: Relate<'tcx>>(&mut self,
_: ty::Variance,
a: &T,
b: &T)
-> RelateResult<'tcx, T>
{
self.relate(a, b)
}
fn regions(&mut self, a: ty::Region<'tcx>, b: ty::Region<'tcx>)
-> RelateResult<'tcx, ty::Region<'tcx>> {
debug!("{}.regions({:?}, {:?})",
self.tag(),
a,
b);
Ok(a)
}
fn tys(&mut self, a: Ty<'tcx>, b: Ty<'tcx>) -> RelateResult<'tcx, Ty<'tcx>> {
debug!("{}.tys({:?}, {:?})", self.tag(),
a, b);
if a == b { return Ok(a); }
match (&a.kind, &b.kind) {
(_, &ty::Infer(ty::FreshTy(_))) |
(_, &ty::Infer(ty::FreshIntTy(_))) |
(_, &ty::Infer(ty::FreshFloatTy(_))) => {
Ok(a)
}
(&ty::Infer(_), _) |
(_, &ty::Infer(_)) => {
Err(TypeError::Sorts(relate::expected_found(self, &a, &b)))
}
(&ty::Error, _) | (_, &ty::Error) => {
Ok(self.tcx().types.err)
}
_ => {
relate::super_relate_tys(self, a, b)
}
}
}
fn consts(
&mut self,
a: &'tcx ty::Const<'tcx>,
b: &'tcx ty::Const<'tcx>,
) -> RelateResult<'tcx, &'tcx ty::Const<'tcx>> {
debug!("{}.consts({:?}, {:?})", self.tag(), a, b);
if a == b {
return Ok(a);
}
match (a.val, b.val) {
(_, ty::ConstKind::Infer(InferConst::Fresh(_))) => {
return Ok(a);
}
(ty::ConstKind::Infer(_), _) | (_, ty::ConstKind::Infer(_)) => {
return Err(TypeError::ConstMismatch(relate::expected_found(self, &a, &b)));
}
_ => {}
}
relate::super_relate_consts(self, a, b)
}
fn binders<T>(&mut self, a: &ty::Binder<T>, b: &ty::Binder<T>)
-> RelateResult<'tcx, ty::Binder<T>>
where T: Relate<'tcx>
{
Ok(ty::Binder::bind(self.relate(a.skip_binder(), b.skip_binder())?))
}
}