blob: ea1c585176d57c837e9cb6c310fc1cb3338cf3de [file] [log] [blame]
//! This module implements some validity checks for attributes.
//! In particular it verifies that `#[inline]` and `#[repr]` attributes are
//! attached to items that actually support them and if there are
//! conflicts between multiple such attributes attached to the same
//! item.
use crate::hir::{self, HirId, HirVec, Attribute, Item, ItemKind, TraitItem, TraitItemKind};
use crate::hir::DUMMY_HIR_ID;
use crate::hir::def_id::DefId;
use crate::hir::intravisit::{self, Visitor, NestedVisitorMap};
use crate::lint::builtin::UNUSED_ATTRIBUTES;
use crate::ty::TyCtxt;
use crate::ty::query::Providers;
use std::fmt::{self, Display};
use syntax::{attr, symbol::sym};
use syntax_pos::Span;
use rustc_error_codes::*;
#[derive(Copy, Clone, PartialEq)]
pub(crate) enum MethodKind {
Trait { body: bool },
Inherent,
}
#[derive(Copy, Clone, PartialEq)]
pub(crate) enum Target {
ExternCrate,
Use,
Static,
Const,
Fn,
Closure,
Mod,
ForeignMod,
GlobalAsm,
TyAlias,
OpaqueTy,
Enum,
Struct,
Union,
Trait,
TraitAlias,
Impl,
Expression,
Statement,
AssocConst,
Method(MethodKind),
AssocTy,
ForeignFn,
ForeignStatic,
ForeignTy,
}
impl Display for Target {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}", match *self {
Target::ExternCrate => "extern crate",
Target::Use => "use",
Target::Static => "static item",
Target::Const => "constant item",
Target::Fn => "function",
Target::Closure => "closure",
Target::Mod => "module",
Target::ForeignMod => "foreign module",
Target::GlobalAsm => "global asm",
Target::TyAlias => "type alias",
Target::OpaqueTy => "opaque type",
Target::Enum => "enum",
Target::Struct => "struct",
Target::Union => "union",
Target::Trait => "trait",
Target::TraitAlias => "trait alias",
Target::Impl => "item",
Target::Expression => "expression",
Target::Statement => "statement",
Target::AssocConst => "associated const",
Target::Method(_) => "method",
Target::AssocTy => "associated type",
Target::ForeignFn => "foreign function",
Target::ForeignStatic => "foreign static item",
Target::ForeignTy => "foreign type",
})
}
}
impl Target {
pub(crate) fn from_item(item: &Item) -> Target {
match item.kind {
ItemKind::ExternCrate(..) => Target::ExternCrate,
ItemKind::Use(..) => Target::Use,
ItemKind::Static(..) => Target::Static,
ItemKind::Const(..) => Target::Const,
ItemKind::Fn(..) => Target::Fn,
ItemKind::Mod(..) => Target::Mod,
ItemKind::ForeignMod(..) => Target::ForeignMod,
ItemKind::GlobalAsm(..) => Target::GlobalAsm,
ItemKind::TyAlias(..) => Target::TyAlias,
ItemKind::OpaqueTy(..) => Target::OpaqueTy,
ItemKind::Enum(..) => Target::Enum,
ItemKind::Struct(..) => Target::Struct,
ItemKind::Union(..) => Target::Union,
ItemKind::Trait(..) => Target::Trait,
ItemKind::TraitAlias(..) => Target::TraitAlias,
ItemKind::Impl(..) => Target::Impl,
}
}
fn from_trait_item(trait_item: &TraitItem) -> Target {
match trait_item.kind {
TraitItemKind::Const(..) => Target::AssocConst,
TraitItemKind::Method(_, hir::TraitMethod::Required(_)) => {
Target::Method(MethodKind::Trait { body: false })
}
TraitItemKind::Method(_, hir::TraitMethod::Provided(_)) => {
Target::Method(MethodKind::Trait { body: true })
}
TraitItemKind::Type(..) => Target::AssocTy,
}
}
fn from_foreign_item(foreign_item: &hir::ForeignItem) -> Target {
match foreign_item.kind {
hir::ForeignItemKind::Fn(..) => Target::ForeignFn,
hir::ForeignItemKind::Static(..) => Target::ForeignStatic,
hir::ForeignItemKind::Type => Target::ForeignTy,
}
}
fn from_impl_item<'tcx>(tcx: TyCtxt<'tcx>, impl_item: &hir::ImplItem) -> Target {
match impl_item.kind {
hir::ImplItemKind::Const(..) => Target::AssocConst,
hir::ImplItemKind::Method(..) => {
let parent_hir_id = tcx.hir().get_parent_item(impl_item.hir_id);
let containing_item = tcx.hir().expect_item(parent_hir_id);
let containing_impl_is_for_trait = match &containing_item.kind {
hir::ItemKind::Impl(_, _, _, _, tr, _, _) => tr.is_some(),
_ => bug!("parent of an ImplItem must be an Impl"),
};
if containing_impl_is_for_trait {
Target::Method(MethodKind::Trait { body: true })
} else {
Target::Method(MethodKind::Inherent)
}
}
hir::ImplItemKind::TyAlias(..) | hir::ImplItemKind::OpaqueTy(..) => Target::AssocTy,
}
}
}
struct CheckAttrVisitor<'tcx> {
tcx: TyCtxt<'tcx>,
}
impl CheckAttrVisitor<'tcx> {
/// Checks any attribute.
fn check_attributes(
&self,
hir_id: HirId,
attrs: &HirVec<Attribute>,
span: &Span,
target: Target,
item: Option<&Item>,
) {
let mut is_valid = true;
for attr in attrs {
is_valid &= if attr.check_name(sym::inline) {
self.check_inline(hir_id, attr, span, target)
} else if attr.check_name(sym::non_exhaustive) {
self.check_non_exhaustive(attr, span, target)
} else if attr.check_name(sym::marker) {
self.check_marker(attr, span, target)
} else if attr.check_name(sym::target_feature) {
self.check_target_feature(attr, span, target)
} else if attr.check_name(sym::track_caller) {
self.check_track_caller(&attr.span, attrs, span, target)
} else {
true
};
}
if !is_valid {
return;
}
if target == Target::Fn {
self.tcx.codegen_fn_attrs(self.tcx.hir().local_def_id(hir_id));
}
self.check_repr(attrs, span, target, item);
self.check_used(attrs, target);
}
/// Checks if an `#[inline]` is applied to a function or a closure. Returns `true` if valid.
fn check_inline(&self, hir_id: HirId, attr: &Attribute, span: &Span, target: Target) -> bool {
match target {
Target::Fn | Target::Closure | Target::Method(MethodKind::Trait { body: true })
| Target::Method(MethodKind::Inherent) => true,
Target::Method(MethodKind::Trait { body: false }) | Target::ForeignFn => {
self.tcx.struct_span_lint_hir(
UNUSED_ATTRIBUTES,
hir_id,
attr.span,
"`#[inline]` is ignored on function prototypes",
).emit();
true
}
// FIXME(#65833): We permit associated consts to have an `#[inline]` attribute with
// just a lint, because we previously erroneously allowed it and some crates used it
// accidentally, to to be compatible with crates depending on them, we can't throw an
// error here.
Target::AssocConst => {
self.tcx.struct_span_lint_hir(
UNUSED_ATTRIBUTES,
hir_id,
attr.span,
"`#[inline]` is ignored on constants",
).warn("this was previously accepted by the compiler but is \
being phased out; it will become a hard error in \
a future release!")
.note("for more information, see issue #65833 \
<https://github.com/rust-lang/rust/issues/65833>")
.emit();
true
}
_ => {
struct_span_err!(
self.tcx.sess,
attr.span,
E0518,
"attribute should be applied to function or closure",
).span_label(*span, "not a function or closure")
.emit();
false
}
}
}
/// Checks if a `#[track_caller]` is applied to a non-naked function. Returns `true` if valid.
fn check_track_caller(
&self,
attr_span: &Span,
attrs: &HirVec<Attribute>,
span: &Span,
target: Target,
) -> bool {
match target {
Target::Fn if attr::contains_name(attrs, sym::naked) => {
struct_span_err!(
self.tcx.sess,
*attr_span,
E0736,
"cannot use `#[track_caller]` with `#[naked]`",
).emit();
false
}
Target::Fn | Target::Method(MethodKind::Inherent) => true,
Target::Method(_) => {
struct_span_err!(
self.tcx.sess,
*attr_span,
E0738,
"`#[track_caller]` may not be used on trait methods",
).emit();
false
}
_ => {
struct_span_err!(
self.tcx.sess,
*attr_span,
E0739,
"attribute should be applied to function"
)
.span_label(*span, "not a function")
.emit();
false
}
}
}
/// Checks if the `#[non_exhaustive]` attribute on an `item` is valid. Returns `true` if valid.
fn check_non_exhaustive(
&self,
attr: &Attribute,
span: &Span,
target: Target,
) -> bool {
match target {
Target::Struct | Target::Enum => true,
_ => {
struct_span_err!(self.tcx.sess,
attr.span,
E0701,
"attribute can only be applied to a struct or enum")
.span_label(*span, "not a struct or enum")
.emit();
false
}
}
}
/// Checks if the `#[marker]` attribute on an `item` is valid. Returns `true` if valid.
fn check_marker(&self, attr: &Attribute, span: &Span, target: Target) -> bool {
match target {
Target::Trait => true,
_ => {
self.tcx.sess
.struct_span_err(attr.span, "attribute can only be applied to a trait")
.span_label(*span, "not a trait")
.emit();
false
}
}
}
/// Checks if the `#[target_feature]` attribute on `item` is valid. Returns `true` if valid.
fn check_target_feature(&self, attr: &Attribute, span: &Span, target: Target) -> bool {
match target {
Target::Fn | Target::Method(MethodKind::Trait { body: true })
| Target::Method(MethodKind::Inherent) => true,
_ => {
self.tcx.sess
.struct_span_err(attr.span, "attribute should be applied to a function")
.span_label(*span, "not a function")
.emit();
false
},
}
}
/// Checks if the `#[repr]` attributes on `item` are valid.
fn check_repr(
&self,
attrs: &HirVec<Attribute>,
span: &Span,
target: Target,
item: Option<&Item>,
) {
// Extract the names of all repr hints, e.g., [foo, bar, align] for:
// ```
// #[repr(foo)]
// #[repr(bar, align(8))]
// ```
let hints: Vec<_> = attrs
.iter()
.filter(|attr| attr.check_name(sym::repr))
.filter_map(|attr| attr.meta_item_list())
.flatten()
.collect();
let mut int_reprs = 0;
let mut is_c = false;
let mut is_simd = false;
let mut is_transparent = false;
for hint in &hints {
let (article, allowed_targets) = match hint.name_or_empty() {
name @ sym::C | name @ sym::align => {
is_c |= name == sym::C;
match target {
Target::Struct | Target::Union | Target::Enum => continue,
_ => ("a", "struct, enum, or union"),
}
}
sym::packed => {
if target != Target::Struct &&
target != Target::Union {
("a", "struct or union")
} else {
continue
}
}
sym::simd => {
is_simd = true;
if target != Target::Struct {
("a", "struct")
} else {
continue
}
}
sym::transparent => {
is_transparent = true;
match target {
Target::Struct | Target::Union | Target::Enum => continue,
_ => ("a", "struct, enum, or union"),
}
}
sym::i8 | sym::u8 | sym::i16 | sym::u16 |
sym::i32 | sym::u32 | sym::i64 | sym::u64 |
sym::isize | sym::usize => {
int_reprs += 1;
if target != Target::Enum {
("an", "enum")
} else {
continue
}
}
_ => continue,
};
self.emit_repr_error(
hint.span(),
*span,
&format!("attribute should be applied to {}", allowed_targets),
&format!("not {} {}", article, allowed_targets),
)
}
// Just point at all repr hints if there are any incompatibilities.
// This is not ideal, but tracking precisely which ones are at fault is a huge hassle.
let hint_spans = hints.iter().map(|hint| hint.span());
// Error on repr(transparent, <anything else>).
if is_transparent && hints.len() > 1 {
let hint_spans: Vec<_> = hint_spans.clone().collect();
span_err!(self.tcx.sess, hint_spans, E0692,
"transparent {} cannot have other repr hints", target);
}
// Warn on repr(u8, u16), repr(C, simd), and c-like-enum-repr(C, u8)
if (int_reprs > 1)
|| (is_simd && is_c)
|| (int_reprs == 1 && is_c && item.map_or(false, |item| is_c_like_enum(item))) {
let hint_spans: Vec<_> = hint_spans.collect();
span_warn!(self.tcx.sess, hint_spans, E0566,
"conflicting representation hints");
}
}
fn emit_repr_error(
&self,
hint_span: Span,
label_span: Span,
hint_message: &str,
label_message: &str,
) {
struct_span_err!(self.tcx.sess, hint_span, E0517, "{}", hint_message)
.span_label(label_span, label_message)
.emit();
}
fn check_stmt_attributes(&self, stmt: &hir::Stmt) {
// When checking statements ignore expressions, they will be checked later
if let hir::StmtKind::Local(ref l) = stmt.kind {
for attr in l.attrs.iter() {
if attr.check_name(sym::inline) {
self.check_inline(DUMMY_HIR_ID, attr, &stmt.span, Target::Statement);
}
if attr.check_name(sym::repr) {
self.emit_repr_error(
attr.span,
stmt.span,
"attribute should not be applied to a statement",
"not a struct, enum, or union",
);
}
}
}
}
fn check_expr_attributes(&self, expr: &hir::Expr) {
let target = match expr.kind {
hir::ExprKind::Closure(..) => Target::Closure,
_ => Target::Expression,
};
for attr in expr.attrs.iter() {
if attr.check_name(sym::inline) {
self.check_inline(DUMMY_HIR_ID, attr, &expr.span, target);
}
if attr.check_name(sym::repr) {
self.emit_repr_error(
attr.span,
expr.span,
"attribute should not be applied to an expression",
"not defining a struct, enum, or union",
);
}
}
}
fn check_used(&self, attrs: &HirVec<Attribute>, target: Target) {
for attr in attrs {
if attr.check_name(sym::used) && target != Target::Static {
self.tcx.sess
.span_err(attr.span, "attribute must be applied to a `static` variable");
}
}
}
}
impl Visitor<'tcx> for CheckAttrVisitor<'tcx> {
fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
NestedVisitorMap::OnlyBodies(&self.tcx.hir())
}
fn visit_item(&mut self, item: &'tcx Item) {
let target = Target::from_item(item);
self.check_attributes(item.hir_id, &item.attrs, &item.span, target, Some(item));
intravisit::walk_item(self, item)
}
fn visit_trait_item(&mut self, trait_item: &'tcx TraitItem) {
let target = Target::from_trait_item(trait_item);
self.check_attributes(trait_item.hir_id, &trait_item.attrs, &trait_item.span, target, None);
intravisit::walk_trait_item(self, trait_item)
}
fn visit_foreign_item(&mut self, f_item: &'tcx hir::ForeignItem) {
let target = Target::from_foreign_item(f_item);
self.check_attributes(f_item.hir_id, &f_item.attrs, &f_item.span, target, None);
intravisit::walk_foreign_item(self, f_item)
}
fn visit_impl_item(&mut self, impl_item: &'tcx hir::ImplItem) {
let target = Target::from_impl_item(self.tcx, impl_item);
self.check_attributes(impl_item.hir_id, &impl_item.attrs, &impl_item.span, target, None);
intravisit::walk_impl_item(self, impl_item)
}
fn visit_stmt(&mut self, stmt: &'tcx hir::Stmt) {
self.check_stmt_attributes(stmt);
intravisit::walk_stmt(self, stmt)
}
fn visit_expr(&mut self, expr: &'tcx hir::Expr) {
self.check_expr_attributes(expr);
intravisit::walk_expr(self, expr)
}
}
fn is_c_like_enum(item: &Item) -> bool {
if let ItemKind::Enum(ref def, _) = item.kind {
for variant in &def.variants {
match variant.data {
hir::VariantData::Unit(..) => { /* continue */ }
_ => return false,
}
}
true
} else {
false
}
}
fn check_mod_attrs(tcx: TyCtxt<'_>, module_def_id: DefId) {
tcx.hir().visit_item_likes_in_module(
module_def_id,
&mut CheckAttrVisitor { tcx }.as_deep_visitor()
);
}
pub(crate) fn provide(providers: &mut Providers<'_>) {
*providers = Providers {
check_mod_attrs,
..*providers
};
}