blob: 7b662eae7753eef1571c09880064486ec15f2cd5 [file] [log] [blame]
//! Checks for uses of const which the type is not `Freeze` (`Cell`-free).
//!
//! This lint is **warn** by default.
use std::ptr;
use rustc_hir::def::{DefKind, Res};
use rustc_hir::{Expr, ExprKind, ImplItem, ImplItemKind, Item, ItemKind, Node, TraitItem, TraitItemKind, UnOp};
use rustc_infer::traits::specialization_graph;
use rustc_lint::{LateContext, LateLintPass, Lint};
use rustc_middle::ty::adjustment::Adjust;
use rustc_middle::ty::{AssocKind, Ty};
use rustc_session::{declare_lint_pass, declare_tool_lint};
use rustc_span::{InnerSpan, Span, DUMMY_SP};
use rustc_typeck::hir_ty_to_ty;
use crate::utils::{in_constant, qpath_res, span_lint_and_then};
use if_chain::if_chain;
// FIXME: this is a correctness problem but there's no suitable
// warn-by-default category.
declare_clippy_lint! {
/// **What it does:** Checks for declaration of `const` items which is interior
/// mutable (e.g., contains a `Cell`, `Mutex`, `AtomicXxxx`, etc.).
///
/// **Why is this bad?** Consts are copied everywhere they are referenced, i.e.,
/// every time you refer to the const a fresh instance of the `Cell` or `Mutex`
/// or `AtomicXxxx` will be created, which defeats the whole purpose of using
/// these types in the first place.
///
/// The `const` should better be replaced by a `static` item if a global
/// variable is wanted, or replaced by a `const fn` if a constructor is wanted.
///
/// **Known problems:** A "non-constant" const item is a legacy way to supply an
/// initialized value to downstream `static` items (e.g., the
/// `std::sync::ONCE_INIT` constant). In this case the use of `const` is legit,
/// and this lint should be suppressed.
///
/// When an enum has variants with interior mutability, use of its non interior mutable
/// variants can generate false positives. See issue
/// [#3962](https://github.com/rust-lang/rust-clippy/issues/3962)
///
/// Types that have underlying or potential interior mutability trigger the lint whether
/// the interior mutable field is used or not. See issues
/// [#5812](https://github.com/rust-lang/rust-clippy/issues/5812) and
/// [#3825](https://github.com/rust-lang/rust-clippy/issues/3825)
///
/// **Example:**
/// ```rust
/// use std::sync::atomic::{AtomicUsize, Ordering::SeqCst};
///
/// // Bad.
/// const CONST_ATOM: AtomicUsize = AtomicUsize::new(12);
/// CONST_ATOM.store(6, SeqCst); // the content of the atomic is unchanged
/// assert_eq!(CONST_ATOM.load(SeqCst), 12); // because the CONST_ATOM in these lines are distinct
///
/// // Good.
/// static STATIC_ATOM: AtomicUsize = AtomicUsize::new(15);
/// STATIC_ATOM.store(9, SeqCst);
/// assert_eq!(STATIC_ATOM.load(SeqCst), 9); // use a `static` item to refer to the same instance
/// ```
pub DECLARE_INTERIOR_MUTABLE_CONST,
style,
"declaring `const` with interior mutability"
}
// FIXME: this is a correctness problem but there's no suitable
// warn-by-default category.
declare_clippy_lint! {
/// **What it does:** Checks if `const` items which is interior mutable (e.g.,
/// contains a `Cell`, `Mutex`, `AtomicXxxx`, etc.) has been borrowed directly.
///
/// **Why is this bad?** Consts are copied everywhere they are referenced, i.e.,
/// every time you refer to the const a fresh instance of the `Cell` or `Mutex`
/// or `AtomicXxxx` will be created, which defeats the whole purpose of using
/// these types in the first place.
///
/// The `const` value should be stored inside a `static` item.
///
/// **Known problems:** When an enum has variants with interior mutability, use of its non
/// interior mutable variants can generate false positives. See issue
/// [#3962](https://github.com/rust-lang/rust-clippy/issues/3962)
///
/// Types that have underlying or potential interior mutability trigger the lint whether
/// the interior mutable field is used or not. See issues
/// [#5812](https://github.com/rust-lang/rust-clippy/issues/5812) and
/// [#3825](https://github.com/rust-lang/rust-clippy/issues/3825)
///
/// **Example:**
/// ```rust
/// use std::sync::atomic::{AtomicUsize, Ordering::SeqCst};
/// const CONST_ATOM: AtomicUsize = AtomicUsize::new(12);
///
/// // Bad.
/// CONST_ATOM.store(6, SeqCst); // the content of the atomic is unchanged
/// assert_eq!(CONST_ATOM.load(SeqCst), 12); // because the CONST_ATOM in these lines are distinct
///
/// // Good.
/// static STATIC_ATOM: AtomicUsize = CONST_ATOM;
/// STATIC_ATOM.store(9, SeqCst);
/// assert_eq!(STATIC_ATOM.load(SeqCst), 9); // use a `static` item to refer to the same instance
/// ```
pub BORROW_INTERIOR_MUTABLE_CONST,
style,
"referencing `const` with interior mutability"
}
#[derive(Copy, Clone)]
enum Source {
Item { item: Span },
Assoc { item: Span },
Expr { expr: Span },
}
impl Source {
#[must_use]
fn lint(&self) -> (&'static Lint, &'static str, Span) {
match self {
Self::Item { item } | Self::Assoc { item, .. } => (
DECLARE_INTERIOR_MUTABLE_CONST,
"a `const` item should never be interior mutable",
*item,
),
Self::Expr { expr } => (
BORROW_INTERIOR_MUTABLE_CONST,
"a `const` item with interior mutability should not be borrowed",
*expr,
),
}
}
}
fn verify_ty_bound<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>, source: Source) {
// Ignore types whose layout is unknown since `is_freeze` reports every generic types as `!Freeze`,
// making it indistinguishable from `UnsafeCell`. i.e. it isn't a tool to prove a type is
// 'unfrozen'. However, this code causes a false negative in which
// a type contains a layout-unknown type, but also a unsafe cell like `const CELL: Cell<T>`.
// Yet, it's better than `ty.has_type_flags(TypeFlags::HAS_TY_PARAM | TypeFlags::HAS_PROJECTION)`
// since it works when a pointer indirection involves (`Cell<*const T>`).
// Making up a `ParamEnv` where every generic params and assoc types are `Freeze`is another option;
// but I'm not sure whether it's a decent way, if possible.
if cx.tcx.layout_of(cx.param_env.and(ty)).is_err() || ty.is_freeze(cx.tcx.at(DUMMY_SP), cx.param_env) {
return;
}
let (lint, msg, span) = source.lint();
span_lint_and_then(cx, lint, span, msg, |diag| {
if span.from_expansion() {
return; // Don't give suggestions into macros.
}
match source {
Source::Item { .. } => {
let const_kw_span = span.from_inner(InnerSpan::new(0, 5));
diag.span_label(const_kw_span, "make this a static item (maybe with lazy_static)");
},
Source::Assoc { .. } => (),
Source::Expr { .. } => {
diag.help("assign this const to a local or static variable, and use the variable here");
},
}
});
}
declare_lint_pass!(NonCopyConst => [DECLARE_INTERIOR_MUTABLE_CONST, BORROW_INTERIOR_MUTABLE_CONST]);
impl<'tcx> LateLintPass<'tcx> for NonCopyConst {
fn check_item(&mut self, cx: &LateContext<'tcx>, it: &'tcx Item<'_>) {
if let ItemKind::Const(hir_ty, ..) = &it.kind {
let ty = hir_ty_to_ty(cx.tcx, hir_ty);
verify_ty_bound(cx, ty, Source::Item { item: it.span });
}
}
fn check_trait_item(&mut self, cx: &LateContext<'tcx>, trait_item: &'tcx TraitItem<'_>) {
if let TraitItemKind::Const(hir_ty, ..) = &trait_item.kind {
let ty = hir_ty_to_ty(cx.tcx, hir_ty);
// Normalize assoc types because ones originated from generic params
// bounded other traits could have their bound.
let normalized = cx.tcx.normalize_erasing_regions(cx.param_env, ty);
verify_ty_bound(cx, normalized, Source::Assoc { item: trait_item.span });
}
}
fn check_impl_item(&mut self, cx: &LateContext<'tcx>, impl_item: &'tcx ImplItem<'_>) {
if let ImplItemKind::Const(hir_ty, ..) = &impl_item.kind {
let item_hir_id = cx.tcx.hir().get_parent_node(impl_item.hir_id);
let item = cx.tcx.hir().expect_item(item_hir_id);
match &item.kind {
ItemKind::Impl {
of_trait: Some(of_trait_ref),
..
} => {
if_chain! {
// Lint a trait impl item only when the definition is a generic type,
// assuming a assoc const is not meant to be a interior mutable type.
if let Some(of_trait_def_id) = of_trait_ref.trait_def_id();
if let Some(of_assoc_item) = specialization_graph::Node::Trait(of_trait_def_id)
.item(cx.tcx, impl_item.ident, AssocKind::Const, of_trait_def_id);
if cx
.tcx
.layout_of(cx.tcx.param_env(of_trait_def_id).and(
// Normalize assoc types because ones originated from generic params
// bounded other traits could have their bound at the trait defs;
// and, in that case, the definition is *not* generic.
cx.tcx.normalize_erasing_regions(
cx.tcx.param_env(of_trait_def_id),
cx.tcx.type_of(of_assoc_item.def_id),
),
))
.is_err();
then {
let ty = hir_ty_to_ty(cx.tcx, hir_ty);
let normalized = cx.tcx.normalize_erasing_regions(cx.param_env, ty);
verify_ty_bound(
cx,
normalized,
Source::Assoc {
item: impl_item.span,
},
);
}
}
},
ItemKind::Impl { of_trait: None, .. } => {
let ty = hir_ty_to_ty(cx.tcx, hir_ty);
// Normalize assoc types originated from generic params.
let normalized = cx.tcx.normalize_erasing_regions(cx.param_env, ty);
verify_ty_bound(cx, normalized, Source::Assoc { item: impl_item.span });
},
_ => (),
}
}
}
fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) {
if let ExprKind::Path(qpath) = &expr.kind {
// Only lint if we use the const item inside a function.
if in_constant(cx, expr.hir_id) {
return;
}
// Make sure it is a const item.
match qpath_res(cx, qpath, expr.hir_id) {
Res::Def(DefKind::Const | DefKind::AssocConst, _) => {},
_ => return,
};
// Climb up to resolve any field access and explicit referencing.
let mut cur_expr = expr;
let mut dereferenced_expr = expr;
let mut needs_check_adjustment = true;
loop {
let parent_id = cx.tcx.hir().get_parent_node(cur_expr.hir_id);
if parent_id == cur_expr.hir_id {
break;
}
if let Some(Node::Expr(parent_expr)) = cx.tcx.hir().find(parent_id) {
match &parent_expr.kind {
ExprKind::AddrOf(..) => {
// `&e` => `e` must be referenced.
needs_check_adjustment = false;
},
ExprKind::Field(..) => {
needs_check_adjustment = true;
// Check whether implicit dereferences happened;
// if so, no need to go further up
// because of the same reason as the `ExprKind::Unary` case.
if cx
.typeck_results()
.expr_adjustments(dereferenced_expr)
.iter()
.any(|adj| matches!(adj.kind, Adjust::Deref(_)))
{
break;
}
dereferenced_expr = parent_expr;
},
ExprKind::Index(e, _) if ptr::eq(&**e, cur_expr) => {
// `e[i]` => desugared to `*Index::index(&e, i)`,
// meaning `e` must be referenced.
// no need to go further up since a method call is involved now.
needs_check_adjustment = false;
break;
},
ExprKind::Unary(UnOp::UnDeref, _) => {
// `*e` => desugared to `*Deref::deref(&e)`,
// meaning `e` must be referenced.
// no need to go further up since a method call is involved now.
needs_check_adjustment = false;
break;
},
_ => break,
}
cur_expr = parent_expr;
} else {
break;
}
}
let ty = if needs_check_adjustment {
let adjustments = cx.typeck_results().expr_adjustments(dereferenced_expr);
if let Some(i) = adjustments
.iter()
.position(|adj| matches!(adj.kind, Adjust::Borrow(_) | Adjust::Deref(_)))
{
if i == 0 {
cx.typeck_results().expr_ty(dereferenced_expr)
} else {
adjustments[i - 1].target
}
} else {
// No borrow adjustments means the entire const is moved.
return;
}
} else {
cx.typeck_results().expr_ty(dereferenced_expr)
};
verify_ty_bound(cx, ty, Source::Expr { expr: expr.span });
}
}
}