blob: b0ed233f5ec7fdb97622d8cce112975efd3635b1 [file] [log] [blame]
use crate::clean::auto_trait::AutoTraitFinder;
use crate::clean::blanket_impl::BlanketImplFinder;
use crate::clean::{
inline, Clean, Crate, Deprecation, ExternalCrate, FnDecl, FnRetTy, Generic, GenericArg,
GenericArgs, GenericBound, Generics, GetDefId, ImportSource, Item, ItemEnum, Lifetime,
MacroKind, Path, PathSegment, Primitive, PrimitiveType, ResolvedPath, Span, Type, TypeBinding,
TypeKind, Visibility, WherePredicate,
};
use crate::core::DocContext;
use itertools::Itertools;
use rustc_attr::Stability;
use rustc_data_structures::fx::FxHashSet;
use rustc_hir as hir;
use rustc_hir::def::{DefKind, Res};
use rustc_hir::def_id::{DefId, LOCAL_CRATE};
use rustc_middle::mir::interpret::{sign_extend, ConstValue, Scalar};
use rustc_middle::ty::subst::{GenericArgKind, SubstsRef};
use rustc_middle::ty::{self, DefIdTree, Ty};
use rustc_span::symbol::{kw, sym, Symbol};
use std::mem;
pub fn krate(mut cx: &mut DocContext<'_>) -> Crate {
use crate::visit_lib::LibEmbargoVisitor;
let krate = cx.tcx.hir().krate();
let module = crate::visit_ast::RustdocVisitor::new(&mut cx).visit(krate);
let mut r = cx.renderinfo.get_mut();
r.deref_trait_did = cx.tcx.lang_items().deref_trait();
r.deref_mut_trait_did = cx.tcx.lang_items().deref_mut_trait();
r.owned_box_did = cx.tcx.lang_items().owned_box();
let mut externs = Vec::new();
for &cnum in cx.tcx.crates().iter() {
externs.push((cnum, cnum.clean(cx)));
// Analyze doc-reachability for extern items
LibEmbargoVisitor::new(&mut cx).visit_lib(cnum);
}
externs.sort_by(|&(a, _), &(b, _)| a.cmp(&b));
// Clean the crate, translating the entire librustc_ast AST to one that is
// understood by rustdoc.
let mut module = module.clean(cx);
let mut masked_crates = FxHashSet::default();
match module.inner {
ItemEnum::ModuleItem(ref module) => {
for it in &module.items {
// `compiler_builtins` should be masked too, but we can't apply
// `#[doc(masked)]` to the injected `extern crate` because it's unstable.
if it.is_extern_crate()
&& (it.attrs.has_doc_flag(sym::masked)
|| cx.tcx.is_compiler_builtins(it.def_id.krate))
{
masked_crates.insert(it.def_id.krate);
}
}
}
_ => unreachable!(),
}
let ExternalCrate { name, src, primitives, keywords, .. } = LOCAL_CRATE.clean(cx);
{
let m = match module.inner {
ItemEnum::ModuleItem(ref mut m) => m,
_ => unreachable!(),
};
m.items.extend(primitives.iter().map(|&(def_id, prim, ref attrs)| Item {
source: Span::empty(),
name: Some(prim.to_url_str().to_string()),
attrs: attrs.clone(),
visibility: Visibility::Public,
stability: get_stability(cx, def_id),
deprecation: get_deprecation(cx, def_id),
def_id,
inner: ItemEnum::PrimitiveItem(prim),
}));
m.items.extend(keywords.into_iter().map(|(def_id, kw, attrs)| Item {
source: Span::empty(),
name: Some(kw.clone()),
attrs,
visibility: Visibility::Public,
stability: get_stability(cx, def_id),
deprecation: get_deprecation(cx, def_id),
def_id,
inner: ItemEnum::KeywordItem(kw),
}));
}
Crate {
name,
version: None,
src,
module: Some(module),
externs,
primitives,
external_traits: cx.external_traits.clone(),
masked_crates,
collapsed: false,
}
}
// extract the stability index for a node from tcx, if possible
pub fn get_stability(cx: &DocContext<'_>, def_id: DefId) -> Option<Stability> {
cx.tcx.lookup_stability(def_id).cloned()
}
pub fn get_deprecation(cx: &DocContext<'_>, def_id: DefId) -> Option<Deprecation> {
cx.tcx.lookup_deprecation(def_id).clean(cx)
}
fn external_generic_args(
cx: &DocContext<'_>,
trait_did: Option<DefId>,
has_self: bool,
bindings: Vec<TypeBinding>,
substs: SubstsRef<'_>,
) -> GenericArgs {
let mut skip_self = has_self;
let mut ty_kind = None;
let args: Vec<_> = substs
.iter()
.filter_map(|kind| match kind.unpack() {
GenericArgKind::Lifetime(lt) => match lt {
ty::ReLateBound(_, ty::BrAnon(_)) => Some(GenericArg::Lifetime(Lifetime::elided())),
_ => lt.clean(cx).map(GenericArg::Lifetime),
},
GenericArgKind::Type(_) if skip_self => {
skip_self = false;
None
}
GenericArgKind::Type(ty) => {
ty_kind = Some(ty.kind());
Some(GenericArg::Type(ty.clean(cx)))
}
GenericArgKind::Const(ct) => Some(GenericArg::Const(ct.clean(cx))),
})
.collect();
match trait_did {
// Attempt to sugar an external path like Fn<(A, B,), C> to Fn(A, B) -> C
Some(did) if cx.tcx.fn_trait_kind_from_lang_item(did).is_some() => {
assert!(ty_kind.is_some());
let inputs = match ty_kind {
Some(ty::Tuple(ref tys)) => tys.iter().map(|t| t.expect_ty().clean(cx)).collect(),
_ => return GenericArgs::AngleBracketed { args, bindings },
};
let output = None;
// FIXME(#20299) return type comes from a projection now
// match types[1].kind {
// ty::Tuple(ref v) if v.is_empty() => None, // -> ()
// _ => Some(types[1].clean(cx))
// };
GenericArgs::Parenthesized { inputs, output }
}
_ => GenericArgs::AngleBracketed { args, bindings },
}
}
// trait_did should be set to a trait's DefId if called on a TraitRef, in order to sugar
// from Fn<(A, B,), C> to Fn(A, B) -> C
pub(super) fn external_path(
cx: &DocContext<'_>,
name: Symbol,
trait_did: Option<DefId>,
has_self: bool,
bindings: Vec<TypeBinding>,
substs: SubstsRef<'_>,
) -> Path {
Path {
global: false,
res: Res::Err,
segments: vec![PathSegment {
name: name.to_string(),
args: external_generic_args(cx, trait_did, has_self, bindings, substs),
}],
}
}
/// The point of this function is to replace bounds with types.
///
/// i.e. `[T, U]` when you have the following bounds: `T: Display, U: Option<T>` will return
/// `[Display, Option]` (we just returns the list of the types, we don't care about the
/// wrapped types in here).
pub fn get_real_types(
generics: &Generics,
arg: &Type,
cx: &DocContext<'_>,
recurse: i32,
) -> FxHashSet<(Type, TypeKind)> {
let arg_s = arg.print().to_string();
let mut res = FxHashSet::default();
if recurse >= 10 {
// FIXME: remove this whole recurse thing when the recursion bug is fixed
return res;
}
if arg.is_full_generic() {
if let Some(where_pred) = generics.where_predicates.iter().find(|g| match g {
&WherePredicate::BoundPredicate { ref ty, .. } => ty.def_id() == arg.def_id(),
_ => false,
}) {
let bounds = where_pred.get_bounds().unwrap_or_else(|| &[]);
for bound in bounds.iter() {
if let GenericBound::TraitBound(ref poly_trait, _) = *bound {
for x in poly_trait.generic_params.iter() {
if !x.is_type() {
continue;
}
if let Some(ty) = x.get_type() {
let adds = get_real_types(generics, &ty, cx, recurse + 1);
if !adds.is_empty() {
res.extend(adds);
} else if !ty.is_full_generic() {
if let Some(kind) =
ty.def_id().map(|did| cx.tcx.def_kind(did).clean(cx))
{
res.insert((ty, kind));
}
}
}
}
}
}
}
if let Some(bound) = generics.params.iter().find(|g| g.is_type() && g.name == arg_s) {
for bound in bound.get_bounds().unwrap_or_else(|| &[]) {
if let Some(ty) = bound.get_trait_type() {
let adds = get_real_types(generics, &ty, cx, recurse + 1);
if !adds.is_empty() {
res.extend(adds);
} else if !ty.is_full_generic() {
if let Some(kind) = ty.def_id().map(|did| cx.tcx.def_kind(did).clean(cx)) {
res.insert((ty.clone(), kind));
}
}
}
}
}
} else {
if let Some(kind) = arg.def_id().map(|did| cx.tcx.def_kind(did).clean(cx)) {
res.insert((arg.clone(), kind));
}
if let Some(gens) = arg.generics() {
for gen in gens.iter() {
if gen.is_full_generic() {
let adds = get_real_types(generics, gen, cx, recurse + 1);
if !adds.is_empty() {
res.extend(adds);
}
} else if let Some(kind) = gen.def_id().map(|did| cx.tcx.def_kind(did).clean(cx)) {
res.insert((gen.clone(), kind));
}
}
}
}
res
}
/// Return the full list of types when bounds have been resolved.
///
/// i.e. `fn foo<A: Display, B: Option<A>>(x: u32, y: B)` will return
/// `[u32, Display, Option]`.
pub fn get_all_types(
generics: &Generics,
decl: &FnDecl,
cx: &DocContext<'_>,
) -> (Vec<(Type, TypeKind)>, Vec<(Type, TypeKind)>) {
let mut all_types = FxHashSet::default();
for arg in decl.inputs.values.iter() {
if arg.type_.is_self_type() {
continue;
}
let args = get_real_types(generics, &arg.type_, cx, 0);
if !args.is_empty() {
all_types.extend(args);
} else {
if let Some(kind) = arg.type_.def_id().map(|did| cx.tcx.def_kind(did).clean(cx)) {
all_types.insert((arg.type_.clone(), kind));
}
}
}
let ret_types = match decl.output {
FnRetTy::Return(ref return_type) => {
let mut ret = get_real_types(generics, &return_type, cx, 0);
if ret.is_empty() {
if let Some(kind) = return_type.def_id().map(|did| cx.tcx.def_kind(did).clean(cx)) {
ret.insert((return_type.clone(), kind));
}
}
ret.into_iter().collect()
}
_ => Vec::new(),
};
(all_types.into_iter().collect(), ret_types)
}
pub fn strip_type(ty: Type) -> Type {
match ty {
Type::ResolvedPath { path, param_names, did, is_generic } => {
Type::ResolvedPath { path: strip_path(&path), param_names, did, is_generic }
}
Type::Tuple(inner_tys) => {
Type::Tuple(inner_tys.iter().map(|t| strip_type(t.clone())).collect())
}
Type::Slice(inner_ty) => Type::Slice(Box::new(strip_type(*inner_ty))),
Type::Array(inner_ty, s) => Type::Array(Box::new(strip_type(*inner_ty)), s),
Type::RawPointer(m, inner_ty) => Type::RawPointer(m, Box::new(strip_type(*inner_ty))),
Type::BorrowedRef { lifetime, mutability, type_ } => {
Type::BorrowedRef { lifetime, mutability, type_: Box::new(strip_type(*type_)) }
}
Type::QPath { name, self_type, trait_ } => Type::QPath {
name,
self_type: Box::new(strip_type(*self_type)),
trait_: Box::new(strip_type(*trait_)),
},
_ => ty,
}
}
pub fn strip_path(path: &Path) -> Path {
let segments = path
.segments
.iter()
.map(|s| PathSegment {
name: s.name.clone(),
args: GenericArgs::AngleBracketed { args: vec![], bindings: vec![] },
})
.collect();
Path { global: path.global, res: path.res, segments }
}
pub fn qpath_to_string(p: &hir::QPath<'_>) -> String {
let segments = match *p {
hir::QPath::Resolved(_, ref path) => &path.segments,
hir::QPath::TypeRelative(_, ref segment) => return segment.ident.to_string(),
hir::QPath::LangItem(lang_item, ..) => return lang_item.name().to_string(),
};
let mut s = String::new();
for (i, seg) in segments.iter().enumerate() {
if i > 0 {
s.push_str("::");
}
if seg.ident.name != kw::PathRoot {
s.push_str(&seg.ident.as_str());
}
}
s
}
pub fn build_deref_target_impls(cx: &DocContext<'_>, items: &[Item], ret: &mut Vec<Item>) {
let tcx = cx.tcx;
for item in items {
let target = match item.inner {
ItemEnum::TypedefItem(ref t, true) => &t.type_,
_ => continue,
};
let primitive = match *target {
ResolvedPath { did, .. } if did.is_local() => continue,
ResolvedPath { did, .. } => {
ret.extend(inline::build_impls(cx, None, did, None));
continue;
}
_ => match target.primitive_type() {
Some(prim) => prim,
None => continue,
},
};
for &did in primitive.impls(tcx) {
if !did.is_local() {
inline::build_impl(cx, None, did, None, ret);
}
}
}
}
pub trait ToSource {
fn to_src(&self, cx: &DocContext<'_>) -> String;
}
impl ToSource for rustc_span::Span {
fn to_src(&self, cx: &DocContext<'_>) -> String {
debug!("converting span {:?} to snippet", self.clean(cx));
let sn = match cx.sess().source_map().span_to_snippet(*self) {
Ok(x) => x,
Err(_) => String::new(),
};
debug!("got snippet {}", sn);
sn
}
}
pub fn name_from_pat(p: &hir::Pat<'_>) -> String {
use rustc_hir::*;
debug!("trying to get a name from pattern: {:?}", p);
match p.kind {
PatKind::Wild => "_".to_string(),
PatKind::Binding(_, _, ident, _) => ident.to_string(),
PatKind::TupleStruct(ref p, ..) | PatKind::Path(ref p) => qpath_to_string(p),
PatKind::Struct(ref name, ref fields, etc) => format!(
"{} {{ {}{} }}",
qpath_to_string(name),
fields
.iter()
.map(|fp| format!("{}: {}", fp.ident, name_from_pat(&fp.pat)))
.collect::<Vec<String>>()
.join(", "),
if etc { ", .." } else { "" }
),
PatKind::Or(ref pats) => {
pats.iter().map(|p| name_from_pat(&**p)).collect::<Vec<String>>().join(" | ")
}
PatKind::Tuple(ref elts, _) => format!(
"({})",
elts.iter().map(|p| name_from_pat(&**p)).collect::<Vec<String>>().join(", ")
),
PatKind::Box(ref p) => name_from_pat(&**p),
PatKind::Ref(ref p, _) => name_from_pat(&**p),
PatKind::Lit(..) => {
warn!(
"tried to get argument name from PatKind::Lit, which is silly in function arguments"
);
"()".to_string()
}
PatKind::Range(..) => panic!(
"tried to get argument name from PatKind::Range, \
which is not allowed in function arguments"
),
PatKind::Slice(ref begin, ref mid, ref end) => {
let begin = begin.iter().map(|p| name_from_pat(&**p));
let mid = mid.as_ref().map(|p| format!("..{}", name_from_pat(&**p))).into_iter();
let end = end.iter().map(|p| name_from_pat(&**p));
format!("[{}]", begin.chain(mid).chain(end).collect::<Vec<_>>().join(", "))
}
}
}
pub fn print_const(cx: &DocContext<'_>, n: &'tcx ty::Const<'_>) -> String {
match n.val {
ty::ConstKind::Unevaluated(def, _, promoted) => {
let mut s = if let Some(def) = def.as_local() {
let hir_id = cx.tcx.hir().local_def_id_to_hir_id(def.did);
print_const_expr(cx, cx.tcx.hir().body_owned_by(hir_id))
} else {
inline::print_inlined_const(cx, def.did)
};
if let Some(promoted) = promoted {
s.push_str(&format!("::{:?}", promoted))
}
s
}
_ => {
let mut s = n.to_string();
// array lengths are obviously usize
if s.ends_with("_usize") {
let n = s.len() - "_usize".len();
s.truncate(n);
if s.ends_with(": ") {
let n = s.len() - ": ".len();
s.truncate(n);
}
}
s
}
}
}
pub fn print_evaluated_const(cx: &DocContext<'_>, def_id: DefId) -> Option<String> {
cx.tcx.const_eval_poly(def_id).ok().and_then(|val| {
let ty = cx.tcx.type_of(def_id);
match (val, ty.kind()) {
(_, &ty::Ref(..)) => None,
(ConstValue::Scalar(_), &ty::Adt(_, _)) => None,
(ConstValue::Scalar(_), _) => {
let const_ = ty::Const::from_value(cx.tcx, val, ty);
Some(print_const_with_custom_print_scalar(cx, const_))
}
_ => None,
}
})
}
fn format_integer_with_underscore_sep(num: &str) -> String {
let num_chars: Vec<_> = num.chars().collect();
let num_start_index = if num_chars.get(0) == Some(&'-') { 1 } else { 0 };
num_chars[..num_start_index]
.iter()
.chain(num_chars[num_start_index..].rchunks(3).rev().intersperse(&['_']).flatten())
.collect()
}
fn print_const_with_custom_print_scalar(cx: &DocContext<'_>, ct: &'tcx ty::Const<'tcx>) -> String {
// Use a slightly different format for integer types which always shows the actual value.
// For all other types, fallback to the original `pretty_print_const`.
match (ct.val, ct.ty.kind()) {
(ty::ConstKind::Value(ConstValue::Scalar(Scalar::Raw { data, .. })), ty::Uint(ui)) => {
format!("{}{}", format_integer_with_underscore_sep(&data.to_string()), ui.name_str())
}
(ty::ConstKind::Value(ConstValue::Scalar(Scalar::Raw { data, .. })), ty::Int(i)) => {
let ty = cx.tcx.lift(ct.ty).unwrap();
let size = cx.tcx.layout_of(ty::ParamEnv::empty().and(ty)).unwrap().size;
let sign_extended_data = sign_extend(data, size) as i128;
format!(
"{}{}",
format_integer_with_underscore_sep(&sign_extended_data.to_string()),
i.name_str()
)
}
_ => ct.to_string(),
}
}
pub fn is_literal_expr(cx: &DocContext<'_>, hir_id: hir::HirId) -> bool {
if let hir::Node::Expr(expr) = cx.tcx.hir().get(hir_id) {
if let hir::ExprKind::Lit(_) = &expr.kind {
return true;
}
if let hir::ExprKind::Unary(hir::UnOp::UnNeg, expr) = &expr.kind {
if let hir::ExprKind::Lit(_) = &expr.kind {
return true;
}
}
}
false
}
pub fn print_const_expr(cx: &DocContext<'_>, body: hir::BodyId) -> String {
let value = &cx.tcx.hir().body(body).value;
let snippet = if !value.span.from_expansion() {
cx.sess().source_map().span_to_snippet(value.span).ok()
} else {
None
};
snippet.unwrap_or_else(|| rustc_hir_pretty::id_to_string(&cx.tcx.hir(), body.hir_id))
}
/// Given a type Path, resolve it to a Type using the TyCtxt
pub fn resolve_type(cx: &DocContext<'_>, path: Path, id: hir::HirId) -> Type {
debug!("resolve_type({:?},{:?})", path, id);
let is_generic = match path.res {
Res::PrimTy(p) => return Primitive(PrimitiveType::from(p)),
Res::SelfTy(..) if path.segments.len() == 1 => {
return Generic(kw::SelfUpper.to_string());
}
Res::Def(DefKind::TyParam, _) if path.segments.len() == 1 => {
return Generic(format!("{:#}", path.print()));
}
Res::SelfTy(..) | Res::Def(DefKind::TyParam | DefKind::AssocTy, _) => true,
_ => false,
};
let did = register_res(&*cx, path.res);
ResolvedPath { path, param_names: None, did, is_generic }
}
pub fn get_auto_trait_and_blanket_impls(
cx: &DocContext<'tcx>,
ty: Ty<'tcx>,
param_env_def_id: DefId,
) -> impl Iterator<Item = Item> {
AutoTraitFinder::new(cx)
.get_auto_trait_impls(ty, param_env_def_id)
.into_iter()
.chain(BlanketImplFinder::new(cx).get_blanket_impls(ty, param_env_def_id))
}
pub fn register_res(cx: &DocContext<'_>, res: Res) -> DefId {
debug!("register_res({:?})", res);
let (did, kind) = match res {
Res::Def(DefKind::Fn, i) => (i, TypeKind::Function),
Res::Def(DefKind::TyAlias, i) => (i, TypeKind::Typedef),
Res::Def(DefKind::Enum, i) => (i, TypeKind::Enum),
Res::Def(DefKind::Trait, i) => (i, TypeKind::Trait),
Res::Def(DefKind::AssocTy | DefKind::AssocFn | DefKind::AssocConst, i) => {
(cx.tcx.parent(i).unwrap(), TypeKind::Trait)
}
Res::Def(DefKind::Struct, i) => (i, TypeKind::Struct),
Res::Def(DefKind::Union, i) => (i, TypeKind::Union),
Res::Def(DefKind::Mod, i) => (i, TypeKind::Module),
Res::Def(DefKind::ForeignTy, i) => (i, TypeKind::Foreign),
Res::Def(DefKind::Const, i) => (i, TypeKind::Const),
Res::Def(DefKind::Static, i) => (i, TypeKind::Static),
Res::Def(DefKind::Variant, i) => {
(cx.tcx.parent(i).expect("cannot get parent def id"), TypeKind::Enum)
}
Res::Def(DefKind::Macro(mac_kind), i) => match mac_kind {
MacroKind::Bang => (i, TypeKind::Macro),
MacroKind::Attr => (i, TypeKind::Attr),
MacroKind::Derive => (i, TypeKind::Derive),
},
Res::Def(DefKind::TraitAlias, i) => (i, TypeKind::TraitAlias),
Res::SelfTy(Some(def_id), _) => (def_id, TypeKind::Trait),
Res::SelfTy(_, Some((impl_def_id, _))) => return impl_def_id,
_ => return res.def_id(),
};
if did.is_local() {
return did;
}
inline::record_extern_fqn(cx, did, kind);
if let TypeKind::Trait = kind {
inline::record_extern_trait(cx, did);
}
did
}
pub fn resolve_use_source(cx: &DocContext<'_>, path: Path) -> ImportSource {
ImportSource {
did: if path.res.opt_def_id().is_none() { None } else { Some(register_res(cx, path.res)) },
path,
}
}
pub fn enter_impl_trait<F, R>(cx: &DocContext<'_>, f: F) -> R
where
F: FnOnce() -> R,
{
let old_bounds = mem::take(&mut *cx.impl_trait_bounds.borrow_mut());
let r = f();
assert!(cx.impl_trait_bounds.borrow().is_empty());
*cx.impl_trait_bounds.borrow_mut() = old_bounds;
r
}