blob: 243065b94b125419d17dcc7b4aa5d47bf03728db [file] [log] [blame]
#![unstable(feature = "process_internals", issue = "none")]
#[cfg(test)]
mod tests;
use crate::borrow::Borrow;
use crate::collections::BTreeMap;
use crate::env;
use crate::env::split_paths;
use crate::ffi::{OsStr, OsString};
use crate::fmt;
use crate::fs;
use crate::io::{self, Error, ErrorKind};
use crate::mem;
use crate::os::windows::ffi::OsStrExt;
use crate::path::Path;
use crate::ptr;
use crate::sys::c;
use crate::sys::cvt;
use crate::sys::fs::{File, OpenOptions};
use crate::sys::handle::Handle;
use crate::sys::mutex::Mutex;
use crate::sys::pipe::{self, AnonPipe};
use crate::sys::stdio;
use crate::sys_common::process::{CommandEnv, CommandEnvs};
use crate::sys_common::AsInner;
use libc::{c_void, EXIT_FAILURE, EXIT_SUCCESS};
////////////////////////////////////////////////////////////////////////////////
// Command
////////////////////////////////////////////////////////////////////////////////
#[derive(Clone, Debug, Eq, PartialEq, Ord, PartialOrd)]
#[doc(hidden)]
pub struct EnvKey(OsString);
impl From<OsString> for EnvKey {
fn from(mut k: OsString) -> Self {
k.make_ascii_uppercase();
EnvKey(k)
}
}
impl From<EnvKey> for OsString {
fn from(k: EnvKey) -> Self {
k.0
}
}
impl Borrow<OsStr> for EnvKey {
fn borrow(&self) -> &OsStr {
&self.0
}
}
impl AsRef<OsStr> for EnvKey {
fn as_ref(&self) -> &OsStr {
&self.0
}
}
fn ensure_no_nuls<T: AsRef<OsStr>>(str: T) -> io::Result<T> {
if str.as_ref().encode_wide().any(|b| b == 0) {
Err(io::Error::new(ErrorKind::InvalidInput, "nul byte found in provided data"))
} else {
Ok(str)
}
}
pub struct Command {
program: OsString,
args: Vec<OsString>,
env: CommandEnv,
cwd: Option<OsString>,
flags: u32,
detach: bool, // not currently exposed in std::process
stdin: Option<Stdio>,
stdout: Option<Stdio>,
stderr: Option<Stdio>,
}
pub enum Stdio {
Inherit,
Null,
MakePipe,
Handle(Handle),
}
pub struct StdioPipes {
pub stdin: Option<AnonPipe>,
pub stdout: Option<AnonPipe>,
pub stderr: Option<AnonPipe>,
}
struct DropGuard<'a> {
lock: &'a Mutex,
}
impl Command {
pub fn new(program: &OsStr) -> Command {
Command {
program: program.to_os_string(),
args: Vec::new(),
env: Default::default(),
cwd: None,
flags: 0,
detach: false,
stdin: None,
stdout: None,
stderr: None,
}
}
pub fn arg(&mut self, arg: &OsStr) {
self.args.push(arg.to_os_string())
}
pub fn env_mut(&mut self) -> &mut CommandEnv {
&mut self.env
}
pub fn cwd(&mut self, dir: &OsStr) {
self.cwd = Some(dir.to_os_string())
}
pub fn stdin(&mut self, stdin: Stdio) {
self.stdin = Some(stdin);
}
pub fn stdout(&mut self, stdout: Stdio) {
self.stdout = Some(stdout);
}
pub fn stderr(&mut self, stderr: Stdio) {
self.stderr = Some(stderr);
}
pub fn creation_flags(&mut self, flags: u32) {
self.flags = flags;
}
pub fn get_program(&self) -> &OsStr {
&self.program
}
pub fn get_args(&self) -> CommandArgs<'_> {
let iter = self.args.iter();
CommandArgs { iter }
}
pub fn get_envs(&self) -> CommandEnvs<'_> {
self.env.iter()
}
pub fn get_current_dir(&self) -> Option<&Path> {
self.cwd.as_ref().map(|cwd| Path::new(cwd))
}
pub fn spawn(
&mut self,
default: Stdio,
needs_stdin: bool,
) -> io::Result<(Process, StdioPipes)> {
let maybe_env = self.env.capture_if_changed();
// To have the spawning semantics of unix/windows stay the same, we need
// to read the *child's* PATH if one is provided. See #15149 for more
// details.
let program = maybe_env.as_ref().and_then(|env| {
if let Some(v) = env.get(OsStr::new("PATH")) {
// Split the value and test each path to see if the
// program exists.
for path in split_paths(&v) {
let path = path
.join(self.program.to_str().unwrap())
.with_extension(env::consts::EXE_EXTENSION);
if fs::metadata(&path).is_ok() {
return Some(path.into_os_string());
}
}
}
None
});
let mut si = zeroed_startupinfo();
si.cb = mem::size_of::<c::STARTUPINFO>() as c::DWORD;
si.dwFlags = c::STARTF_USESTDHANDLES;
let program = program.as_ref().unwrap_or(&self.program);
let mut cmd_str = make_command_line(program, &self.args)?;
cmd_str.push(0); // add null terminator
// stolen from the libuv code.
let mut flags = self.flags | c::CREATE_UNICODE_ENVIRONMENT;
if self.detach {
flags |= c::DETACHED_PROCESS | c::CREATE_NEW_PROCESS_GROUP;
}
let (envp, _data) = make_envp(maybe_env)?;
let (dirp, _data) = make_dirp(self.cwd.as_ref())?;
let mut pi = zeroed_process_information();
// Prepare all stdio handles to be inherited by the child. This
// currently involves duplicating any existing ones with the ability to
// be inherited by child processes. Note, however, that once an
// inheritable handle is created, *any* spawned child will inherit that
// handle. We only want our own child to inherit this handle, so we wrap
// the remaining portion of this spawn in a mutex.
//
// For more information, msdn also has an article about this race:
// http://support.microsoft.com/kb/315939
static CREATE_PROCESS_LOCK: Mutex = Mutex::new();
let _guard = DropGuard::new(&CREATE_PROCESS_LOCK);
let mut pipes = StdioPipes { stdin: None, stdout: None, stderr: None };
let null = Stdio::Null;
let default_stdin = if needs_stdin { &default } else { &null };
let stdin = self.stdin.as_ref().unwrap_or(default_stdin);
let stdout = self.stdout.as_ref().unwrap_or(&default);
let stderr = self.stderr.as_ref().unwrap_or(&default);
let stdin = stdin.to_handle(c::STD_INPUT_HANDLE, &mut pipes.stdin)?;
let stdout = stdout.to_handle(c::STD_OUTPUT_HANDLE, &mut pipes.stdout)?;
let stderr = stderr.to_handle(c::STD_ERROR_HANDLE, &mut pipes.stderr)?;
si.hStdInput = stdin.raw();
si.hStdOutput = stdout.raw();
si.hStdError = stderr.raw();
unsafe {
cvt(c::CreateProcessW(
ptr::null(),
cmd_str.as_mut_ptr(),
ptr::null_mut(),
ptr::null_mut(),
c::TRUE,
flags,
envp,
dirp,
&mut si,
&mut pi,
))
}?;
// We close the thread handle because we don't care about keeping
// the thread id valid, and we aren't keeping the thread handle
// around to be able to close it later.
drop(Handle::new(pi.hThread));
Ok((Process { handle: Handle::new(pi.hProcess) }, pipes))
}
}
impl fmt::Debug for Command {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{:?}", self.program)?;
for arg in &self.args {
write!(f, " {:?}", arg)?;
}
Ok(())
}
}
impl<'a> DropGuard<'a> {
fn new(lock: &'a Mutex) -> DropGuard<'a> {
unsafe {
lock.lock();
DropGuard { lock }
}
}
}
impl<'a> Drop for DropGuard<'a> {
fn drop(&mut self) {
unsafe {
self.lock.unlock();
}
}
}
impl Stdio {
fn to_handle(&self, stdio_id: c::DWORD, pipe: &mut Option<AnonPipe>) -> io::Result<Handle> {
match *self {
// If no stdio handle is available, then inherit means that it
// should still be unavailable so propagate the
// INVALID_HANDLE_VALUE.
Stdio::Inherit => match stdio::get_handle(stdio_id) {
Ok(io) => {
let io = Handle::new(io);
let ret = io.duplicate(0, true, c::DUPLICATE_SAME_ACCESS);
io.into_raw();
ret
}
Err(..) => Ok(Handle::new(c::INVALID_HANDLE_VALUE)),
},
Stdio::MakePipe => {
let ours_readable = stdio_id != c::STD_INPUT_HANDLE;
let pipes = pipe::anon_pipe(ours_readable, true)?;
*pipe = Some(pipes.ours);
Ok(pipes.theirs.into_handle())
}
Stdio::Handle(ref handle) => handle.duplicate(0, true, c::DUPLICATE_SAME_ACCESS),
// Open up a reference to NUL with appropriate read/write
// permissions as well as the ability to be inherited to child
// processes (as this is about to be inherited).
Stdio::Null => {
let size = mem::size_of::<c::SECURITY_ATTRIBUTES>();
let mut sa = c::SECURITY_ATTRIBUTES {
nLength: size as c::DWORD,
lpSecurityDescriptor: ptr::null_mut(),
bInheritHandle: 1,
};
let mut opts = OpenOptions::new();
opts.read(stdio_id == c::STD_INPUT_HANDLE);
opts.write(stdio_id != c::STD_INPUT_HANDLE);
opts.security_attributes(&mut sa);
File::open(Path::new("NUL"), &opts).map(|file| file.into_handle())
}
}
}
}
impl From<AnonPipe> for Stdio {
fn from(pipe: AnonPipe) -> Stdio {
Stdio::Handle(pipe.into_handle())
}
}
impl From<File> for Stdio {
fn from(file: File) -> Stdio {
Stdio::Handle(file.into_handle())
}
}
////////////////////////////////////////////////////////////////////////////////
// Processes
////////////////////////////////////////////////////////////////////////////////
/// A value representing a child process.
///
/// The lifetime of this value is linked to the lifetime of the actual
/// process - the Process destructor calls self.finish() which waits
/// for the process to terminate.
pub struct Process {
handle: Handle,
}
impl Process {
pub fn kill(&mut self) -> io::Result<()> {
cvt(unsafe { c::TerminateProcess(self.handle.raw(), 1) })?;
Ok(())
}
pub fn id(&self) -> u32 {
unsafe { c::GetProcessId(self.handle.raw()) as u32 }
}
pub fn wait(&mut self) -> io::Result<ExitStatus> {
unsafe {
let res = c::WaitForSingleObject(self.handle.raw(), c::INFINITE);
if res != c::WAIT_OBJECT_0 {
return Err(Error::last_os_error());
}
let mut status = 0;
cvt(c::GetExitCodeProcess(self.handle.raw(), &mut status))?;
Ok(ExitStatus(status))
}
}
pub fn try_wait(&mut self) -> io::Result<Option<ExitStatus>> {
unsafe {
match c::WaitForSingleObject(self.handle.raw(), 0) {
c::WAIT_OBJECT_0 => {}
c::WAIT_TIMEOUT => {
return Ok(None);
}
_ => return Err(io::Error::last_os_error()),
}
let mut status = 0;
cvt(c::GetExitCodeProcess(self.handle.raw(), &mut status))?;
Ok(Some(ExitStatus(status)))
}
}
pub fn handle(&self) -> &Handle {
&self.handle
}
pub fn into_handle(self) -> Handle {
self.handle
}
}
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
pub struct ExitStatus(c::DWORD);
impl ExitStatus {
pub fn success(&self) -> bool {
self.0 == 0
}
pub fn code(&self) -> Option<i32> {
Some(self.0 as i32)
}
}
/// Converts a raw `c::DWORD` to a type-safe `ExitStatus` by wrapping it without copying.
impl From<c::DWORD> for ExitStatus {
fn from(u: c::DWORD) -> ExitStatus {
ExitStatus(u)
}
}
impl fmt::Display for ExitStatus {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
// Windows exit codes with the high bit set typically mean some form of
// unhandled exception or warning. In this scenario printing the exit
// code in decimal doesn't always make sense because it's a very large
// and somewhat gibberish number. The hex code is a bit more
// recognizable and easier to search for, so print that.
if self.0 & 0x80000000 != 0 {
write!(f, "exit code: {:#x}", self.0)
} else {
write!(f, "exit code: {}", self.0)
}
}
}
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
pub struct ExitCode(c::DWORD);
impl ExitCode {
pub const SUCCESS: ExitCode = ExitCode(EXIT_SUCCESS as _);
pub const FAILURE: ExitCode = ExitCode(EXIT_FAILURE as _);
#[inline]
pub fn as_i32(&self) -> i32 {
self.0 as i32
}
}
fn zeroed_startupinfo() -> c::STARTUPINFO {
c::STARTUPINFO {
cb: 0,
lpReserved: ptr::null_mut(),
lpDesktop: ptr::null_mut(),
lpTitle: ptr::null_mut(),
dwX: 0,
dwY: 0,
dwXSize: 0,
dwYSize: 0,
dwXCountChars: 0,
dwYCountCharts: 0,
dwFillAttribute: 0,
dwFlags: 0,
wShowWindow: 0,
cbReserved2: 0,
lpReserved2: ptr::null_mut(),
hStdInput: c::INVALID_HANDLE_VALUE,
hStdOutput: c::INVALID_HANDLE_VALUE,
hStdError: c::INVALID_HANDLE_VALUE,
}
}
fn zeroed_process_information() -> c::PROCESS_INFORMATION {
c::PROCESS_INFORMATION {
hProcess: ptr::null_mut(),
hThread: ptr::null_mut(),
dwProcessId: 0,
dwThreadId: 0,
}
}
// Produces a wide string *without terminating null*; returns an error if
// `prog` or any of the `args` contain a nul.
fn make_command_line(prog: &OsStr, args: &[OsString]) -> io::Result<Vec<u16>> {
// Encode the command and arguments in a command line string such
// that the spawned process may recover them using CommandLineToArgvW.
let mut cmd: Vec<u16> = Vec::new();
// Always quote the program name so CreateProcess doesn't interpret args as
// part of the name if the binary wasn't found first time.
append_arg(&mut cmd, prog, true)?;
for arg in args {
cmd.push(' ' as u16);
append_arg(&mut cmd, arg, false)?;
}
return Ok(cmd);
fn append_arg(cmd: &mut Vec<u16>, arg: &OsStr, force_quotes: bool) -> io::Result<()> {
// If an argument has 0 characters then we need to quote it to ensure
// that it actually gets passed through on the command line or otherwise
// it will be dropped entirely when parsed on the other end.
ensure_no_nuls(arg)?;
let arg_bytes = &arg.as_inner().inner.as_inner();
let quote = force_quotes
|| arg_bytes.iter().any(|c| *c == b' ' || *c == b'\t')
|| arg_bytes.is_empty();
if quote {
cmd.push('"' as u16);
}
let mut backslashes: usize = 0;
for x in arg.encode_wide() {
if x == '\\' as u16 {
backslashes += 1;
} else {
if x == '"' as u16 {
// Add n+1 backslashes to total 2n+1 before internal '"'.
cmd.extend((0..=backslashes).map(|_| '\\' as u16));
}
backslashes = 0;
}
cmd.push(x);
}
if quote {
// Add n backslashes to total 2n before ending '"'.
cmd.extend((0..backslashes).map(|_| '\\' as u16));
cmd.push('"' as u16);
}
Ok(())
}
}
fn make_envp(maybe_env: Option<BTreeMap<EnvKey, OsString>>) -> io::Result<(*mut c_void, Vec<u16>)> {
// On Windows we pass an "environment block" which is not a char**, but
// rather a concatenation of null-terminated k=v\0 sequences, with a final
// \0 to terminate.
if let Some(env) = maybe_env {
let mut blk = Vec::new();
for (k, v) in env {
blk.extend(ensure_no_nuls(k.0)?.encode_wide());
blk.push('=' as u16);
blk.extend(ensure_no_nuls(v)?.encode_wide());
blk.push(0);
}
blk.push(0);
Ok((blk.as_mut_ptr() as *mut c_void, blk))
} else {
Ok((ptr::null_mut(), Vec::new()))
}
}
fn make_dirp(d: Option<&OsString>) -> io::Result<(*const u16, Vec<u16>)> {
match d {
Some(dir) => {
let mut dir_str: Vec<u16> = ensure_no_nuls(dir)?.encode_wide().collect();
dir_str.push(0);
Ok((dir_str.as_ptr(), dir_str))
}
None => Ok((ptr::null(), Vec::new())),
}
}
pub struct CommandArgs<'a> {
iter: crate::slice::Iter<'a, OsString>,
}
impl<'a> Iterator for CommandArgs<'a> {
type Item = &'a OsStr;
fn next(&mut self) -> Option<&'a OsStr> {
self.iter.next().map(|s| s.as_ref())
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.iter.size_hint()
}
}
impl<'a> ExactSizeIterator for CommandArgs<'a> {
fn len(&self) -> usize {
self.iter.len()
}
fn is_empty(&self) -> bool {
self.iter.is_empty()
}
}
impl<'a> fmt::Debug for CommandArgs<'a> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_list().entries(self.iter.clone()).finish()
}
}