blob: 886d8abd030bfb4096f6ca5bff7a9d18934a85fd [file] [log] [blame]
// This is an attempt at an implementation following the ideal
//
// ```
// struct BTreeMap<K, V> {
// height: usize,
// root: Option<Box<Node<K, V, height>>>
// }
//
// struct Node<K, V, height: usize> {
// keys: [K; 2 * B - 1],
// vals: [V; 2 * B - 1],
// edges: [if height > 0 { Box<Node<K, V, height - 1>> } else { () }; 2 * B],
// parent: Option<(NonNull<Node<K, V, height + 1>>, u16)>,
// len: u16,
// }
// ```
//
// Since Rust doesn't actually have dependent types and polymorphic recursion,
// we make do with lots of unsafety.
// A major goal of this module is to avoid complexity by treating the tree as a generic (if
// weirdly shaped) container and avoiding dealing with most of the B-Tree invariants. As such,
// this module doesn't care whether the entries are sorted, which nodes can be underfull, or
// even what underfull means. However, we do rely on a few invariants:
//
// - Trees must have uniform depth/height. This means that every path down to a leaf from a
// given node has exactly the same length.
// - A node of length `n` has `n` keys, `n` values, and `n + 1` edges.
// This implies that even an empty node has at least one edge.
use core::cmp::Ordering;
use core::marker::PhantomData;
use core::mem::{self, MaybeUninit};
use core::ptr::{self, NonNull, Unique};
use core::slice;
use crate::alloc::{AllocRef, Global, Layout};
use crate::boxed::Box;
const B: usize = 6;
pub const MIN_LEN: usize = B - 1;
pub const CAPACITY: usize = 2 * B - 1;
const KV_IDX_CENTER: usize = B - 1;
const EDGE_IDX_LEFT_OF_CENTER: usize = B - 1;
const EDGE_IDX_RIGHT_OF_CENTER: usize = B;
/// The underlying representation of leaf nodes and part of the representation of internal nodes.
struct LeafNode<K, V> {
/// We want to be covariant in `K` and `V`.
parent: Option<NonNull<InternalNode<K, V>>>,
/// This node's index into the parent node's `edges` array.
/// `*node.parent.edges[node.parent_idx]` should be the same thing as `node`.
/// This is only guaranteed to be initialized when `parent` is non-null.
parent_idx: MaybeUninit<u16>,
/// The number of keys and values this node stores.
len: u16,
/// The arrays storing the actual data of the node. Only the first `len` elements of each
/// array are initialized and valid.
keys: [MaybeUninit<K>; CAPACITY],
vals: [MaybeUninit<V>; CAPACITY],
}
impl<K, V> LeafNode<K, V> {
/// Creates a new `LeafNode`. Unsafe because all nodes should really be hidden behind
/// `BoxedNode`, preventing accidental dropping of uninitialized keys and values.
unsafe fn new() -> Self {
LeafNode {
// As a general policy, we leave fields uninitialized if they can be, as this should
// be both slightly faster and easier to track in Valgrind.
keys: MaybeUninit::uninit_array(),
vals: MaybeUninit::uninit_array(),
parent: None,
parent_idx: MaybeUninit::uninit(),
len: 0,
}
}
}
/// The underlying representation of internal nodes. As with `LeafNode`s, these should be hidden
/// behind `BoxedNode`s to prevent dropping uninitialized keys and values. Any pointer to an
/// `InternalNode` can be directly casted to a pointer to the underlying `LeafNode` portion of the
/// node, allowing code to act on leaf and internal nodes generically without having to even check
/// which of the two a pointer is pointing at. This property is enabled by the use of `repr(C)`.
#[repr(C)]
// gdb_providers.py uses this type name for introspection.
struct InternalNode<K, V> {
data: LeafNode<K, V>,
/// The pointers to the children of this node. `len + 1` of these are considered
/// initialized and valid. Although during the process of `into_iter` or `drop`,
/// some pointers are dangling while others still need to be traversed.
edges: [MaybeUninit<BoxedNode<K, V>>; 2 * B],
}
impl<K, V> InternalNode<K, V> {
/// Creates a new `InternalNode`.
///
/// This is unsafe for two reasons. First, it returns an `InternalNode` by value, risking
/// dropping of uninitialized fields. Second, an invariant of internal nodes is that `len + 1`
/// edges are initialized and valid, meaning that even when the node is empty (having a
/// `len` of 0), there must be one initialized and valid edge. This function does not set up
/// such an edge.
unsafe fn new() -> Self {
InternalNode { data: unsafe { LeafNode::new() }, edges: MaybeUninit::uninit_array() }
}
}
/// A managed, non-null pointer to a node. This is either an owned pointer to
/// `LeafNode<K, V>` or an owned pointer to `InternalNode<K, V>`.
///
/// However, `BoxedNode` contains no information as to which of the two types
/// of nodes it actually contains, and, partially due to this lack of information,
/// has no destructor.
struct BoxedNode<K, V> {
ptr: Unique<LeafNode<K, V>>,
}
impl<K, V> BoxedNode<K, V> {
fn from_leaf(node: Box<LeafNode<K, V>>) -> Self {
BoxedNode { ptr: Box::into_unique(node) }
}
fn from_internal(node: Box<InternalNode<K, V>>) -> Self {
BoxedNode { ptr: Unique::from(&mut Box::leak(node).data) }
}
fn as_ptr(&self) -> NonNull<LeafNode<K, V>> {
NonNull::from(self.ptr)
}
}
/// An owned tree.
///
/// Note that this does not have a destructor, and must be cleaned up manually.
pub struct Root<K, V> {
node: BoxedNode<K, V>,
/// The number of levels below the root node.
height: usize,
}
unsafe impl<K: Sync, V: Sync> Sync for Root<K, V> {}
unsafe impl<K: Send, V: Send> Send for Root<K, V> {}
impl<K, V> Root<K, V> {
/// Returns the number of levels below the root.
pub fn height(&self) -> usize {
self.height
}
/// Returns a new owned tree, with its own root node that is initially empty.
pub fn new_leaf() -> Self {
Root { node: BoxedNode::from_leaf(Box::new(unsafe { LeafNode::new() })), height: 0 }
}
/// Borrows and returns an immutable reference to the node owned by the root.
pub fn node_as_ref(&self) -> NodeRef<marker::Immut<'_>, K, V, marker::LeafOrInternal> {
NodeRef { height: self.height, node: self.node.as_ptr(), _marker: PhantomData }
}
/// Borrows and returns a mutable reference to the node owned by the root.
pub fn node_as_mut(&mut self) -> NodeRef<marker::Mut<'_>, K, V, marker::LeafOrInternal> {
NodeRef { height: self.height, node: self.node.as_ptr(), _marker: PhantomData }
}
/// Borrows and returns a mutable reference to the leaf node owned by the root.
/// # Safety
/// The root node is a leaf.
unsafe fn leaf_node_as_mut(&mut self) -> NodeRef<marker::Mut<'_>, K, V, marker::Leaf> {
debug_assert!(self.height == 0);
NodeRef { height: self.height, node: self.node.as_ptr(), _marker: PhantomData }
}
/// Borrows and returns a mutable reference to the internal node owned by the root.
/// # Safety
/// The root node is not a leaf.
unsafe fn internal_node_as_mut(&mut self) -> NodeRef<marker::Mut<'_>, K, V, marker::Internal> {
debug_assert!(self.height > 0);
NodeRef { height: self.height, node: self.node.as_ptr(), _marker: PhantomData }
}
pub fn node_as_valmut(&mut self) -> NodeRef<marker::ValMut<'_>, K, V, marker::LeafOrInternal> {
NodeRef { height: self.height, node: self.node.as_ptr(), _marker: PhantomData }
}
pub fn into_ref(self) -> NodeRef<marker::Owned, K, V, marker::LeafOrInternal> {
NodeRef { height: self.height, node: self.node.as_ptr(), _marker: PhantomData }
}
/// Adds a new internal node with a single edge pointing to the previous root node,
/// make that new node the root node, and return it. This increases the height by 1
/// and is the opposite of `pop_internal_level`.
pub fn push_internal_level(&mut self) -> NodeRef<marker::Mut<'_>, K, V, marker::Internal> {
let mut new_node = Box::new(unsafe { InternalNode::new() });
new_node.edges[0].write(unsafe { ptr::read(&mut self.node) });
self.node = BoxedNode::from_internal(new_node);
self.height += 1;
unsafe {
let mut ret = self.internal_node_as_mut();
ret.reborrow_mut().first_edge().correct_parent_link();
ret
}
}
/// Removes the internal root node, using its first child as the new root node.
/// As it is intended only to be called when the root node has only one child,
/// no cleanup is done on any of the other children.
/// This decreases the height by 1 and is the opposite of `push_internal_level`.
///
/// Requires exclusive access to the `Root` object but not to the root node;
/// it will not invalidate existing handles or references to the root node.
///
/// Panics if there is no internal level, i.e., if the root node is a leaf.
pub fn pop_internal_level(&mut self) {
assert!(self.height > 0);
let top = self.node.ptr;
let mut internal_node = unsafe { self.internal_node_as_mut() };
self.node = unsafe { internal_node.as_internal_mut().edges[0].assume_init_read() };
self.height -= 1;
self.node_as_mut().as_leaf_mut().parent = None;
unsafe {
Global.dealloc(NonNull::from(top).cast(), Layout::new::<InternalNode<K, V>>());
}
}
}
// N.B. `NodeRef` is always covariant in `K` and `V`, even when the `BorrowType`
// is `Mut`. This is technically wrong, but cannot result in any unsafety due to
// internal use of `NodeRef` because we stay completely generic over `K` and `V`.
// However, whenever a public type wraps `NodeRef`, make sure that it has the
// correct variance.
/// A reference to a node.
///
/// This type has a number of parameters that controls how it acts:
/// - `BorrowType`: This can be `Immut<'a>`, `Mut<'a>` or `ValMut<'a>' for some `'a`
/// or `Owned`.
/// When this is `Immut<'a>`, the `NodeRef` acts roughly like `&'a Node`,
/// when this is `Mut<'a>`, the `NodeRef` acts roughly like `&'a mut Node`,
/// when this is `ValMut<'a>`, the `NodeRef` acts as immutable with respect
/// to keys and tree structure, but allows mutable references to values,
/// and when this is `Owned`, the `NodeRef` acts roughly like `Box<Node>`.
/// - `K` and `V`: These control what types of things are stored in the nodes.
/// - `Type`: This can be `Leaf`, `Internal`, or `LeafOrInternal`. When this is
/// `Leaf`, the `NodeRef` points to a leaf node, when this is `Internal` the
/// `NodeRef` points to an internal node, and when this is `LeafOrInternal` the
/// `NodeRef` could be pointing to either type of node.
pub struct NodeRef<BorrowType, K, V, Type> {
/// The number of levels below the node, a property of the node that cannot be
/// entirely described by `Type` and that the node does not store itself either.
/// Unconstrained if `Type` is `LeafOrInternal`, must be zero if `Type` is `Leaf`,
/// and must be non-zero if `Type` is `Internal`.
height: usize,
/// The pointer to the leaf or internal node. The definition of `InternalNode`
/// ensures that the pointer is valid either way.
node: NonNull<LeafNode<K, V>>,
_marker: PhantomData<(BorrowType, Type)>,
}
impl<'a, K: 'a, V: 'a, Type> Copy for NodeRef<marker::Immut<'a>, K, V, Type> {}
impl<'a, K: 'a, V: 'a, Type> Clone for NodeRef<marker::Immut<'a>, K, V, Type> {
fn clone(&self) -> Self {
*self
}
}
unsafe impl<BorrowType, K: Sync, V: Sync, Type> Sync for NodeRef<BorrowType, K, V, Type> {}
unsafe impl<'a, K: Sync + 'a, V: Sync + 'a, Type> Send for NodeRef<marker::Immut<'a>, K, V, Type> {}
unsafe impl<'a, K: Send + 'a, V: Send + 'a, Type> Send for NodeRef<marker::Mut<'a>, K, V, Type> {}
unsafe impl<'a, K: Send + 'a, V: Send + 'a, Type> Send for NodeRef<marker::ValMut<'a>, K, V, Type> {}
unsafe impl<K: Send, V: Send, Type> Send for NodeRef<marker::Owned, K, V, Type> {}
impl<BorrowType, K, V> NodeRef<BorrowType, K, V, marker::Internal> {
/// Exposes the data of an internal node for reading.
///
/// Returns a raw ptr to avoid invalidating other references to this node,
/// which is possible when BorrowType is marker::ValMut.
fn as_internal_ptr(&self) -> *const InternalNode<K, V> {
self.node.as_ptr() as *const InternalNode<K, V>
}
}
impl<'a, K, V> NodeRef<marker::Mut<'a>, K, V, marker::Internal> {
/// Exposes the data of an internal node for reading,
/// when we know we have exclusive access.
fn as_internal(&mut self) -> &InternalNode<K, V> {
unsafe { &*self.as_internal_ptr() }
}
}
impl<'a, K, V> NodeRef<marker::Mut<'a>, K, V, marker::Internal> {
/// Exposes the data of an internal node for writing.
///
/// We don't need to return a raw ptr because we have unique access to the entire node.
fn as_internal_mut(&mut self) -> &mut InternalNode<K, V> {
unsafe { &mut *(self.node.as_ptr() as *mut InternalNode<K, V>) }
}
}
impl<BorrowType, K, V, Type> NodeRef<BorrowType, K, V, Type> {
/// Finds the length of the node. This is the number of keys or values.
/// The number of edges is `len() + 1`.
/// Note that, despite being safe, calling this function can have the side effect
/// of invalidating mutable references that unsafe code has created.
pub fn len(&self) -> usize {
// Crucially, we only access the `len` field here. If BorrowType is marker::ValMut,
// there might be outstanding mutable references to values that we must not invalidate.
unsafe { usize::from((*self.as_leaf_ptr()).len) }
}
/// Returns the height of this node with respect to the leaf level. Zero height means the
/// node is a leaf itself.
pub fn height(&self) -> usize {
self.height
}
/// Temporarily takes out another, immutable reference to the same node.
fn reborrow(&self) -> NodeRef<marker::Immut<'_>, K, V, Type> {
NodeRef { height: self.height, node: self.node, _marker: PhantomData }
}
/// Exposes the leaf portion of any leaf or internal node.
///
/// Returns a raw ptr to avoid invalidating other references to this node,
/// which is possible when BorrowType is marker::ValMut.
fn as_leaf_ptr(&self) -> *const LeafNode<K, V> {
// The node must be valid for at least the LeafNode portion.
// This is not a reference in the NodeRef type because we don't know if
// it should be unique or shared.
self.node.as_ptr()
}
/// Borrows a reference to one of the keys stored in the node.
///
/// # Safety
/// The node has more than `idx` initialized elements.
pub unsafe fn key_at(&self, idx: usize) -> &K {
unsafe { self.reborrow().into_key_at(idx) }
}
/// Borrows a reference to one of the values stored in the node.
///
/// # Safety
/// The node has more than `idx` initialized elements.
unsafe fn val_at(&self, idx: usize) -> &V {
unsafe { self.reborrow().into_val_at(idx) }
}
}
impl<BorrowType, K, V> NodeRef<BorrowType, K, V, marker::Internal> {
/// Borrows a reference to the contents of one of the edges that delimit
/// the elements of the node, without invalidating other references.
///
/// # Safety
/// The node has more than `idx` initialized elements.
unsafe fn edge_at(&self, idx: usize) -> &BoxedNode<K, V> {
debug_assert!(idx <= self.len());
let node = self.as_internal_ptr();
unsafe { (*node).edges.get_unchecked(idx).assume_init_ref() }
}
}
impl<BorrowType, K, V, Type> NodeRef<BorrowType, K, V, Type> {
/// Finds the parent of the current node. Returns `Ok(handle)` if the current
/// node actually has a parent, where `handle` points to the edge of the parent
/// that points to the current node. Returns `Err(self)` if the current node has
/// no parent, giving back the original `NodeRef`.
///
/// `edge.descend().ascend().unwrap()` and `node.ascend().unwrap().descend()` should
/// both, upon success, do nothing.
pub fn ascend(
self,
) -> Result<Handle<NodeRef<BorrowType, K, V, marker::Internal>, marker::Edge>, Self> {
// We need to use raw pointers to nodes because, if BorrowType is marker::ValMut,
// there might be outstanding mutable references to values that we must not invalidate.
let leaf_ptr = self.as_leaf_ptr();
unsafe { (*leaf_ptr).parent }
.as_ref()
.map(|parent| Handle {
node: NodeRef {
height: self.height + 1,
node: parent.cast(),
_marker: PhantomData,
},
idx: unsafe { usize::from((*leaf_ptr).parent_idx.assume_init()) },
_marker: PhantomData,
})
.ok_or(self)
}
pub fn first_edge(self) -> Handle<Self, marker::Edge> {
unsafe { Handle::new_edge(self, 0) }
}
pub fn last_edge(self) -> Handle<Self, marker::Edge> {
let len = self.len();
unsafe { Handle::new_edge(self, len) }
}
/// Note that `self` must be nonempty.
pub fn first_kv(self) -> Handle<Self, marker::KV> {
let len = self.len();
assert!(len > 0);
unsafe { Handle::new_kv(self, 0) }
}
/// Note that `self` must be nonempty.
pub fn last_kv(self) -> Handle<Self, marker::KV> {
let len = self.len();
assert!(len > 0);
unsafe { Handle::new_kv(self, len - 1) }
}
}
impl<'a, K: 'a, V: 'a, Type> NodeRef<marker::Immut<'a>, K, V, Type> {
/// Exposes the data of a leaf node for reading in an immutable tree.
fn into_leaf(self) -> &'a LeafNode<K, V> {
// SAFETY: we can access the entire node freely and do no need raw pointers,
// because there can be no mutable references to this Immut tree.
unsafe { &(*self.as_leaf_ptr()) }
}
}
impl<K, V> NodeRef<marker::Owned, K, V, marker::LeafOrInternal> {
/// Similar to `ascend`, gets a reference to a node's parent node, but also
/// deallocate the current node in the process. This is unsafe because the
/// current node will still be accessible despite being deallocated.
pub unsafe fn deallocate_and_ascend(
self,
) -> Option<Handle<NodeRef<marker::Owned, K, V, marker::Internal>, marker::Edge>> {
let height = self.height;
let node = self.node;
let ret = self.ascend().ok();
unsafe {
Global.dealloc(
node.cast(),
if height > 0 {
Layout::new::<InternalNode<K, V>>()
} else {
Layout::new::<LeafNode<K, V>>()
},
);
}
ret
}
}
impl<'a, K, V, Type> NodeRef<marker::Mut<'a>, K, V, Type> {
/// Unsafely asserts to the compiler the static information that this node is an `Internal`.
unsafe fn cast_to_internal_unchecked(self) -> NodeRef<marker::Mut<'a>, K, V, marker::Internal> {
debug_assert!(self.height > 0);
NodeRef { height: self.height, node: self.node, _marker: PhantomData }
}
/// Temporarily takes out another, mutable reference to the same node. Beware, as
/// this method is very dangerous, doubly so since it may not immediately appear
/// dangerous.
///
/// Because mutable pointers can roam anywhere around the tree, the returned
/// pointer can easily be used to make the original pointer dangling, out of
/// bounds, or invalid under stacked borrow rules.
// FIXME(@gereeter) consider adding yet another type parameter to `NodeRef`
// that restricts the use of navigation methods on reborrowed pointers,
// preventing this unsafety.
unsafe fn reborrow_mut(&mut self) -> NodeRef<marker::Mut<'_>, K, V, Type> {
NodeRef { height: self.height, node: self.node, _marker: PhantomData }
}
/// Exposes the leaf portion of any leaf or internal node for writing.
///
/// We don't need to return a raw ptr because we have unique access to the entire node.
fn as_leaf_mut(&mut self) -> &'a mut LeafNode<K, V> {
unsafe { &mut (*self.node.as_ptr()) }
}
/// Borrows a mutable reference to one of the keys stored in the node.
///
/// # Safety
/// The node has more than `idx` initialized elements.
unsafe fn key_mut_at(&mut self, idx: usize) -> &mut K {
unsafe { self.reborrow_mut().into_key_mut_at(idx) }
}
/// Borrows a mutable reference to one of the values stored in the node.
///
/// # Safety
/// The node has more than `idx` initialized elements.
unsafe fn val_mut_at(&mut self, idx: usize) -> &mut V {
unsafe { self.reborrow_mut().into_val_mut_at(idx) }
}
fn keys_mut(&mut self) -> &mut [K]
where
K: 'a,
V: 'a,
{
// SAFETY: the caller will not be able to call further methods on self
// until the key slice reference is dropped, as we have unique access
// for the lifetime of the borrow.
// SAFETY: The keys of a node must always be initialized up to length.
unsafe {
slice::from_raw_parts_mut(
MaybeUninit::slice_as_mut_ptr(&mut self.as_leaf_mut().keys),
self.len(),
)
}
}
fn vals_mut(&mut self) -> &mut [V]
where
K: 'a,
V: 'a,
{
// SAFETY: the caller will not be able to call further methods on self
// until the value slice reference is dropped, as we have unique access
// for the lifetime of the borrow.
// SAFETY: The values of a node must always be initialized up to length.
unsafe {
slice::from_raw_parts_mut(
MaybeUninit::slice_as_mut_ptr(&mut self.as_leaf_mut().vals),
self.len(),
)
}
}
}
impl<'a, K, V> NodeRef<marker::Mut<'a>, K, V, marker::Internal> {
fn edges_mut(&mut self) -> &mut [BoxedNode<K, V>] {
unsafe {
slice::from_raw_parts_mut(
MaybeUninit::slice_as_mut_ptr(&mut self.as_internal_mut().edges),
self.len() + 1,
)
}
}
}
impl<'a, K: 'a, V: 'a, Type> NodeRef<marker::Immut<'a>, K, V, Type> {
/// # Safety
/// The node has more than `idx` initialized elements.
unsafe fn into_key_at(self, idx: usize) -> &'a K {
unsafe { self.into_leaf().keys.get_unchecked(idx).assume_init_ref() }
}
/// # Safety
/// The node has more than `idx` initialized elements.
unsafe fn into_val_at(self, idx: usize) -> &'a V {
unsafe { self.into_leaf().vals.get_unchecked(idx).assume_init_ref() }
}
}
impl<'a, K: 'a, V: 'a, Type> NodeRef<marker::Mut<'a>, K, V, Type> {
/// # Safety
/// The node has more than `idx` initialized elements.
unsafe fn into_key_mut_at(mut self, idx: usize) -> &'a mut K {
debug_assert!(idx < self.len());
let leaf = self.as_leaf_mut();
unsafe { leaf.keys.get_unchecked_mut(idx).assume_init_mut() }
}
/// # Safety
/// The node has more than `idx` initialized elements.
unsafe fn into_val_mut_at(mut self, idx: usize) -> &'a mut V {
debug_assert!(idx < self.len());
let leaf = self.as_leaf_mut();
unsafe { leaf.vals.get_unchecked_mut(idx).assume_init_mut() }
}
}
impl<'a, K, V, Type> NodeRef<marker::ValMut<'a>, K, V, Type> {
/// # Safety
/// The node has more than `idx` initialized elements.
unsafe fn into_key_val_mut_at(self, idx: usize) -> (&'a K, &'a mut V) {
// We only create a reference to the one element we are interested in,
// to avoid aliasing with outstanding references to other elements,
// in particular, those returned to the caller in earlier iterations.
let leaf = self.node.as_ptr();
let keys = unsafe { &raw const (*leaf).keys };
let vals = unsafe { &raw mut (*leaf).vals };
// We must coerce to unsized array pointers because of Rust issue #74679.
let keys: *const [_] = keys;
let vals: *mut [_] = vals;
// SAFETY: The keys and values of a node must always be initialized up to length.
let key = unsafe { (&*keys.get_unchecked(idx)).assume_init_ref() };
let val = unsafe { (&mut *vals.get_unchecked_mut(idx)).assume_init_mut() };
(key, val)
}
}
impl<'a, K: 'a, V: 'a> NodeRef<marker::Mut<'a>, K, V, marker::Leaf> {
/// Adds a key/value pair to the end of the node.
pub fn push(&mut self, key: K, val: V) {
let len = &mut self.as_leaf_mut().len;
let idx = usize::from(*len);
assert!(idx < CAPACITY);
*len += 1;
unsafe {
ptr::write(self.key_mut_at(idx), key);
ptr::write(self.val_mut_at(idx), val);
}
}
/// Adds a key/value pair to the beginning of the node.
fn push_front(&mut self, key: K, val: V) {
assert!(self.len() < CAPACITY);
unsafe {
slice_insert(self.keys_mut(), 0, key);
slice_insert(self.vals_mut(), 0, val);
}
self.as_leaf_mut().len += 1;
}
}
impl<'a, K, V> NodeRef<marker::Mut<'a>, K, V, marker::Internal> {
/// # Safety
/// Every item returned by `range` is a valid edge index for the node.
unsafe fn correct_childrens_parent_links<R: Iterator<Item = usize>>(&mut self, range: R) {
for i in range {
debug_assert!(i <= self.len());
unsafe { Handle::new_edge(self.reborrow_mut(), i) }.correct_parent_link();
}
}
fn correct_all_childrens_parent_links(&mut self) {
let len = self.len();
unsafe { self.correct_childrens_parent_links(0..=len) };
}
}
impl<'a, K: 'a, V: 'a> NodeRef<marker::Mut<'a>, K, V, marker::Internal> {
/// Adds a key/value pair, and an edge to go to the right of that pair,
/// to the end of the node.
pub fn push(&mut self, key: K, val: V, edge: Root<K, V>) {
assert!(edge.height == self.height - 1);
let len = &mut self.as_leaf_mut().len;
let idx = usize::from(*len);
assert!(idx < CAPACITY);
*len += 1;
unsafe {
ptr::write(self.key_mut_at(idx), key);
ptr::write(self.val_mut_at(idx), val);
self.as_internal_mut().edges.get_unchecked_mut(idx + 1).write(edge.node);
Handle::new_edge(self.reborrow_mut(), idx + 1).correct_parent_link();
}
}
/// Adds a key/value pair, and an edge to go to the left of that pair,
/// to the beginning of the node.
fn push_front(&mut self, key: K, val: V, edge: Root<K, V>) {
assert!(edge.height == self.height - 1);
assert!(self.len() < CAPACITY);
unsafe {
slice_insert(self.keys_mut(), 0, key);
slice_insert(self.vals_mut(), 0, val);
slice_insert(self.edges_mut(), 0, edge.node);
}
self.as_leaf_mut().len += 1;
self.correct_all_childrens_parent_links();
}
}
impl<'a, K: 'a, V: 'a> NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal> {
/// Removes a key/value pair from the end of the node and returns the pair.
/// Also removes the edge that was to the right of that pair and, if the node
/// is internal, returns the orphaned subtree that this edge owned.
fn pop(&mut self) -> (K, V, Option<Root<K, V>>) {
debug_assert!(self.len() > 0);
let idx = self.len() - 1;
unsafe {
let key = ptr::read(self.key_at(idx));
let val = ptr::read(self.val_at(idx));
let edge = match self.reborrow_mut().force() {
ForceResult::Leaf(_) => None,
ForceResult::Internal(internal) => {
let edge = ptr::read(internal.edge_at(idx + 1));
let mut new_root = Root { node: edge, height: internal.height - 1 };
new_root.node_as_mut().as_leaf_mut().parent = None;
Some(new_root)
}
};
self.as_leaf_mut().len -= 1;
(key, val, edge)
}
}
/// Removes a key/value pair from the beginning of the node and returns the pair.
/// Also removes the edge that was to the left of that pair and, if the node is
/// internal, returns the orphaned subtree that this edge owned.
fn pop_front(&mut self) -> (K, V, Option<Root<K, V>>) {
debug_assert!(self.len() > 0);
let old_len = self.len();
unsafe {
let key = slice_remove(self.keys_mut(), 0);
let val = slice_remove(self.vals_mut(), 0);
let edge = match self.reborrow_mut().force() {
ForceResult::Leaf(_) => None,
ForceResult::Internal(mut internal) => {
let edge = slice_remove(internal.edges_mut(), 0);
let mut new_root = Root { node: edge, height: internal.height - 1 };
new_root.node_as_mut().as_leaf_mut().parent = None;
internal.correct_childrens_parent_links(0..old_len);
Some(new_root)
}
};
self.as_leaf_mut().len -= 1;
(key, val, edge)
}
}
fn into_kv_pointers_mut(mut self) -> (*mut K, *mut V) {
(self.keys_mut().as_mut_ptr(), self.vals_mut().as_mut_ptr())
}
}
impl<BorrowType, K, V> NodeRef<BorrowType, K, V, marker::LeafOrInternal> {
/// Checks whether a node is an `Internal` node or a `Leaf` node.
pub fn force(
self,
) -> ForceResult<
NodeRef<BorrowType, K, V, marker::Leaf>,
NodeRef<BorrowType, K, V, marker::Internal>,
> {
if self.height == 0 {
ForceResult::Leaf(NodeRef {
height: self.height,
node: self.node,
_marker: PhantomData,
})
} else {
ForceResult::Internal(NodeRef {
height: self.height,
node: self.node,
_marker: PhantomData,
})
}
}
}
/// A reference to a specific key/value pair or edge within a node. The `Node` parameter
/// must be a `NodeRef`, while the `Type` can either be `KV` (signifying a handle on a key/value
/// pair) or `Edge` (signifying a handle on an edge).
///
/// Note that even `Leaf` nodes can have `Edge` handles. Instead of representing a pointer to
/// a child node, these represent the spaces where child pointers would go between the key/value
/// pairs. For example, in a node with length 2, there would be 3 possible edge locations - one
/// to the left of the node, one between the two pairs, and one at the right of the node.
pub struct Handle<Node, Type> {
node: Node,
idx: usize,
_marker: PhantomData<Type>,
}
impl<Node: Copy, Type> Copy for Handle<Node, Type> {}
// We don't need the full generality of `#[derive(Clone)]`, as the only time `Node` will be
// `Clone`able is when it is an immutable reference and therefore `Copy`.
impl<Node: Copy, Type> Clone for Handle<Node, Type> {
fn clone(&self) -> Self {
*self
}
}
impl<Node, Type> Handle<Node, Type> {
/// Retrieves the node that contains the edge or key/value pair this handle points to.
pub fn into_node(self) -> Node {
self.node
}
/// Returns the position of this handle in the node.
pub fn idx(&self) -> usize {
self.idx
}
}
impl<BorrowType, K, V, NodeType> Handle<NodeRef<BorrowType, K, V, NodeType>, marker::KV> {
/// Creates a new handle to a key/value pair in `node`.
/// Unsafe because the caller must ensure that `idx < node.len()`.
pub unsafe fn new_kv(node: NodeRef<BorrowType, K, V, NodeType>, idx: usize) -> Self {
debug_assert!(idx < node.len());
Handle { node, idx, _marker: PhantomData }
}
pub fn left_edge(self) -> Handle<NodeRef<BorrowType, K, V, NodeType>, marker::Edge> {
unsafe { Handle::new_edge(self.node, self.idx) }
}
pub fn right_edge(self) -> Handle<NodeRef<BorrowType, K, V, NodeType>, marker::Edge> {
unsafe { Handle::new_edge(self.node, self.idx + 1) }
}
}
impl<BorrowType, K, V, NodeType> NodeRef<BorrowType, K, V, NodeType> {
/// Could be a public implementation of PartialEq, but only used in this module.
fn eq(&self, other: &Self) -> bool {
let Self { node, height, _marker: _ } = self;
if *node == other.node {
debug_assert_eq!(*height, other.height);
true
} else {
false
}
}
}
impl<BorrowType, K, V, NodeType, HandleType> PartialEq
for Handle<NodeRef<BorrowType, K, V, NodeType>, HandleType>
{
fn eq(&self, other: &Self) -> bool {
let Self { node, idx, _marker: _ } = self;
node.eq(&other.node) && *idx == other.idx
}
}
impl<BorrowType, K, V, NodeType, HandleType> PartialOrd
for Handle<NodeRef<BorrowType, K, V, NodeType>, HandleType>
{
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
let Self { node, idx, _marker: _ } = self;
if node.eq(&other.node) { Some(idx.cmp(&other.idx)) } else { None }
}
}
impl<BorrowType, K, V, NodeType, HandleType>
Handle<NodeRef<BorrowType, K, V, NodeType>, HandleType>
{
/// Temporarily takes out another, immutable handle on the same location.
pub fn reborrow(&self) -> Handle<NodeRef<marker::Immut<'_>, K, V, NodeType>, HandleType> {
// We can't use Handle::new_kv or Handle::new_edge because we don't know our type
Handle { node: self.node.reborrow(), idx: self.idx, _marker: PhantomData }
}
}
impl<'a, K, V, NodeType, HandleType> Handle<NodeRef<marker::Mut<'a>, K, V, NodeType>, HandleType> {
/// Temporarily takes out another, mutable handle on the same location. Beware, as
/// this method is very dangerous, doubly so since it may not immediately appear
/// dangerous.
///
/// For details, see `NodeRef::reborrow_mut`.
pub unsafe fn reborrow_mut(
&mut self,
) -> Handle<NodeRef<marker::Mut<'_>, K, V, NodeType>, HandleType> {
// We can't use Handle::new_kv or Handle::new_edge because we don't know our type
Handle { node: unsafe { self.node.reborrow_mut() }, idx: self.idx, _marker: PhantomData }
}
}
impl<BorrowType, K, V, NodeType> Handle<NodeRef<BorrowType, K, V, NodeType>, marker::Edge> {
/// Creates a new handle to an edge in `node`.
/// Unsafe because the caller must ensure that `idx <= node.len()`.
pub unsafe fn new_edge(node: NodeRef<BorrowType, K, V, NodeType>, idx: usize) -> Self {
debug_assert!(idx <= node.len());
Handle { node, idx, _marker: PhantomData }
}
pub fn left_kv(self) -> Result<Handle<NodeRef<BorrowType, K, V, NodeType>, marker::KV>, Self> {
if self.idx > 0 {
Ok(unsafe { Handle::new_kv(self.node, self.idx - 1) })
} else {
Err(self)
}
}
pub fn right_kv(self) -> Result<Handle<NodeRef<BorrowType, K, V, NodeType>, marker::KV>, Self> {
if self.idx < self.node.len() {
Ok(unsafe { Handle::new_kv(self.node, self.idx) })
} else {
Err(self)
}
}
}
enum InsertionPlace {
Left(usize),
Right(usize),
}
/// Given an edge index where we want to insert into a node filled to capacity,
/// computes a sensible KV index of a split point and where to perform the insertion.
/// The goal of the split point is for its key and value to end up in a parent node;
/// the keys, values and edges to the left of the split point become the left child;
/// the keys, values and edges to the right of the split point become the right child.
fn splitpoint(edge_idx: usize) -> (usize, InsertionPlace) {
debug_assert!(edge_idx <= CAPACITY);
// Rust issue #74834 tries to explain these symmetric rules.
match edge_idx {
0..EDGE_IDX_LEFT_OF_CENTER => (KV_IDX_CENTER - 1, InsertionPlace::Left(edge_idx)),
EDGE_IDX_LEFT_OF_CENTER => (KV_IDX_CENTER, InsertionPlace::Left(edge_idx)),
EDGE_IDX_RIGHT_OF_CENTER => (KV_IDX_CENTER, InsertionPlace::Right(0)),
_ => (KV_IDX_CENTER + 1, InsertionPlace::Right(edge_idx - (KV_IDX_CENTER + 1 + 1))),
}
}
impl<'a, K: 'a, V: 'a> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::Edge> {
/// Inserts a new key/value pair between the key/value pairs to the right and left of
/// this edge. This method assumes that there is enough space in the node for the new
/// pair to fit.
///
/// The returned pointer points to the inserted value.
fn insert_fit(&mut self, key: K, val: V) -> *mut V {
debug_assert!(self.node.len() < CAPACITY);
unsafe {
slice_insert(self.node.keys_mut(), self.idx, key);
slice_insert(self.node.vals_mut(), self.idx, val);
self.node.as_leaf_mut().len += 1;
self.node.val_mut_at(self.idx)
}
}
}
impl<'a, K: 'a, V: 'a> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::Edge> {
/// Inserts a new key/value pair between the key/value pairs to the right and left of
/// this edge. This method splits the node if there isn't enough room.
///
/// The returned pointer points to the inserted value.
fn insert(mut self, key: K, val: V) -> (InsertResult<'a, K, V, marker::Leaf>, *mut V) {
if self.node.len() < CAPACITY {
let val_ptr = self.insert_fit(key, val);
let kv = unsafe { Handle::new_kv(self.node, self.idx) };
(InsertResult::Fit(kv), val_ptr)
} else {
let (middle_kv_idx, insertion) = splitpoint(self.idx);
let middle = unsafe { Handle::new_kv(self.node, middle_kv_idx) };
let (mut left, k, v, mut right) = middle.split();
let mut insertion_edge = match insertion {
InsertionPlace::Left(insert_idx) => unsafe {
Handle::new_edge(left.reborrow_mut(), insert_idx)
},
InsertionPlace::Right(insert_idx) => unsafe {
Handle::new_edge(right.leaf_node_as_mut(), insert_idx)
},
};
let val_ptr = insertion_edge.insert_fit(key, val);
(InsertResult::Split(SplitResult { left: left.forget_type(), k, v, right }), val_ptr)
}
}
}
impl<'a, K, V> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Internal>, marker::Edge> {
/// Fixes the parent pointer and index in the child node below this edge. This is useful
/// when the ordering of edges has been changed, such as in the various `insert` methods.
fn correct_parent_link(mut self) {
let idx = self.idx as u16;
let ptr = NonNull::new(self.node.as_internal_mut());
let mut child = self.descend();
child.as_leaf_mut().parent = ptr;
child.as_leaf_mut().parent_idx.write(idx);
}
}
impl<'a, K: 'a, V: 'a> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Internal>, marker::Edge> {
/// Inserts a new key/value pair and an edge that will go to the right of that new pair
/// between this edge and the key/value pair to the right of this edge. This method assumes
/// that there is enough space in the node for the new pair to fit.
fn insert_fit(&mut self, key: K, val: V, edge: Root<K, V>) {
debug_assert!(self.node.len() < CAPACITY);
debug_assert!(edge.height == self.node.height - 1);
unsafe {
slice_insert(self.node.keys_mut(), self.idx, key);
slice_insert(self.node.vals_mut(), self.idx, val);
slice_insert(self.node.edges_mut(), self.idx + 1, edge.node);
self.node.as_leaf_mut().len += 1;
self.node.correct_childrens_parent_links((self.idx + 1)..=self.node.len());
}
}
/// Inserts a new key/value pair and an edge that will go to the right of that new pair
/// between this edge and the key/value pair to the right of this edge. This method splits
/// the node if there isn't enough room.
fn insert(
mut self,
key: K,
val: V,
edge: Root<K, V>,
) -> InsertResult<'a, K, V, marker::Internal> {
assert!(edge.height == self.node.height - 1);
if self.node.len() < CAPACITY {
self.insert_fit(key, val, edge);
let kv = unsafe { Handle::new_kv(self.node, self.idx) };
InsertResult::Fit(kv)
} else {
let (middle_kv_idx, insertion) = splitpoint(self.idx);
let middle = unsafe { Handle::new_kv(self.node, middle_kv_idx) };
let (mut left, k, v, mut right) = middle.split();
let mut insertion_edge = match insertion {
InsertionPlace::Left(insert_idx) => unsafe {
Handle::new_edge(left.reborrow_mut(), insert_idx)
},
InsertionPlace::Right(insert_idx) => unsafe {
Handle::new_edge(right.internal_node_as_mut(), insert_idx)
},
};
insertion_edge.insert_fit(key, val, edge);
InsertResult::Split(SplitResult { left: left.forget_type(), k, v, right })
}
}
}
impl<'a, K: 'a, V: 'a> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::Edge> {
/// Inserts a new key/value pair between the key/value pairs to the right and left of
/// this edge. This method splits the node if there isn't enough room, and tries to
/// insert the split off portion into the parent node recursively, until the root is reached.
///
/// If the returned result is a `Fit`, its handle's node can be this edge's node or an ancestor.
/// If the returned result is a `Split`, the `left` field will be the root node.
/// The returned pointer points to the inserted value.
pub fn insert_recursing(
self,
key: K,
value: V,
) -> (InsertResult<'a, K, V, marker::LeafOrInternal>, *mut V) {
let (mut split, val_ptr) = match self.insert(key, value) {
(InsertResult::Fit(handle), ptr) => {
return (InsertResult::Fit(handle.forget_node_type()), ptr);
}
(InsertResult::Split(split), val_ptr) => (split, val_ptr),
};
loop {
split = match split.left.ascend() {
Ok(parent) => match parent.insert(split.k, split.v, split.right) {
InsertResult::Fit(handle) => {
return (InsertResult::Fit(handle.forget_node_type()), val_ptr);
}
InsertResult::Split(split) => split,
},
Err(root) => {
return (InsertResult::Split(SplitResult { left: root, ..split }), val_ptr);
}
};
}
}
}
impl<BorrowType, K, V> Handle<NodeRef<BorrowType, K, V, marker::Internal>, marker::Edge> {
/// Finds the node pointed to by this edge.
///
/// `edge.descend().ascend().unwrap()` and `node.ascend().unwrap().descend()` should
/// both, upon success, do nothing.
pub fn descend(self) -> NodeRef<BorrowType, K, V, marker::LeafOrInternal> {
// We need to use raw pointers to nodes because, if BorrowType is
// marker::ValMut, there might be outstanding mutable references to
// values that we must not invalidate. There's no worry accessing the
// height field because that value is copied. Beware that, once the
// node pointer is dereferenced, we access the edges array with a
// reference (Rust issue #73987) and invalidate any other references
// to or inside the array, should any be around.
let internal_node = self.node.as_internal_ptr();
NodeRef {
height: self.node.height - 1,
node: unsafe { (&*(*internal_node).edges.get_unchecked(self.idx).as_ptr()).as_ptr() },
_marker: PhantomData,
}
}
}
impl<'a, K: 'a, V: 'a, NodeType> Handle<NodeRef<marker::Immut<'a>, K, V, NodeType>, marker::KV> {
pub fn into_kv(self) -> (&'a K, &'a V) {
(unsafe { self.node.into_key_at(self.idx) }, unsafe { self.node.into_val_at(self.idx) })
}
}
impl<'a, K: 'a, V: 'a, NodeType> Handle<NodeRef<marker::Mut<'a>, K, V, NodeType>, marker::KV> {
pub fn into_key_mut(self) -> &'a mut K {
unsafe { self.node.into_key_mut_at(self.idx) }
}
pub fn into_val_mut(self) -> &'a mut V {
unsafe { self.node.into_val_mut_at(self.idx) }
}
}
impl<'a, K, V, NodeType> Handle<NodeRef<marker::ValMut<'a>, K, V, NodeType>, marker::KV> {
pub fn into_kv_valmut(self) -> (&'a K, &'a mut V) {
unsafe { self.node.into_key_val_mut_at(self.idx) }
}
}
impl<'a, K: 'a, V: 'a, NodeType> Handle<NodeRef<marker::Mut<'a>, K, V, NodeType>, marker::KV> {
pub fn kv_mut(&mut self) -> (&mut K, &mut V) {
// We cannot call into_key_mut_at and into_val_mut_at, because calling the second one
// invalidates the reference returned by the first.
let leaf = self.node.as_leaf_mut();
let key = unsafe { leaf.keys.get_unchecked_mut(self.idx).assume_init_mut() };
let val = unsafe { leaf.vals.get_unchecked_mut(self.idx).assume_init_mut() };
(key, val)
}
}
impl<'a, K: 'a, V: 'a, NodeType> Handle<NodeRef<marker::Mut<'a>, K, V, NodeType>, marker::KV> {
/// Helps implementations of `split` for a particular `NodeType`,
/// by calculating the length of the new node.
fn split_new_node_len(&self) -> usize {
debug_assert!(self.idx < self.node.len());
self.node.len() - self.idx - 1
}
/// Helps implementations of `split` for a particular `NodeType`,
/// by taking care of leaf data.
fn split_leaf_data(&mut self, new_node: &mut LeafNode<K, V>) -> (K, V) {
let new_len = self.split_new_node_len();
unsafe {
let k = ptr::read(self.node.key_at(self.idx));
let v = ptr::read(self.node.val_at(self.idx));
ptr::copy_nonoverlapping(
self.node.key_at(self.idx + 1),
MaybeUninit::slice_as_mut_ptr(&mut new_node.keys),
new_len,
);
ptr::copy_nonoverlapping(
self.node.val_at(self.idx + 1),
MaybeUninit::slice_as_mut_ptr(&mut new_node.vals),
new_len,
);
self.node.as_leaf_mut().len = self.idx as u16;
new_node.len = new_len as u16;
(k, v)
}
}
}
impl<'a, K: 'a, V: 'a> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::KV> {
/// Splits the underlying node into three parts:
///
/// - The node is truncated to only contain the key/value pairs to the left of
/// this handle.
/// - The key and value pointed to by this handle are extracted.
/// - All the key/value pairs to the right of this handle are put into a newly
/// allocated node.
pub fn split(mut self) -> (NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, K, V, Root<K, V>) {
unsafe {
let mut new_node = Box::new(LeafNode::new());
let (k, v) = self.split_leaf_data(&mut new_node);
let right = Root { node: BoxedNode::from_leaf(new_node), height: 0 };
(self.node, k, v, right)
}
}
/// Removes the key/value pair pointed to by this handle and returns it, along with the edge
/// that the key/value pair collapsed into.
pub fn remove(
mut self,
) -> ((K, V), Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::Edge>) {
unsafe {
let k = slice_remove(self.node.keys_mut(), self.idx);
let v = slice_remove(self.node.vals_mut(), self.idx);
self.node.as_leaf_mut().len -= 1;
((k, v), self.left_edge())
}
}
}
impl<'a, K, V> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Internal>, marker::KV> {
/// Returns `true` if it is valid to call `.merge()`, i.e., whether there is enough room in
/// a node to hold the combination of the nodes to the left and right of this handle along
/// with the key/value pair at this handle.
pub fn can_merge(&self) -> bool {
(self.reborrow().left_edge().descend().len()
+ self.reborrow().right_edge().descend().len()
+ 1)
<= CAPACITY
}
}
impl<'a, K: 'a, V: 'a> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Internal>, marker::KV> {
/// Splits the underlying node into three parts:
///
/// - The node is truncated to only contain the edges and key/value pairs to the
/// left of this handle.
/// - The key and value pointed to by this handle are extracted.
/// - All the edges and key/value pairs to the right of this handle are put into
/// a newly allocated node.
pub fn split(mut self) -> (NodeRef<marker::Mut<'a>, K, V, marker::Internal>, K, V, Root<K, V>) {
unsafe {
let mut new_node = Box::new(InternalNode::new());
// Move edges out before reducing length:
let new_len = self.split_new_node_len();
ptr::copy_nonoverlapping(
self.node.edge_at(self.idx + 1),
MaybeUninit::slice_as_mut_ptr(&mut new_node.edges),
new_len + 1,
);
let (k, v) = self.split_leaf_data(&mut new_node.data);
let height = self.node.height;
let mut right = Root { node: BoxedNode::from_internal(new_node), height };
right.internal_node_as_mut().correct_childrens_parent_links(0..=new_len);
(self.node, k, v, right)
}
}
/// Combines the node immediately to the left of this handle, the key/value pair pointed
/// to by this handle, and the node immediately to the right of this handle into one new
/// child of the underlying node, returning an edge referencing that new child.
///
/// Panics unless this edge `.can_merge()`.
pub fn merge(
mut self,
) -> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Internal>, marker::Edge> {
let self1 = unsafe { ptr::read(&self) };
let self2 = unsafe { ptr::read(&self) };
let mut left_node = self1.left_edge().descend();
let left_len = left_node.len();
let right_node = self2.right_edge().descend();
let right_len = right_node.len();
assert!(left_len + right_len < CAPACITY);
unsafe {
ptr::write(
left_node.keys_mut().get_unchecked_mut(left_len),
slice_remove(self.node.keys_mut(), self.idx),
);
ptr::copy_nonoverlapping(
right_node.key_at(0),
left_node.keys_mut().as_mut_ptr().add(left_len + 1),
right_len,
);
ptr::write(
left_node.vals_mut().get_unchecked_mut(left_len),
slice_remove(self.node.vals_mut(), self.idx),
);
ptr::copy_nonoverlapping(
right_node.val_at(0),
left_node.vals_mut().as_mut_ptr().add(left_len + 1),
right_len,
);
slice_remove(&mut self.node.edges_mut(), self.idx + 1);
let self_len = self.node.len();
self.node.correct_childrens_parent_links(self.idx + 1..self_len);
self.node.as_leaf_mut().len -= 1;
left_node.as_leaf_mut().len += right_len as u16 + 1;
if self.node.height > 1 {
// SAFETY: the height of the nodes being merged is one below the height
// of the node of this edge, thus above zero, so they are internal.
let mut left_node = left_node.cast_to_internal_unchecked();
let right_node = right_node.cast_to_internal_unchecked();
ptr::copy_nonoverlapping(
right_node.edge_at(0),
left_node.edges_mut().as_mut_ptr().add(left_len + 1),
right_len + 1,
);
left_node.correct_childrens_parent_links(left_len + 1..=left_len + 1 + right_len);
Global.dealloc(right_node.node.cast(), Layout::new::<InternalNode<K, V>>());
} else {
Global.dealloc(right_node.node.cast(), Layout::new::<LeafNode<K, V>>());
}
Handle::new_edge(self.node, self.idx)
}
}
/// This removes a key/value pair from the left child and places it in the key/value storage
/// pointed to by this handle while pushing the old key/value pair of this handle into the right
/// child.
pub fn steal_left(&mut self) {
unsafe {
let (k, v, edge) = self.reborrow_mut().left_edge().descend().pop();
let k = mem::replace(self.kv_mut().0, k);
let v = mem::replace(self.kv_mut().1, v);
match self.reborrow_mut().right_edge().descend().force() {
ForceResult::Leaf(mut leaf) => leaf.push_front(k, v),
ForceResult::Internal(mut internal) => internal.push_front(k, v, edge.unwrap()),
}
}
}
/// This removes a key/value pair from the right child and places it in the key/value storage
/// pointed to by this handle while pushing the old key/value pair of this handle into the left
/// child.
pub fn steal_right(&mut self) {
unsafe {
let (k, v, edge) = self.reborrow_mut().right_edge().descend().pop_front();
let k = mem::replace(self.kv_mut().0, k);
let v = mem::replace(self.kv_mut().1, v);
match self.reborrow_mut().left_edge().descend().force() {
ForceResult::Leaf(mut leaf) => leaf.push(k, v),
ForceResult::Internal(mut internal) => internal.push(k, v, edge.unwrap()),
}
}
}
/// This does stealing similar to `steal_left` but steals multiple elements at once.
pub fn bulk_steal_left(&mut self, count: usize) {
unsafe {
let mut left_node = ptr::read(self).left_edge().descend();
let left_len = left_node.len();
let mut right_node = ptr::read(self).right_edge().descend();
let right_len = right_node.len();
// Make sure that we may steal safely.
assert!(right_len + count <= CAPACITY);
assert!(left_len >= count);
let new_left_len = left_len - count;
// Move data.
{
let left_kv = left_node.reborrow_mut().into_kv_pointers_mut();
let right_kv = right_node.reborrow_mut().into_kv_pointers_mut();
let parent_kv = {
let kv = self.kv_mut();
(kv.0 as *mut K, kv.1 as *mut V)
};
// Make room for stolen elements in the right child.
ptr::copy(right_kv.0, right_kv.0.add(count), right_len);
ptr::copy(right_kv.1, right_kv.1.add(count), right_len);
// Move elements from the left child to the right one.
move_kv(left_kv, new_left_len + 1, right_kv, 0, count - 1);
// Move parent's key/value pair to the right child.
move_kv(parent_kv, 0, right_kv, count - 1, 1);
// Move the left-most stolen pair to the parent.
move_kv(left_kv, new_left_len, parent_kv, 0, 1);
}
left_node.as_leaf_mut().len -= count as u16;
right_node.as_leaf_mut().len += count as u16;
match (left_node.force(), right_node.force()) {
(ForceResult::Internal(left), ForceResult::Internal(mut right)) => {
// Make room for stolen edges.
let right_edges = right.reborrow_mut().as_internal_mut().edges.as_mut_ptr();
ptr::copy(right_edges, right_edges.add(count), right_len + 1);
right.correct_childrens_parent_links(count..count + right_len + 1);
move_edges(left, new_left_len + 1, right, 0, count);
}
(ForceResult::Leaf(_), ForceResult::Leaf(_)) => {}
_ => unreachable!(),
}
}
}
/// The symmetric clone of `bulk_steal_left`.
pub fn bulk_steal_right(&mut self, count: usize) {
unsafe {
let mut left_node = ptr::read(self).left_edge().descend();
let left_len = left_node.len();
let mut right_node = ptr::read(self).right_edge().descend();
let right_len = right_node.len();
// Make sure that we may steal safely.
assert!(left_len + count <= CAPACITY);
assert!(right_len >= count);
let new_right_len = right_len - count;
// Move data.
{
let left_kv = left_node.reborrow_mut().into_kv_pointers_mut();
let right_kv = right_node.reborrow_mut().into_kv_pointers_mut();
let parent_kv = {
let kv = self.kv_mut();
(kv.0 as *mut K, kv.1 as *mut V)
};
// Move parent's key/value pair to the left child.
move_kv(parent_kv, 0, left_kv, left_len, 1);
// Move elements from the right child to the left one.
move_kv(right_kv, 0, left_kv, left_len + 1, count - 1);
// Move the right-most stolen pair to the parent.
move_kv(right_kv, count - 1, parent_kv, 0, 1);
// Fix right indexing
ptr::copy(right_kv.0.add(count), right_kv.0, new_right_len);
ptr::copy(right_kv.1.add(count), right_kv.1, new_right_len);
}
left_node.as_leaf_mut().len += count as u16;
right_node.as_leaf_mut().len -= count as u16;
match (left_node.force(), right_node.force()) {
(ForceResult::Internal(left), ForceResult::Internal(mut right)) => {
move_edges(right.reborrow_mut(), 0, left, left_len + 1, count);
// Fix right indexing.
let right_edges = right.reborrow_mut().as_internal_mut().edges.as_mut_ptr();
ptr::copy(right_edges.add(count), right_edges, new_right_len + 1);
right.correct_childrens_parent_links(0..=new_right_len);
}
(ForceResult::Leaf(_), ForceResult::Leaf(_)) => {}
_ => unreachable!(),
}
}
}
}
unsafe fn move_kv<K, V>(
source: (*mut K, *mut V),
source_offset: usize,
dest: (*mut K, *mut V),
dest_offset: usize,
count: usize,
) {
unsafe {
ptr::copy_nonoverlapping(source.0.add(source_offset), dest.0.add(dest_offset), count);
ptr::copy_nonoverlapping(source.1.add(source_offset), dest.1.add(dest_offset), count);
}
}
// Source and destination must have the same height.
unsafe fn move_edges<K, V>(
mut source: NodeRef<marker::Mut<'_>, K, V, marker::Internal>,
source_offset: usize,
mut dest: NodeRef<marker::Mut<'_>, K, V, marker::Internal>,
dest_offset: usize,
count: usize,
) {
let source_ptr = source.as_internal().edges.as_ptr();
let dest_ptr = dest.as_internal_mut().edges.as_mut_ptr();
unsafe {
ptr::copy_nonoverlapping(source_ptr.add(source_offset), dest_ptr.add(dest_offset), count);
dest.correct_childrens_parent_links(dest_offset..dest_offset + count);
}
}
impl<BorrowType, K, V> NodeRef<BorrowType, K, V, marker::Leaf> {
/// Removes any static information asserting that this node is a `Leaf` node.
pub fn forget_type(self) -> NodeRef<BorrowType, K, V, marker::LeafOrInternal> {
NodeRef { height: self.height, node: self.node, _marker: PhantomData }
}
}
impl<BorrowType, K, V> NodeRef<BorrowType, K, V, marker::Internal> {
/// Removes any static information asserting that this node is an `Internal` node.
pub fn forget_type(self) -> NodeRef<BorrowType, K, V, marker::LeafOrInternal> {
NodeRef { height: self.height, node: self.node, _marker: PhantomData }
}
}
impl<BorrowType, K, V> Handle<NodeRef<BorrowType, K, V, marker::Leaf>, marker::Edge> {
pub fn forget_node_type(
self,
) -> Handle<NodeRef<BorrowType, K, V, marker::LeafOrInternal>, marker::Edge> {
unsafe { Handle::new_edge(self.node.forget_type(), self.idx) }
}
}
impl<BorrowType, K, V> Handle<NodeRef<BorrowType, K, V, marker::Internal>, marker::Edge> {
pub fn forget_node_type(
self,
) -> Handle<NodeRef<BorrowType, K, V, marker::LeafOrInternal>, marker::Edge> {
unsafe { Handle::new_edge(self.node.forget_type(), self.idx) }
}
}
impl<BorrowType, K, V> Handle<NodeRef<BorrowType, K, V, marker::Leaf>, marker::KV> {
pub fn forget_node_type(
self,
) -> Handle<NodeRef<BorrowType, K, V, marker::LeafOrInternal>, marker::KV> {
unsafe { Handle::new_kv(self.node.forget_type(), self.idx) }
}
}
impl<BorrowType, K, V> Handle<NodeRef<BorrowType, K, V, marker::Internal>, marker::KV> {
pub fn forget_node_type(
self,
) -> Handle<NodeRef<BorrowType, K, V, marker::LeafOrInternal>, marker::KV> {
unsafe { Handle::new_kv(self.node.forget_type(), self.idx) }
}
}
impl<BorrowType, K, V, HandleType>
Handle<NodeRef<BorrowType, K, V, marker::LeafOrInternal>, HandleType>
{
/// Checks whether the underlying node is an `Internal` node or a `Leaf` node.
pub fn force(
self,
) -> ForceResult<
Handle<NodeRef<BorrowType, K, V, marker::Leaf>, HandleType>,
Handle<NodeRef<BorrowType, K, V, marker::Internal>, HandleType>,
> {
match self.node.force() {
ForceResult::Leaf(node) => {
ForceResult::Leaf(Handle { node, idx: self.idx, _marker: PhantomData })
}
ForceResult::Internal(node) => {
ForceResult::Internal(Handle { node, idx: self.idx, _marker: PhantomData })
}
}
}
}
impl<'a, K, V> Handle<NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal>, marker::Edge> {
/// Move the suffix after `self` from one node to another one. `right` must be empty.
/// The first edge of `right` remains unchanged.
pub fn move_suffix(
&mut self,
right: &mut NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal>,
) {
unsafe {
let left_new_len = self.idx;
let mut left_node = self.reborrow_mut().into_node();
let right_new_len = left_node.len() - left_new_len;
let mut right_node = right.reborrow_mut();
assert!(right_node.len() == 0);
assert!(left_node.height == right_node.height);
if right_new_len > 0 {
let left_kv = left_node.reborrow_mut().into_kv_pointers_mut();
let right_kv = right_node.reborrow_mut().into_kv_pointers_mut();
move_kv(left_kv, left_new_len, right_kv, 0, right_new_len);
left_node.as_leaf_mut().len = left_new_len as u16;
right_node.as_leaf_mut().len = right_new_len as u16;
match (left_node.force(), right_node.force()) {
(ForceResult::Internal(left), ForceResult::Internal(right)) => {
move_edges(left, left_new_len + 1, right, 1, right_new_len);
}
(ForceResult::Leaf(_), ForceResult::Leaf(_)) => {}
_ => unreachable!(),
}
}
}
}
}
pub enum ForceResult<Leaf, Internal> {
Leaf(Leaf),
Internal(Internal),
}
/// Result of insertion, when a node needed to expand beyond its capacity.
/// Does not distinguish between `Leaf` and `Internal` because `Root` doesn't.
pub struct SplitResult<'a, K, V> {
// Altered node in existing tree with elements and edges that belong to the left of `k`.
pub left: NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal>,
// Some key and value split off, to be inserted elsewhere.
pub k: K,
pub v: V,
// Owned, unattached, new node with elements and edges that belong to the right of `k`.
pub right: Root<K, V>,
}
pub enum InsertResult<'a, K, V, Type> {
Fit(Handle<NodeRef<marker::Mut<'a>, K, V, Type>, marker::KV>),
Split(SplitResult<'a, K, V>),
}
pub mod marker {
use core::marker::PhantomData;
pub enum Leaf {}
pub enum Internal {}
pub enum LeafOrInternal {}
pub enum Owned {}
pub struct Immut<'a>(PhantomData<&'a ()>);
pub struct Mut<'a>(PhantomData<&'a mut ()>);
pub struct ValMut<'a>(PhantomData<&'a mut ()>);
pub enum KV {}
pub enum Edge {}
}
unsafe fn slice_insert<T>(slice: &mut [T], idx: usize, val: T) {
unsafe {
ptr::copy(slice.as_ptr().add(idx), slice.as_mut_ptr().add(idx + 1), slice.len() - idx);
ptr::write(slice.get_unchecked_mut(idx), val);
}
}
unsafe fn slice_remove<T>(slice: &mut [T], idx: usize) -> T {
unsafe {
let ret = ptr::read(slice.get_unchecked(idx));
ptr::copy(slice.as_ptr().add(idx + 1), slice.as_mut_ptr().add(idx), slice.len() - idx - 1);
ret
}
}
#[cfg(test)]
mod tests;