blob: 8212823a6dbc77ccaa76da806ff60fdd6bb6cd3f [file] [log] [blame]
use crate::infer::at::At;
use crate::infer::canonical::OriginalQueryValues;
use crate::infer::InferOk;
use rustc_middle::ty::subst::GenericArg;
use rustc_middle::ty::{self, Ty, TyCtxt};
pub use rustc_middle::traits::query::{DropckOutlivesResult, DtorckConstraint};
pub trait AtExt<'tcx> {
fn dropck_outlives(&self, ty: Ty<'tcx>) -> InferOk<'tcx, Vec<GenericArg<'tcx>>>;
}
impl<'cx, 'tcx> AtExt<'tcx> for At<'cx, 'tcx> {
/// Given a type `ty` of some value being dropped, computes a set
/// of "kinds" (types, regions) that must be outlive the execution
/// of the destructor. These basically correspond to data that the
/// destructor might access. This is used during regionck to
/// impose "outlives" constraints on any lifetimes referenced
/// within.
///
/// The rules here are given by the "dropck" RFCs, notably [#1238]
/// and [#1327]. This is a fixed-point computation, where we
/// explore all the data that will be dropped (transitively) when
/// a value of type `ty` is dropped. For each type T that will be
/// dropped and which has a destructor, we must assume that all
/// the types/regions of T are live during the destructor, unless
/// they are marked with a special attribute (`#[may_dangle]`).
///
/// [#1238]: https://github.com/rust-lang/rfcs/blob/master/text/1238-nonparametric-dropck.md
/// [#1327]: https://github.com/rust-lang/rfcs/blob/master/text/1327-dropck-param-eyepatch.md
fn dropck_outlives(&self, ty: Ty<'tcx>) -> InferOk<'tcx, Vec<GenericArg<'tcx>>> {
debug!("dropck_outlives(ty={:?}, param_env={:?})", ty, self.param_env,);
// Quick check: there are a number of cases that we know do not require
// any destructor.
let tcx = self.infcx.tcx;
if trivial_dropck_outlives(tcx, ty) {
return InferOk { value: vec![], obligations: vec![] };
}
let mut orig_values = OriginalQueryValues::default();
let c_ty = self.infcx.canonicalize_query(&self.param_env.and(ty), &mut orig_values);
let span = self.cause.span;
debug!("c_ty = {:?}", c_ty);
if let Ok(result) = &tcx.dropck_outlives(c_ty) {
if result.is_proven() {
if let Ok(InferOk { value, obligations }) =
self.infcx.instantiate_query_response_and_region_obligations(
self.cause,
self.param_env,
&orig_values,
result,
)
{
let ty = self.infcx.resolve_vars_if_possible(&ty);
let kinds = value.into_kinds_reporting_overflows(tcx, span, ty);
return InferOk { value: kinds, obligations };
}
}
}
// Errors and ambiuity in dropck occur in two cases:
// - unresolved inference variables at the end of typeck
// - non well-formed types where projections cannot be resolved
// Either of these should have created an error before.
tcx.sess.delay_span_bug(span, "dtorck encountered internal error");
InferOk { value: vec![], obligations: vec![] }
}
}
/// This returns true if the type `ty` is "trivial" for
/// dropck-outlives -- that is, if it doesn't require any types to
/// outlive. This is similar but not *quite* the same as the
/// `needs_drop` test in the compiler already -- that is, for every
/// type T for which this function return true, needs-drop would
/// return `false`. But the reverse does not hold: in particular,
/// `needs_drop` returns false for `PhantomData`, but it is not
/// trivial for dropck-outlives.
///
/// Note also that `needs_drop` requires a "global" type (i.e., one
/// with erased regions), but this function does not.
pub fn trivial_dropck_outlives<'tcx>(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> bool {
match ty.kind() {
// None of these types have a destructor and hence they do not
// require anything in particular to outlive the dtor's
// execution.
ty::Infer(ty::FreshIntTy(_))
| ty::Infer(ty::FreshFloatTy(_))
| ty::Bool
| ty::Int(_)
| ty::Uint(_)
| ty::Float(_)
| ty::Never
| ty::FnDef(..)
| ty::FnPtr(_)
| ty::Char
| ty::GeneratorWitness(..)
| ty::RawPtr(_)
| ty::Ref(..)
| ty::Str
| ty::Foreign(..)
| ty::Error(_) => true,
// [T; N] and [T] have same properties as T.
ty::Array(ty, _) | ty::Slice(ty) => trivial_dropck_outlives(tcx, ty),
// (T1..Tn) and closures have same properties as T1..Tn --
// check if *any* of those are trivial.
ty::Tuple(ref tys) => tys.iter().all(|t| trivial_dropck_outlives(tcx, t.expect_ty())),
ty::Closure(_, ref substs) => {
trivial_dropck_outlives(tcx, substs.as_closure().tupled_upvars_ty())
}
ty::Adt(def, _) => {
if Some(def.did) == tcx.lang_items().manually_drop() {
// `ManuallyDrop` never has a dtor.
true
} else {
// Other types might. Moreover, PhantomData doesn't
// have a dtor, but it is considered to own its
// content, so it is non-trivial. Unions can have `impl Drop`,
// and hence are non-trivial as well.
false
}
}
// The following *might* require a destructor: needs deeper inspection.
ty::Dynamic(..)
| ty::Projection(..)
| ty::Param(_)
| ty::Opaque(..)
| ty::Placeholder(..)
| ty::Infer(_)
| ty::Bound(..)
| ty::Generator(..) => false,
}
}