blob: 827b1d35f1c2296ddc69fd31fd26b73ac038aac5 [file] [log] [blame]
//! Code for projecting associated types out of trait references.
use super::specialization_graph;
use super::translate_substs;
use super::util;
use super::MismatchedProjectionTypes;
use super::Obligation;
use super::ObligationCause;
use super::PredicateObligation;
use super::Selection;
use super::SelectionContext;
use super::SelectionError;
use super::{
ImplSourceClosureData, ImplSourceDiscriminantKindData, ImplSourceFnPointerData,
ImplSourceGeneratorData, ImplSourceUserDefinedData,
};
use super::{Normalized, NormalizedTy, ProjectionCacheEntry, ProjectionCacheKey};
use crate::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
use crate::infer::{InferCtxt, InferOk, LateBoundRegionConversionTime};
use crate::traits::error_reporting::InferCtxtExt;
use rustc_data_structures::stack::ensure_sufficient_stack;
use rustc_errors::ErrorReported;
use rustc_hir::def_id::DefId;
use rustc_hir::lang_items::LangItem;
use rustc_infer::infer::resolve::OpportunisticRegionResolver;
use rustc_middle::ty::fold::{TypeFoldable, TypeFolder};
use rustc_middle::ty::subst::Subst;
use rustc_middle::ty::{self, ToPolyTraitRef, ToPredicate, Ty, TyCtxt, WithConstness};
use rustc_span::symbol::sym;
pub use rustc_middle::traits::Reveal;
pub type PolyProjectionObligation<'tcx> = Obligation<'tcx, ty::PolyProjectionPredicate<'tcx>>;
pub type ProjectionObligation<'tcx> = Obligation<'tcx, ty::ProjectionPredicate<'tcx>>;
pub type ProjectionTyObligation<'tcx> = Obligation<'tcx, ty::ProjectionTy<'tcx>>;
pub(super) struct InProgress;
/// When attempting to resolve `<T as TraitRef>::Name` ...
#[derive(Debug)]
pub enum ProjectionTyError<'tcx> {
/// ...we found multiple sources of information and couldn't resolve the ambiguity.
TooManyCandidates,
/// ...an error occurred matching `T : TraitRef`
TraitSelectionError(SelectionError<'tcx>),
}
#[derive(PartialEq, Eq, Debug)]
enum ProjectionTyCandidate<'tcx> {
/// From a where-clause in the env or object type
ParamEnv(ty::PolyProjectionPredicate<'tcx>),
/// From the definition of `Trait` when you have something like <<A as Trait>::B as Trait2>::C
TraitDef(ty::PolyProjectionPredicate<'tcx>),
/// Bounds specified on an object type
Object(ty::PolyProjectionPredicate<'tcx>),
/// From a "impl" (or a "pseudo-impl" returned by select)
Select(Selection<'tcx>),
}
enum ProjectionTyCandidateSet<'tcx> {
None,
Single(ProjectionTyCandidate<'tcx>),
Ambiguous,
Error(SelectionError<'tcx>),
}
impl<'tcx> ProjectionTyCandidateSet<'tcx> {
fn mark_ambiguous(&mut self) {
*self = ProjectionTyCandidateSet::Ambiguous;
}
fn mark_error(&mut self, err: SelectionError<'tcx>) {
*self = ProjectionTyCandidateSet::Error(err);
}
// Returns true if the push was successful, or false if the candidate
// was discarded -- this could be because of ambiguity, or because
// a higher-priority candidate is already there.
fn push_candidate(&mut self, candidate: ProjectionTyCandidate<'tcx>) -> bool {
use self::ProjectionTyCandidate::*;
use self::ProjectionTyCandidateSet::*;
// This wacky variable is just used to try and
// make code readable and avoid confusing paths.
// It is assigned a "value" of `()` only on those
// paths in which we wish to convert `*self` to
// ambiguous (and return false, because the candidate
// was not used). On other paths, it is not assigned,
// and hence if those paths *could* reach the code that
// comes after the match, this fn would not compile.
let convert_to_ambiguous;
match self {
None => {
*self = Single(candidate);
return true;
}
Single(current) => {
// Duplicates can happen inside ParamEnv. In the case, we
// perform a lazy deduplication.
if current == &candidate {
return false;
}
// Prefer where-clauses. As in select, if there are multiple
// candidates, we prefer where-clause candidates over impls. This
// may seem a bit surprising, since impls are the source of
// "truth" in some sense, but in fact some of the impls that SEEM
// applicable are not, because of nested obligations. Where
// clauses are the safer choice. See the comment on
// `select::SelectionCandidate` and #21974 for more details.
match (current, candidate) {
(ParamEnv(..), ParamEnv(..)) => convert_to_ambiguous = (),
(ParamEnv(..), _) => return false,
(_, ParamEnv(..)) => unreachable!(),
(_, _) => convert_to_ambiguous = (),
}
}
Ambiguous | Error(..) => {
return false;
}
}
// We only ever get here when we moved from a single candidate
// to ambiguous.
let () = convert_to_ambiguous;
*self = Ambiguous;
false
}
}
/// Evaluates constraints of the form:
///
/// for<...> <T as Trait>::U == V
///
/// If successful, this may result in additional obligations. Also returns
/// the projection cache key used to track these additional obligations.
///
/// ## Returns
///
/// - `Err(_)`: the projection can be normalized, but is not equal to the
/// expected type.
/// - `Ok(Err(InProgress))`: this is called recursively while normalizing
/// the same projection.
/// - `Ok(Ok(None))`: The projection cannot be normalized due to ambiguity
/// (resolving some inference variables in the projection may fix this).
/// - `Ok(Ok(Some(obligations)))`: The projection bound holds subject to
/// the given obligations. If the projection cannot be normalized because
/// the required trait bound doesn't hold this returned with `obligations`
/// being a predicate that cannot be proven.
#[instrument(level = "debug", skip(selcx))]
pub(super) fn poly_project_and_unify_type<'cx, 'tcx>(
selcx: &mut SelectionContext<'cx, 'tcx>,
obligation: &PolyProjectionObligation<'tcx>,
) -> Result<
Result<Option<Vec<PredicateObligation<'tcx>>>, InProgress>,
MismatchedProjectionTypes<'tcx>,
> {
let infcx = selcx.infcx();
infcx.commit_if_ok(|_snapshot| {
let placeholder_predicate =
infcx.replace_bound_vars_with_placeholders(&obligation.predicate);
let placeholder_obligation = obligation.with(placeholder_predicate);
let result = project_and_unify_type(selcx, &placeholder_obligation)?;
Ok(result)
})
}
/// Evaluates constraints of the form:
///
/// <T as Trait>::U == V
///
/// If successful, this may result in additional obligations.
///
/// See [poly_project_and_unify_type] for an explanation of the return value.
fn project_and_unify_type<'cx, 'tcx>(
selcx: &mut SelectionContext<'cx, 'tcx>,
obligation: &ProjectionObligation<'tcx>,
) -> Result<
Result<Option<Vec<PredicateObligation<'tcx>>>, InProgress>,
MismatchedProjectionTypes<'tcx>,
> {
debug!(?obligation, "project_and_unify_type");
let mut obligations = vec![];
let normalized_ty = match opt_normalize_projection_type(
selcx,
obligation.param_env,
obligation.predicate.projection_ty,
obligation.cause.clone(),
obligation.recursion_depth,
&mut obligations,
) {
Ok(Some(n)) => n,
Ok(None) => return Ok(Ok(None)),
Err(InProgress) => return Ok(Err(InProgress)),
};
debug!(?normalized_ty, ?obligations, "project_and_unify_type result");
let infcx = selcx.infcx();
match infcx
.at(&obligation.cause, obligation.param_env)
.eq(normalized_ty, obligation.predicate.ty)
{
Ok(InferOk { obligations: inferred_obligations, value: () }) => {
obligations.extend(inferred_obligations);
Ok(Ok(Some(obligations)))
}
Err(err) => {
debug!("project_and_unify_type: equating types encountered error {:?}", err);
Err(MismatchedProjectionTypes { err })
}
}
}
/// Normalizes any associated type projections in `value`, replacing
/// them with a fully resolved type where possible. The return value
/// combines the normalized result and any additional obligations that
/// were incurred as result.
pub fn normalize<'a, 'b, 'tcx, T>(
selcx: &'a mut SelectionContext<'b, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
cause: ObligationCause<'tcx>,
value: &T,
) -> Normalized<'tcx, T>
where
T: TypeFoldable<'tcx>,
{
let mut obligations = Vec::new();
let value = normalize_to(selcx, param_env, cause, value, &mut obligations);
Normalized { value, obligations }
}
pub fn normalize_to<'a, 'b, 'tcx, T>(
selcx: &'a mut SelectionContext<'b, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
cause: ObligationCause<'tcx>,
value: &T,
obligations: &mut Vec<PredicateObligation<'tcx>>,
) -> T
where
T: TypeFoldable<'tcx>,
{
normalize_with_depth_to(selcx, param_env, cause, 0, value, obligations)
}
/// As `normalize`, but with a custom depth.
pub fn normalize_with_depth<'a, 'b, 'tcx, T>(
selcx: &'a mut SelectionContext<'b, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
cause: ObligationCause<'tcx>,
depth: usize,
value: &T,
) -> Normalized<'tcx, T>
where
T: TypeFoldable<'tcx>,
{
let mut obligations = Vec::new();
let value = normalize_with_depth_to(selcx, param_env, cause, depth, value, &mut obligations);
Normalized { value, obligations }
}
#[instrument(level = "debug", skip(selcx, param_env, cause, obligations))]
pub fn normalize_with_depth_to<'a, 'b, 'tcx, T>(
selcx: &'a mut SelectionContext<'b, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
cause: ObligationCause<'tcx>,
depth: usize,
value: &T,
obligations: &mut Vec<PredicateObligation<'tcx>>,
) -> T
where
T: TypeFoldable<'tcx>,
{
let mut normalizer = AssocTypeNormalizer::new(selcx, param_env, cause, depth, obligations);
let result = ensure_sufficient_stack(|| normalizer.fold(value));
debug!(?result, obligations.len = normalizer.obligations.len());
debug!(?normalizer.obligations,);
result
}
struct AssocTypeNormalizer<'a, 'b, 'tcx> {
selcx: &'a mut SelectionContext<'b, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
cause: ObligationCause<'tcx>,
obligations: &'a mut Vec<PredicateObligation<'tcx>>,
depth: usize,
}
impl<'a, 'b, 'tcx> AssocTypeNormalizer<'a, 'b, 'tcx> {
fn new(
selcx: &'a mut SelectionContext<'b, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
cause: ObligationCause<'tcx>,
depth: usize,
obligations: &'a mut Vec<PredicateObligation<'tcx>>,
) -> AssocTypeNormalizer<'a, 'b, 'tcx> {
AssocTypeNormalizer { selcx, param_env, cause, obligations, depth }
}
fn fold<T: TypeFoldable<'tcx>>(&mut self, value: &T) -> T {
let value = self.selcx.infcx().resolve_vars_if_possible(value);
if !value.has_projections() { value } else { value.fold_with(self) }
}
}
impl<'a, 'b, 'tcx> TypeFolder<'tcx> for AssocTypeNormalizer<'a, 'b, 'tcx> {
fn tcx<'c>(&'c self) -> TyCtxt<'tcx> {
self.selcx.tcx()
}
fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
if !ty.has_projections() {
return ty;
}
// We don't want to normalize associated types that occur inside of region
// binders, because they may contain bound regions, and we can't cope with that.
//
// Example:
//
// for<'a> fn(<T as Foo<&'a>>::A)
//
// Instead of normalizing `<T as Foo<&'a>>::A` here, we'll
// normalize it when we instantiate those bound regions (which
// should occur eventually).
let ty = ty.super_fold_with(self);
match *ty.kind() {
ty::Opaque(def_id, substs) => {
// Only normalize `impl Trait` after type-checking, usually in codegen.
match self.param_env.reveal() {
Reveal::UserFacing => ty,
Reveal::All => {
let recursion_limit = self.tcx().sess.recursion_limit();
if !recursion_limit.value_within_limit(self.depth) {
let obligation = Obligation::with_depth(
self.cause.clone(),
recursion_limit.0,
self.param_env,
ty,
);
self.selcx.infcx().report_overflow_error(&obligation, true);
}
let generic_ty = self.tcx().type_of(def_id);
let concrete_ty = generic_ty.subst(self.tcx(), substs);
self.depth += 1;
let folded_ty = self.fold_ty(concrete_ty);
self.depth -= 1;
folded_ty
}
}
}
ty::Projection(ref data) if !data.has_escaping_bound_vars() => {
// This is kind of hacky -- we need to be able to
// handle normalization within binders because
// otherwise we wind up a need to normalize when doing
// trait matching (since you can have a trait
// obligation like `for<'a> T::B: Fn(&'a i32)`), but
// we can't normalize with bound regions in scope. So
// far now we just ignore binders but only normalize
// if all bound regions are gone (and then we still
// have to renormalize whenever we instantiate a
// binder). It would be better to normalize in a
// binding-aware fashion.
let normalized_ty = normalize_projection_type(
self.selcx,
self.param_env,
*data,
self.cause.clone(),
self.depth,
&mut self.obligations,
);
debug!(
?self.depth,
?ty,
?normalized_ty,
obligations.len = ?self.obligations.len(),
"AssocTypeNormalizer: normalized type"
);
normalized_ty
}
_ => ty,
}
}
fn fold_const(&mut self, constant: &'tcx ty::Const<'tcx>) -> &'tcx ty::Const<'tcx> {
if self.selcx.tcx().lazy_normalization() {
constant
} else {
let constant = constant.super_fold_with(self);
constant.eval(self.selcx.tcx(), self.param_env)
}
}
}
/// The guts of `normalize`: normalize a specific projection like `<T
/// as Trait>::Item`. The result is always a type (and possibly
/// additional obligations). If ambiguity arises, which implies that
/// there are unresolved type variables in the projection, we will
/// substitute a fresh type variable `$X` and generate a new
/// obligation `<T as Trait>::Item == $X` for later.
pub fn normalize_projection_type<'a, 'b, 'tcx>(
selcx: &'a mut SelectionContext<'b, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
projection_ty: ty::ProjectionTy<'tcx>,
cause: ObligationCause<'tcx>,
depth: usize,
obligations: &mut Vec<PredicateObligation<'tcx>>,
) -> Ty<'tcx> {
opt_normalize_projection_type(
selcx,
param_env,
projection_ty,
cause.clone(),
depth,
obligations,
)
.ok()
.flatten()
.unwrap_or_else(move || {
// if we bottom out in ambiguity, create a type variable
// and a deferred predicate to resolve this when more type
// information is available.
let tcx = selcx.infcx().tcx;
let def_id = projection_ty.item_def_id;
let ty_var = selcx.infcx().next_ty_var(TypeVariableOrigin {
kind: TypeVariableOriginKind::NormalizeProjectionType,
span: tcx.def_span(def_id),
});
let projection = ty::Binder::dummy(ty::ProjectionPredicate { projection_ty, ty: ty_var });
let obligation =
Obligation::with_depth(cause, depth + 1, param_env, projection.to_predicate(tcx));
obligations.push(obligation);
ty_var
})
}
/// The guts of `normalize`: normalize a specific projection like `<T
/// as Trait>::Item`. The result is always a type (and possibly
/// additional obligations). Returns `None` in the case of ambiguity,
/// which indicates that there are unbound type variables.
///
/// This function used to return `Option<NormalizedTy<'tcx>>`, which contains a
/// `Ty<'tcx>` and an obligations vector. But that obligation vector was very
/// often immediately appended to another obligations vector. So now this
/// function takes an obligations vector and appends to it directly, which is
/// slightly uglier but avoids the need for an extra short-lived allocation.
#[instrument(level = "debug", skip(selcx, param_env, cause, obligations))]
fn opt_normalize_projection_type<'a, 'b, 'tcx>(
selcx: &'a mut SelectionContext<'b, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
projection_ty: ty::ProjectionTy<'tcx>,
cause: ObligationCause<'tcx>,
depth: usize,
obligations: &mut Vec<PredicateObligation<'tcx>>,
) -> Result<Option<Ty<'tcx>>, InProgress> {
let infcx = selcx.infcx();
let projection_ty = infcx.resolve_vars_if_possible(&projection_ty);
let cache_key = ProjectionCacheKey::new(projection_ty);
// FIXME(#20304) For now, I am caching here, which is good, but it
// means we don't capture the type variables that are created in
// the case of ambiguity. Which means we may create a large stream
// of such variables. OTOH, if we move the caching up a level, we
// would not benefit from caching when proving `T: Trait<U=Foo>`
// bounds. It might be the case that we want two distinct caches,
// or else another kind of cache entry.
let cache_result = infcx.inner.borrow_mut().projection_cache().try_start(cache_key);
match cache_result {
Ok(()) => {}
Err(ProjectionCacheEntry::Ambiguous) => {
// If we found ambiguity the last time, that means we will continue
// to do so until some type in the key changes (and we know it
// hasn't, because we just fully resolved it).
debug!("found cache entry: ambiguous");
return Ok(None);
}
Err(ProjectionCacheEntry::InProgress) => {
// If while normalized A::B, we are asked to normalize
// A::B, just return A::B itself. This is a conservative
// answer, in the sense that A::B *is* clearly equivalent
// to A::B, though there may be a better value we can
// find.
// Under lazy normalization, this can arise when
// bootstrapping. That is, imagine an environment with a
// where-clause like `A::B == u32`. Now, if we are asked
// to normalize `A::B`, we will want to check the
// where-clauses in scope. So we will try to unify `A::B`
// with `A::B`, which can trigger a recursive
// normalization.
debug!("found cache entry: in-progress");
return Err(InProgress);
}
Err(ProjectionCacheEntry::NormalizedTy(ty)) => {
// This is the hottest path in this function.
//
// If we find the value in the cache, then return it along
// with the obligations that went along with it. Note
// that, when using a fulfillment context, these
// obligations could in principle be ignored: they have
// already been registered when the cache entry was
// created (and hence the new ones will quickly be
// discarded as duplicated). But when doing trait
// evaluation this is not the case, and dropping the trait
// evaluations can causes ICEs (e.g., #43132).
debug!(?ty, "found normalized ty");
// Once we have inferred everything we need to know, we
// can ignore the `obligations` from that point on.
if infcx.unresolved_type_vars(&ty.value).is_none() {
infcx.inner.borrow_mut().projection_cache().complete_normalized(cache_key, &ty);
// No need to extend `obligations`.
} else {
obligations.extend(ty.obligations);
}
return Ok(Some(ty.value));
}
Err(ProjectionCacheEntry::Error) => {
debug!("opt_normalize_projection_type: found error");
let result = normalize_to_error(selcx, param_env, projection_ty, cause, depth);
obligations.extend(result.obligations);
return Ok(Some(result.value));
}
}
let obligation = Obligation::with_depth(cause.clone(), depth, param_env, projection_ty);
match project_type(selcx, &obligation) {
Ok(ProjectedTy::Progress(Progress {
ty: projected_ty,
obligations: mut projected_obligations,
})) => {
// if projection succeeded, then what we get out of this
// is also non-normalized (consider: it was derived from
// an impl, where-clause etc) and hence we must
// re-normalize it
debug!(?projected_ty, ?depth, ?projected_obligations);
let result = if projected_ty.has_projections() {
let mut normalizer = AssocTypeNormalizer::new(
selcx,
param_env,
cause,
depth + 1,
&mut projected_obligations,
);
let normalized_ty = normalizer.fold(&projected_ty);
debug!(?normalized_ty, ?depth);
Normalized { value: normalized_ty, obligations: projected_obligations }
} else {
Normalized { value: projected_ty, obligations: projected_obligations }
};
let cache_value = prune_cache_value_obligations(infcx, &result);
infcx.inner.borrow_mut().projection_cache().insert_ty(cache_key, cache_value);
obligations.extend(result.obligations);
Ok(Some(result.value))
}
Ok(ProjectedTy::NoProgress(projected_ty)) => {
debug!(?projected_ty, "opt_normalize_projection_type: no progress");
let result = Normalized { value: projected_ty, obligations: vec![] };
infcx.inner.borrow_mut().projection_cache().insert_ty(cache_key, result.clone());
// No need to extend `obligations`.
Ok(Some(result.value))
}
Err(ProjectionTyError::TooManyCandidates) => {
debug!("opt_normalize_projection_type: too many candidates");
infcx.inner.borrow_mut().projection_cache().ambiguous(cache_key);
Ok(None)
}
Err(ProjectionTyError::TraitSelectionError(_)) => {
debug!("opt_normalize_projection_type: ERROR");
// if we got an error processing the `T as Trait` part,
// just return `ty::err` but add the obligation `T :
// Trait`, which when processed will cause the error to be
// reported later
infcx.inner.borrow_mut().projection_cache().error(cache_key);
let result = normalize_to_error(selcx, param_env, projection_ty, cause, depth);
obligations.extend(result.obligations);
Ok(Some(result.value))
}
}
}
/// If there are unresolved type variables, then we need to include
/// any subobligations that bind them, at least until those type
/// variables are fully resolved.
fn prune_cache_value_obligations<'a, 'tcx>(
infcx: &'a InferCtxt<'a, 'tcx>,
result: &NormalizedTy<'tcx>,
) -> NormalizedTy<'tcx> {
if infcx.unresolved_type_vars(&result.value).is_none() {
return NormalizedTy { value: result.value, obligations: vec![] };
}
let mut obligations: Vec<_> = result
.obligations
.iter()
.filter(|obligation| {
let bound_predicate = obligation.predicate.bound_atom();
match bound_predicate.skip_binder() {
// We found a `T: Foo<X = U>` predicate, let's check
// if `U` references any unresolved type
// variables. In principle, we only care if this
// projection can help resolve any of the type
// variables found in `result.value` -- but we just
// check for any type variables here, for fear of
// indirect obligations (e.g., we project to `?0`,
// but we have `T: Foo<X = ?1>` and `?1: Bar<X =
// ?0>`).
ty::PredicateAtom::Projection(data) => {
infcx.unresolved_type_vars(&bound_predicate.rebind(data.ty)).is_some()
}
// We are only interested in `T: Foo<X = U>` predicates, whre
// `U` references one of `unresolved_type_vars`. =)
_ => false,
}
})
.cloned()
.collect();
obligations.shrink_to_fit();
NormalizedTy { value: result.value, obligations }
}
/// If we are projecting `<T as Trait>::Item`, but `T: Trait` does not
/// hold. In various error cases, we cannot generate a valid
/// normalized projection. Therefore, we create an inference variable
/// return an associated obligation that, when fulfilled, will lead to
/// an error.
///
/// Note that we used to return `Error` here, but that was quite
/// dubious -- the premise was that an error would *eventually* be
/// reported, when the obligation was processed. But in general once
/// you see a `Error` you are supposed to be able to assume that an
/// error *has been* reported, so that you can take whatever heuristic
/// paths you want to take. To make things worse, it was possible for
/// cycles to arise, where you basically had a setup like `<MyType<$0>
/// as Trait>::Foo == $0`. Here, normalizing `<MyType<$0> as
/// Trait>::Foo> to `[type error]` would lead to an obligation of
/// `<MyType<[type error]> as Trait>::Foo`. We are supposed to report
/// an error for this obligation, but we legitimately should not,
/// because it contains `[type error]`. Yuck! (See issue #29857 for
/// one case where this arose.)
fn normalize_to_error<'a, 'tcx>(
selcx: &mut SelectionContext<'a, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
projection_ty: ty::ProjectionTy<'tcx>,
cause: ObligationCause<'tcx>,
depth: usize,
) -> NormalizedTy<'tcx> {
let trait_ref = projection_ty.trait_ref(selcx.tcx()).to_poly_trait_ref();
let trait_obligation = Obligation {
cause,
recursion_depth: depth,
param_env,
predicate: trait_ref.without_const().to_predicate(selcx.tcx()),
};
let tcx = selcx.infcx().tcx;
let def_id = projection_ty.item_def_id;
let new_value = selcx.infcx().next_ty_var(TypeVariableOrigin {
kind: TypeVariableOriginKind::NormalizeProjectionType,
span: tcx.def_span(def_id),
});
Normalized { value: new_value, obligations: vec![trait_obligation] }
}
enum ProjectedTy<'tcx> {
Progress(Progress<'tcx>),
NoProgress(Ty<'tcx>),
}
struct Progress<'tcx> {
ty: Ty<'tcx>,
obligations: Vec<PredicateObligation<'tcx>>,
}
impl<'tcx> Progress<'tcx> {
fn error(tcx: TyCtxt<'tcx>) -> Self {
Progress { ty: tcx.ty_error(), obligations: vec![] }
}
fn with_addl_obligations(mut self, mut obligations: Vec<PredicateObligation<'tcx>>) -> Self {
debug!(
self.obligations.len = ?self.obligations.len(),
obligations.len = obligations.len(),
"with_addl_obligations"
);
debug!(?self.obligations, ?obligations, "with_addl_obligations");
self.obligations.append(&mut obligations);
self
}
}
/// Computes the result of a projection type (if we can).
///
/// IMPORTANT:
/// - `obligation` must be fully normalized
fn project_type<'cx, 'tcx>(
selcx: &mut SelectionContext<'cx, 'tcx>,
obligation: &ProjectionTyObligation<'tcx>,
) -> Result<ProjectedTy<'tcx>, ProjectionTyError<'tcx>> {
debug!(?obligation, "project_type");
if !selcx.tcx().sess.recursion_limit().value_within_limit(obligation.recursion_depth) {
debug!("project: overflow!");
return Err(ProjectionTyError::TraitSelectionError(SelectionError::Overflow));
}
let obligation_trait_ref = &obligation.predicate.trait_ref(selcx.tcx());
debug!(?obligation_trait_ref);
if obligation_trait_ref.references_error() {
return Ok(ProjectedTy::Progress(Progress::error(selcx.tcx())));
}
let mut candidates = ProjectionTyCandidateSet::None;
// Make sure that the following procedures are kept in order. ParamEnv
// needs to be first because it has highest priority, and Select checks
// the return value of push_candidate which assumes it's ran at last.
assemble_candidates_from_param_env(selcx, obligation, &obligation_trait_ref, &mut candidates);
assemble_candidates_from_trait_def(selcx, obligation, &obligation_trait_ref, &mut candidates);
assemble_candidates_from_object_ty(selcx, obligation, &obligation_trait_ref, &mut candidates);
if let ProjectionTyCandidateSet::Single(ProjectionTyCandidate::Object(_)) = candidates {
// Avoid normalization cycle from selection (see
// `assemble_candidates_from_object_ty`).
// FIXME(lazy_normalization): Lazy normalization should save us from
// having to do special case this.
} else {
assemble_candidates_from_impls(selcx, obligation, &obligation_trait_ref, &mut candidates);
};
match candidates {
ProjectionTyCandidateSet::Single(candidate) => {
Ok(ProjectedTy::Progress(confirm_candidate(selcx, obligation, candidate)))
}
ProjectionTyCandidateSet::None => Ok(ProjectedTy::NoProgress(
selcx
.tcx()
.mk_projection(obligation.predicate.item_def_id, obligation.predicate.substs),
)),
// Error occurred while trying to processing impls.
ProjectionTyCandidateSet::Error(e) => Err(ProjectionTyError::TraitSelectionError(e)),
// Inherent ambiguity that prevents us from even enumerating the
// candidates.
ProjectionTyCandidateSet::Ambiguous => Err(ProjectionTyError::TooManyCandidates),
}
}
/// The first thing we have to do is scan through the parameter
/// environment to see whether there are any projection predicates
/// there that can answer this question.
fn assemble_candidates_from_param_env<'cx, 'tcx>(
selcx: &mut SelectionContext<'cx, 'tcx>,
obligation: &ProjectionTyObligation<'tcx>,
obligation_trait_ref: &ty::TraitRef<'tcx>,
candidate_set: &mut ProjectionTyCandidateSet<'tcx>,
) {
debug!("assemble_candidates_from_param_env(..)");
assemble_candidates_from_predicates(
selcx,
obligation,
obligation_trait_ref,
candidate_set,
ProjectionTyCandidate::ParamEnv,
obligation.param_env.caller_bounds().iter(),
false,
);
}
/// In the case of a nested projection like <<A as Foo>::FooT as Bar>::BarT, we may find
/// that the definition of `Foo` has some clues:
///
/// ```
/// trait Foo {
/// type FooT : Bar<BarT=i32>
/// }
/// ```
///
/// Here, for example, we could conclude that the result is `i32`.
fn assemble_candidates_from_trait_def<'cx, 'tcx>(
selcx: &mut SelectionContext<'cx, 'tcx>,
obligation: &ProjectionTyObligation<'tcx>,
obligation_trait_ref: &ty::TraitRef<'tcx>,
candidate_set: &mut ProjectionTyCandidateSet<'tcx>,
) {
debug!("assemble_candidates_from_trait_def(..)");
let tcx = selcx.tcx();
// Check whether the self-type is itself a projection.
// If so, extract what we know from the trait and try to come up with a good answer.
let bounds = match *obligation_trait_ref.self_ty().kind() {
ty::Projection(ref data) => tcx.item_bounds(data.item_def_id).subst(tcx, data.substs),
ty::Opaque(def_id, substs) => tcx.item_bounds(def_id).subst(tcx, substs),
ty::Infer(ty::TyVar(_)) => {
// If the self-type is an inference variable, then it MAY wind up
// being a projected type, so induce an ambiguity.
candidate_set.mark_ambiguous();
return;
}
_ => return,
};
assemble_candidates_from_predicates(
selcx,
obligation,
obligation_trait_ref,
candidate_set,
ProjectionTyCandidate::TraitDef,
bounds.iter(),
true,
)
}
/// In the case of a trait object like
/// `<dyn Iterator<Item = ()> as Iterator>::Item` we can use the existential
/// predicate in the trait object.
///
/// We don't go through the select candidate for these bounds to avoid cycles:
/// In the above case, `dyn Iterator<Item = ()>: Iterator` would create a
/// nested obligation of `<dyn Iterator<Item = ()> as Iterator>::Item: Sized`,
/// this then has to be normalized without having to prove
/// `dyn Iterator<Item = ()>: Iterator` again.
fn assemble_candidates_from_object_ty<'cx, 'tcx>(
selcx: &mut SelectionContext<'cx, 'tcx>,
obligation: &ProjectionTyObligation<'tcx>,
obligation_trait_ref: &ty::TraitRef<'tcx>,
candidate_set: &mut ProjectionTyCandidateSet<'tcx>,
) {
debug!("assemble_candidates_from_object_ty(..)");
let tcx = selcx.tcx();
let self_ty = obligation_trait_ref.self_ty();
let object_ty = selcx.infcx().shallow_resolve(self_ty);
let data = match object_ty.kind() {
ty::Dynamic(data, ..) => data,
ty::Infer(ty::TyVar(_)) => {
// If the self-type is an inference variable, then it MAY wind up
// being an object type, so induce an ambiguity.
candidate_set.mark_ambiguous();
return;
}
_ => return,
};
let env_predicates = data
.projection_bounds()
.filter(|bound| bound.item_def_id() == obligation.predicate.item_def_id)
.map(|p| p.with_self_ty(tcx, object_ty).to_predicate(tcx));
assemble_candidates_from_predicates(
selcx,
obligation,
obligation_trait_ref,
candidate_set,
ProjectionTyCandidate::Object,
env_predicates,
false,
);
}
fn assemble_candidates_from_predicates<'cx, 'tcx>(
selcx: &mut SelectionContext<'cx, 'tcx>,
obligation: &ProjectionTyObligation<'tcx>,
obligation_trait_ref: &ty::TraitRef<'tcx>,
candidate_set: &mut ProjectionTyCandidateSet<'tcx>,
ctor: fn(ty::PolyProjectionPredicate<'tcx>) -> ProjectionTyCandidate<'tcx>,
env_predicates: impl Iterator<Item = ty::Predicate<'tcx>>,
potentially_unnormalized_candidates: bool,
) {
debug!(?obligation, "assemble_candidates_from_predicates");
let infcx = selcx.infcx();
for predicate in env_predicates {
debug!(?predicate);
let bound_predicate = predicate.bound_atom();
if let ty::PredicateAtom::Projection(data) = predicate.skip_binders() {
let data = bound_predicate.rebind(data);
let same_def_id = data.projection_def_id() == obligation.predicate.item_def_id;
let is_match = same_def_id
&& infcx.probe(|_| {
selcx.match_projection_projections(
obligation,
obligation_trait_ref,
&data,
potentially_unnormalized_candidates,
)
});
debug!(?data, ?is_match, ?same_def_id);
if is_match {
candidate_set.push_candidate(ctor(data));
if potentially_unnormalized_candidates
&& !obligation.predicate.has_infer_types_or_consts()
{
// HACK: Pick the first trait def candidate for a fully
// inferred predicate. This is to allow duplicates that
// differ only in normalization.
return;
}
}
}
}
}
fn assemble_candidates_from_impls<'cx, 'tcx>(
selcx: &mut SelectionContext<'cx, 'tcx>,
obligation: &ProjectionTyObligation<'tcx>,
obligation_trait_ref: &ty::TraitRef<'tcx>,
candidate_set: &mut ProjectionTyCandidateSet<'tcx>,
) {
debug!("assemble_candidates_from_impls");
// If we are resolving `<T as TraitRef<...>>::Item == Type`,
// start out by selecting the predicate `T as TraitRef<...>`:
let poly_trait_ref = obligation_trait_ref.to_poly_trait_ref();
let trait_obligation = obligation.with(poly_trait_ref.to_poly_trait_predicate());
let _ = selcx.infcx().commit_if_ok(|_| {
let impl_source = match selcx.select(&trait_obligation) {
Ok(Some(impl_source)) => impl_source,
Ok(None) => {
candidate_set.mark_ambiguous();
return Err(());
}
Err(e) => {
debug!(error = ?e, "selection error");
candidate_set.mark_error(e);
return Err(());
}
};
let eligible = match &impl_source {
super::ImplSource::Closure(_)
| super::ImplSource::Generator(_)
| super::ImplSource::FnPointer(_)
| super::ImplSource::TraitAlias(_) => {
debug!(?impl_source);
true
}
super::ImplSource::UserDefined(impl_data) => {
// We have to be careful when projecting out of an
// impl because of specialization. If we are not in
// codegen (i.e., projection mode is not "any"), and the
// impl's type is declared as default, then we disable
// projection (even if the trait ref is fully
// monomorphic). In the case where trait ref is not
// fully monomorphic (i.e., includes type parameters),
// this is because those type parameters may
// ultimately be bound to types from other crates that
// may have specialized impls we can't see. In the
// case where the trait ref IS fully monomorphic, this
// is a policy decision that we made in the RFC in
// order to preserve flexibility for the crate that
// defined the specializable impl to specialize later
// for existing types.
//
// In either case, we handle this by not adding a
// candidate for an impl if it contains a `default`
// type.
//
// NOTE: This should be kept in sync with the similar code in
// `rustc_ty::instance::resolve_associated_item()`.
let node_item =
assoc_ty_def(selcx, impl_data.impl_def_id, obligation.predicate.item_def_id)
.map_err(|ErrorReported| ())?;
if node_item.is_final() {
// Non-specializable items are always projectable.
true
} else {
// Only reveal a specializable default if we're past type-checking
// and the obligation is monomorphic, otherwise passes such as
// transmute checking and polymorphic MIR optimizations could
// get a result which isn't correct for all monomorphizations.
if obligation.param_env.reveal() == Reveal::All {
// NOTE(eddyb) inference variables can resolve to parameters, so
// assume `poly_trait_ref` isn't monomorphic, if it contains any.
let poly_trait_ref =
selcx.infcx().resolve_vars_if_possible(&poly_trait_ref);
!poly_trait_ref.still_further_specializable()
} else {
debug!(
assoc_ty = ?selcx.tcx().def_path_str(node_item.item.def_id),
?obligation.predicate,
"assemble_candidates_from_impls: not eligible due to default",
);
false
}
}
}
super::ImplSource::DiscriminantKind(..) => {
// While `DiscriminantKind` is automatically implemented for every type,
// the concrete discriminant may not be known yet.
//
// Any type with multiple potential discriminant types is therefore not eligible.
let self_ty = selcx.infcx().shallow_resolve(obligation.predicate.self_ty());
match self_ty.kind() {
ty::Bool
| ty::Char
| ty::Int(_)
| ty::Uint(_)
| ty::Float(_)
| ty::Adt(..)
| ty::Foreign(_)
| ty::Str
| ty::Array(..)
| ty::Slice(_)
| ty::RawPtr(..)
| ty::Ref(..)
| ty::FnDef(..)
| ty::FnPtr(..)
| ty::Dynamic(..)
| ty::Closure(..)
| ty::Generator(..)
| ty::GeneratorWitness(..)
| ty::Never
| ty::Tuple(..)
// Integers and floats always have `u8` as their discriminant.
| ty::Infer(ty::InferTy::IntVar(_) | ty::InferTy::FloatVar(..)) => true,
ty::Projection(..)
| ty::Opaque(..)
| ty::Param(..)
| ty::Bound(..)
| ty::Placeholder(..)
| ty::Infer(..)
| ty::Error(_) => false,
}
}
super::ImplSource::Param(..) => {
// This case tell us nothing about the value of an
// associated type. Consider:
//
// ```
// trait SomeTrait { type Foo; }
// fn foo<T:SomeTrait>(...) { }
// ```
//
// If the user writes `<T as SomeTrait>::Foo`, then the `T
// : SomeTrait` binding does not help us decide what the
// type `Foo` is (at least, not more specifically than
// what we already knew).
//
// But wait, you say! What about an example like this:
//
// ```
// fn bar<T:SomeTrait<Foo=usize>>(...) { ... }
// ```
//
// Doesn't the `T : Sometrait<Foo=usize>` predicate help
// resolve `T::Foo`? And of course it does, but in fact
// that single predicate is desugared into two predicates
// in the compiler: a trait predicate (`T : SomeTrait`) and a
// projection. And the projection where clause is handled
// in `assemble_candidates_from_param_env`.
false
}
super::ImplSource::Object(_) => {
// Handled by the `Object` projection candidate. See
// `assemble_candidates_from_object_ty` for an explanation of
// why we special case object types.
false
}
super::ImplSource::AutoImpl(..) | super::ImplSource::Builtin(..) => {
// These traits have no associated types.
selcx.tcx().sess.delay_span_bug(
obligation.cause.span,
&format!("Cannot project an associated type from `{:?}`", impl_source),
);
return Err(());
}
};
if eligible {
if candidate_set.push_candidate(ProjectionTyCandidate::Select(impl_source)) {
Ok(())
} else {
Err(())
}
} else {
Err(())
}
});
}
fn confirm_candidate<'cx, 'tcx>(
selcx: &mut SelectionContext<'cx, 'tcx>,
obligation: &ProjectionTyObligation<'tcx>,
candidate: ProjectionTyCandidate<'tcx>,
) -> Progress<'tcx> {
debug!(?obligation, ?candidate, "confirm_candidate");
let mut progress = match candidate {
ProjectionTyCandidate::ParamEnv(poly_projection)
| ProjectionTyCandidate::Object(poly_projection) => {
confirm_param_env_candidate(selcx, obligation, poly_projection, false)
}
ProjectionTyCandidate::TraitDef(poly_projection) => {
confirm_param_env_candidate(selcx, obligation, poly_projection, true)
}
ProjectionTyCandidate::Select(impl_source) => {
confirm_select_candidate(selcx, obligation, impl_source)
}
};
// When checking for cycle during evaluation, we compare predicates with
// "syntactic" equality. Since normalization generally introduces a type
// with new region variables, we need to resolve them to existing variables
// when possible for this to work. See `auto-trait-projection-recursion.rs`
// for a case where this matters.
if progress.ty.has_infer_regions() {
progress.ty = OpportunisticRegionResolver::new(selcx.infcx()).fold_ty(progress.ty);
}
progress
}
fn confirm_select_candidate<'cx, 'tcx>(
selcx: &mut SelectionContext<'cx, 'tcx>,
obligation: &ProjectionTyObligation<'tcx>,
impl_source: Selection<'tcx>,
) -> Progress<'tcx> {
match impl_source {
super::ImplSource::UserDefined(data) => confirm_impl_candidate(selcx, obligation, data),
super::ImplSource::Generator(data) => confirm_generator_candidate(selcx, obligation, data),
super::ImplSource::Closure(data) => confirm_closure_candidate(selcx, obligation, data),
super::ImplSource::FnPointer(data) => confirm_fn_pointer_candidate(selcx, obligation, data),
super::ImplSource::DiscriminantKind(data) => {
confirm_discriminant_kind_candidate(selcx, obligation, data)
}
super::ImplSource::Object(_)
| super::ImplSource::AutoImpl(..)
| super::ImplSource::Param(..)
| super::ImplSource::Builtin(..)
| super::ImplSource::TraitAlias(..) => {
// we don't create Select candidates with this kind of resolution
span_bug!(
obligation.cause.span,
"Cannot project an associated type from `{:?}`",
impl_source
)
}
}
}
fn confirm_generator_candidate<'cx, 'tcx>(
selcx: &mut SelectionContext<'cx, 'tcx>,
obligation: &ProjectionTyObligation<'tcx>,
impl_source: ImplSourceGeneratorData<'tcx, PredicateObligation<'tcx>>,
) -> Progress<'tcx> {
let gen_sig = impl_source.substs.as_generator().poly_sig();
let Normalized { value: gen_sig, obligations } = normalize_with_depth(
selcx,
obligation.param_env,
obligation.cause.clone(),
obligation.recursion_depth + 1,
&gen_sig,
);
debug!(?obligation, ?gen_sig, ?obligations, "confirm_generator_candidate");
let tcx = selcx.tcx();
let gen_def_id = tcx.require_lang_item(LangItem::Generator, None);
let predicate = super::util::generator_trait_ref_and_outputs(
tcx,
gen_def_id,
obligation.predicate.self_ty(),
gen_sig,
)
.map_bound(|(trait_ref, yield_ty, return_ty)| {
let name = tcx.associated_item(obligation.predicate.item_def_id).ident.name;
let ty = if name == sym::Return {
return_ty
} else if name == sym::Yield {
yield_ty
} else {
bug!()
};
ty::ProjectionPredicate {
projection_ty: ty::ProjectionTy {
substs: trait_ref.substs,
item_def_id: obligation.predicate.item_def_id,
},
ty,
}
});
confirm_param_env_candidate(selcx, obligation, predicate, false)
.with_addl_obligations(impl_source.nested)
.with_addl_obligations(obligations)
}
fn confirm_discriminant_kind_candidate<'cx, 'tcx>(
selcx: &mut SelectionContext<'cx, 'tcx>,
obligation: &ProjectionTyObligation<'tcx>,
_: ImplSourceDiscriminantKindData,
) -> Progress<'tcx> {
let tcx = selcx.tcx();
let self_ty = selcx.infcx().shallow_resolve(obligation.predicate.self_ty());
let substs = tcx.mk_substs([self_ty.into()].iter());
let discriminant_def_id = tcx.require_lang_item(LangItem::Discriminant, None);
let predicate = ty::ProjectionPredicate {
projection_ty: ty::ProjectionTy { substs, item_def_id: discriminant_def_id },
ty: self_ty.discriminant_ty(tcx),
};
confirm_param_env_candidate(selcx, obligation, ty::Binder::bind(predicate), false)
}
fn confirm_fn_pointer_candidate<'cx, 'tcx>(
selcx: &mut SelectionContext<'cx, 'tcx>,
obligation: &ProjectionTyObligation<'tcx>,
fn_pointer_impl_source: ImplSourceFnPointerData<'tcx, PredicateObligation<'tcx>>,
) -> Progress<'tcx> {
let fn_type = selcx.infcx().shallow_resolve(fn_pointer_impl_source.fn_ty);
let sig = fn_type.fn_sig(selcx.tcx());
let Normalized { value: sig, obligations } = normalize_with_depth(
selcx,
obligation.param_env,
obligation.cause.clone(),
obligation.recursion_depth + 1,
&sig,
);
confirm_callable_candidate(selcx, obligation, sig, util::TupleArgumentsFlag::Yes)
.with_addl_obligations(fn_pointer_impl_source.nested)
.with_addl_obligations(obligations)
}
fn confirm_closure_candidate<'cx, 'tcx>(
selcx: &mut SelectionContext<'cx, 'tcx>,
obligation: &ProjectionTyObligation<'tcx>,
impl_source: ImplSourceClosureData<'tcx, PredicateObligation<'tcx>>,
) -> Progress<'tcx> {
let closure_sig = impl_source.substs.as_closure().sig();
let Normalized { value: closure_sig, obligations } = normalize_with_depth(
selcx,
obligation.param_env,
obligation.cause.clone(),
obligation.recursion_depth + 1,
&closure_sig,
);
debug!(?obligation, ?closure_sig, ?obligations, "confirm_closure_candidate");
confirm_callable_candidate(selcx, obligation, closure_sig, util::TupleArgumentsFlag::No)
.with_addl_obligations(impl_source.nested)
.with_addl_obligations(obligations)
}
fn confirm_callable_candidate<'cx, 'tcx>(
selcx: &mut SelectionContext<'cx, 'tcx>,
obligation: &ProjectionTyObligation<'tcx>,
fn_sig: ty::PolyFnSig<'tcx>,
flag: util::TupleArgumentsFlag,
) -> Progress<'tcx> {
let tcx = selcx.tcx();
debug!(?obligation, ?fn_sig, "confirm_callable_candidate");
let fn_once_def_id = tcx.require_lang_item(LangItem::FnOnce, None);
let fn_once_output_def_id = tcx.require_lang_item(LangItem::FnOnceOutput, None);
let predicate = super::util::closure_trait_ref_and_return_type(
tcx,
fn_once_def_id,
obligation.predicate.self_ty(),
fn_sig,
flag,
)
.map_bound(|(trait_ref, ret_type)| ty::ProjectionPredicate {
projection_ty: ty::ProjectionTy {
substs: trait_ref.substs,
item_def_id: fn_once_output_def_id,
},
ty: ret_type,
});
confirm_param_env_candidate(selcx, obligation, predicate, false)
}
fn confirm_param_env_candidate<'cx, 'tcx>(
selcx: &mut SelectionContext<'cx, 'tcx>,
obligation: &ProjectionTyObligation<'tcx>,
poly_cache_entry: ty::PolyProjectionPredicate<'tcx>,
potentially_unnormalized_candidate: bool,
) -> Progress<'tcx> {
let infcx = selcx.infcx();
let cause = &obligation.cause;
let param_env = obligation.param_env;
let (cache_entry, _) = infcx.replace_bound_vars_with_fresh_vars(
cause.span,
LateBoundRegionConversionTime::HigherRankedType,
&poly_cache_entry,
);
let cache_trait_ref = cache_entry.projection_ty.trait_ref(infcx.tcx);
let obligation_trait_ref = obligation.predicate.trait_ref(infcx.tcx);
let mut nested_obligations = Vec::new();
let cache_trait_ref = if potentially_unnormalized_candidate {
ensure_sufficient_stack(|| {
normalize_with_depth_to(
selcx,
obligation.param_env,
obligation.cause.clone(),
obligation.recursion_depth + 1,
&cache_trait_ref,
&mut nested_obligations,
)
})
} else {
cache_trait_ref
};
match infcx.at(cause, param_env).eq(cache_trait_ref, obligation_trait_ref) {
Ok(InferOk { value: _, obligations }) => {
nested_obligations.extend(obligations);
assoc_ty_own_obligations(selcx, obligation, &mut nested_obligations);
Progress { ty: cache_entry.ty, obligations: nested_obligations }
}
Err(e) => {
let msg = format!(
"Failed to unify obligation `{:?}` with poly_projection `{:?}`: {:?}",
obligation, poly_cache_entry, e,
);
debug!("confirm_param_env_candidate: {}", msg);
let err = infcx.tcx.ty_error_with_message(obligation.cause.span, &msg);
Progress { ty: err, obligations: vec![] }
}
}
}
fn confirm_impl_candidate<'cx, 'tcx>(
selcx: &mut SelectionContext<'cx, 'tcx>,
obligation: &ProjectionTyObligation<'tcx>,
impl_impl_source: ImplSourceUserDefinedData<'tcx, PredicateObligation<'tcx>>,
) -> Progress<'tcx> {
let tcx = selcx.tcx();
let ImplSourceUserDefinedData { impl_def_id, substs, mut nested } = impl_impl_source;
let assoc_item_id = obligation.predicate.item_def_id;
let trait_def_id = tcx.trait_id_of_impl(impl_def_id).unwrap();
let param_env = obligation.param_env;
let assoc_ty = match assoc_ty_def(selcx, impl_def_id, assoc_item_id) {
Ok(assoc_ty) => assoc_ty,
Err(ErrorReported) => return Progress { ty: tcx.ty_error(), obligations: nested },
};
if !assoc_ty.item.defaultness.has_value() {
// This means that the impl is missing a definition for the
// associated type. This error will be reported by the type
// checker method `check_impl_items_against_trait`, so here we
// just return Error.
debug!(
"confirm_impl_candidate: no associated type {:?} for {:?}",
assoc_ty.item.ident, obligation.predicate
);
return Progress { ty: tcx.ty_error(), obligations: nested };
}
// If we're trying to normalize `<Vec<u32> as X>::A<S>` using
//`impl<T> X for Vec<T> { type A<Y> = Box<Y>; }`, then:
//
// * `obligation.predicate.substs` is `[Vec<u32>, S]`
// * `substs` is `[u32]`
// * `substs` ends up as `[u32, S]`
let substs = obligation.predicate.substs.rebase_onto(tcx, trait_def_id, substs);
let substs =
translate_substs(selcx.infcx(), param_env, impl_def_id, substs, assoc_ty.defining_node);
let ty = tcx.type_of(assoc_ty.item.def_id);
if substs.len() != tcx.generics_of(assoc_ty.item.def_id).count() {
let err = tcx.ty_error_with_message(
obligation.cause.span,
"impl item and trait item have different parameter counts",
);
Progress { ty: err, obligations: nested }
} else {
assoc_ty_own_obligations(selcx, obligation, &mut nested);
Progress { ty: ty.subst(tcx, substs), obligations: nested }
}
}
// Get obligations corresponding to the predicates from the where-clause of the
// associated type itself.
// Note: `feature(generic_associated_types)` is required to write such
// predicates, even for non-generic associcated types.
fn assoc_ty_own_obligations<'cx, 'tcx>(
selcx: &mut SelectionContext<'cx, 'tcx>,
obligation: &ProjectionTyObligation<'tcx>,
nested: &mut Vec<PredicateObligation<'tcx>>,
) {
let tcx = selcx.tcx();
for predicate in tcx
.predicates_of(obligation.predicate.item_def_id)
.instantiate_own(tcx, obligation.predicate.substs)
.predicates
{
let normalized = normalize_with_depth_to(
selcx,
obligation.param_env,
obligation.cause.clone(),
obligation.recursion_depth + 1,
&predicate,
nested,
);
nested.push(Obligation::with_depth(
obligation.cause.clone(),
obligation.recursion_depth + 1,
obligation.param_env,
normalized,
));
}
}
/// Locate the definition of an associated type in the specialization hierarchy,
/// starting from the given impl.
///
/// Based on the "projection mode", this lookup may in fact only examine the
/// topmost impl. See the comments for `Reveal` for more details.
fn assoc_ty_def(
selcx: &SelectionContext<'_, '_>,
impl_def_id: DefId,
assoc_ty_def_id: DefId,
) -> Result<specialization_graph::LeafDef, ErrorReported> {
let tcx = selcx.tcx();
let assoc_ty_name = tcx.associated_item(assoc_ty_def_id).ident;
let trait_def_id = tcx.impl_trait_ref(impl_def_id).unwrap().def_id;
let trait_def = tcx.trait_def(trait_def_id);
// This function may be called while we are still building the
// specialization graph that is queried below (via TraitDef::ancestors()),
// so, in order to avoid unnecessary infinite recursion, we manually look
// for the associated item at the given impl.
// If there is no such item in that impl, this function will fail with a
// cycle error if the specialization graph is currently being built.
let impl_node = specialization_graph::Node::Impl(impl_def_id);
for item in impl_node.items(tcx) {
if matches!(item.kind, ty::AssocKind::Type)
&& tcx.hygienic_eq(item.ident, assoc_ty_name, trait_def_id)
{
return Ok(specialization_graph::LeafDef {
item: *item,
defining_node: impl_node,
finalizing_node: if item.defaultness.is_default() { None } else { Some(impl_node) },
});
}
}
let ancestors = trait_def.ancestors(tcx, impl_def_id)?;
if let Some(assoc_item) = ancestors.leaf_def(tcx, assoc_ty_name, ty::AssocKind::Type) {
Ok(assoc_item)
} else {
// This is saying that neither the trait nor
// the impl contain a definition for this
// associated type. Normally this situation
// could only arise through a compiler bug --
// if the user wrote a bad item name, it
// should have failed in astconv.
bug!("No associated type `{}` for {}", assoc_ty_name, tcx.def_path_str(impl_def_id))
}
}
crate trait ProjectionCacheKeyExt<'tcx>: Sized {
fn from_poly_projection_predicate(
selcx: &mut SelectionContext<'cx, 'tcx>,
predicate: ty::PolyProjectionPredicate<'tcx>,
) -> Option<Self>;
}
impl<'tcx> ProjectionCacheKeyExt<'tcx> for ProjectionCacheKey<'tcx> {
fn from_poly_projection_predicate(
selcx: &mut SelectionContext<'cx, 'tcx>,
predicate: ty::PolyProjectionPredicate<'tcx>,
) -> Option<Self> {
let infcx = selcx.infcx();
// We don't do cross-snapshot caching of obligations with escaping regions,
// so there's no cache key to use
predicate.no_bound_vars().map(|predicate| {
ProjectionCacheKey::new(
// We don't attempt to match up with a specific type-variable state
// from a specific call to `opt_normalize_projection_type` - if
// there's no precise match, the original cache entry is "stranded"
// anyway.
infcx.resolve_vars_if_possible(&predicate.projection_ty),
)
})
}
}