blob: b3d9beb3742b2add43b541a9c734a45abcf07ee6 [file] [log] [blame]
//! Structural const qualification.
//!
//! See the `Qualif` trait for more info.
use rustc_middle::mir::*;
use rustc_middle::ty::{self, subst::SubstsRef, AdtDef, Ty};
use rustc_span::DUMMY_SP;
use rustc_trait_selection::traits;
use super::ConstCx;
pub fn in_any_value_of_ty(cx: &ConstCx<'_, 'tcx>, ty: Ty<'tcx>) -> ConstQualifs {
ConstQualifs {
has_mut_interior: HasMutInterior::in_any_value_of_ty(cx, ty),
needs_drop: NeedsDrop::in_any_value_of_ty(cx, ty),
custom_eq: CustomEq::in_any_value_of_ty(cx, ty),
}
}
/// A "qualif"(-ication) is a way to look for something "bad" in the MIR that would disqualify some
/// code for promotion or prevent it from evaluating at compile time.
///
/// Normally, we would determine what qualifications apply to each type and error when an illegal
/// operation is performed on such a type. However, this was found to be too imprecise, especially
/// in the presence of `enum`s. If only a single variant of an enum has a certain qualification, we
/// needn't reject code unless it actually constructs and operates on the qualifed variant.
///
/// To accomplish this, const-checking and promotion use a value-based analysis (as opposed to a
/// type-based one). Qualifications propagate structurally across variables: If a local (or a
/// projection of a local) is assigned a qualifed value, that local itself becomes qualifed.
pub trait Qualif {
/// The name of the file used to debug the dataflow analysis that computes this qualif.
const ANALYSIS_NAME: &'static str;
/// Whether this `Qualif` is cleared when a local is moved from.
const IS_CLEARED_ON_MOVE: bool = false;
/// Extracts the field of `ConstQualifs` that corresponds to this `Qualif`.
fn in_qualifs(qualifs: &ConstQualifs) -> bool;
/// Returns `true` if *any* value of the given type could possibly have this `Qualif`.
///
/// This function determines `Qualif`s when we cannot do a value-based analysis. Since qualif
/// propagation is context-insenstive, this includes function arguments and values returned
/// from a call to another function.
///
/// It also determines the `Qualif`s for primitive types.
fn in_any_value_of_ty(cx: &ConstCx<'_, 'tcx>, ty: Ty<'tcx>) -> bool;
/// Returns `true` if this `Qualif` is inherent to the given struct or enum.
///
/// By default, `Qualif`s propagate into ADTs in a structural way: An ADT only becomes
/// qualified if part of it is assigned a value with that `Qualif`. However, some ADTs *always*
/// have a certain `Qualif`, regardless of whether their fields have it. For example, a type
/// with a custom `Drop` impl is inherently `NeedsDrop`.
///
/// Returning `true` for `in_adt_inherently` but `false` for `in_any_value_of_ty` is unsound.
fn in_adt_inherently(
cx: &ConstCx<'_, 'tcx>,
adt: &'tcx AdtDef,
substs: SubstsRef<'tcx>,
) -> bool;
}
/// Constant containing interior mutability (`UnsafeCell<T>`).
/// This must be ruled out to make sure that evaluating the constant at compile-time
/// and at *any point* during the run-time would produce the same result. In particular,
/// promotion of temporaries must not change program behavior; if the promoted could be
/// written to, that would be a problem.
pub struct HasMutInterior;
impl Qualif for HasMutInterior {
const ANALYSIS_NAME: &'static str = "flow_has_mut_interior";
fn in_qualifs(qualifs: &ConstQualifs) -> bool {
qualifs.has_mut_interior
}
fn in_any_value_of_ty(cx: &ConstCx<'_, 'tcx>, ty: Ty<'tcx>) -> bool {
!ty.is_freeze(cx.tcx.at(DUMMY_SP), cx.param_env)
}
fn in_adt_inherently(cx: &ConstCx<'_, 'tcx>, adt: &'tcx AdtDef, _: SubstsRef<'tcx>) -> bool {
// Exactly one type, `UnsafeCell`, has the `HasMutInterior` qualif inherently.
// It arises structurally for all other types.
Some(adt.did) == cx.tcx.lang_items().unsafe_cell_type()
}
}
/// Constant containing an ADT that implements `Drop`.
/// This must be ruled out (a) because we cannot run `Drop` during compile-time
/// as that might not be a `const fn`, and (b) because implicit promotion would
/// remove side-effects that occur as part of dropping that value.
pub struct NeedsDrop;
impl Qualif for NeedsDrop {
const ANALYSIS_NAME: &'static str = "flow_needs_drop";
const IS_CLEARED_ON_MOVE: bool = true;
fn in_qualifs(qualifs: &ConstQualifs) -> bool {
qualifs.needs_drop
}
fn in_any_value_of_ty(cx: &ConstCx<'_, 'tcx>, ty: Ty<'tcx>) -> bool {
ty.needs_drop(cx.tcx, cx.param_env)
}
fn in_adt_inherently(cx: &ConstCx<'_, 'tcx>, adt: &'tcx AdtDef, _: SubstsRef<'tcx>) -> bool {
adt.has_dtor(cx.tcx)
}
}
/// A constant that cannot be used as part of a pattern in a `match` expression.
pub struct CustomEq;
impl Qualif for CustomEq {
const ANALYSIS_NAME: &'static str = "flow_custom_eq";
fn in_qualifs(qualifs: &ConstQualifs) -> bool {
qualifs.custom_eq
}
fn in_any_value_of_ty(cx: &ConstCx<'_, 'tcx>, ty: Ty<'tcx>) -> bool {
// If *any* component of a composite data type does not implement `Structural{Partial,}Eq`,
// we know that at least some values of that type are not structural-match. I say "some"
// because that component may be part of an enum variant (e.g.,
// `Option::<NonStructuralMatchTy>::Some`), in which case some values of this type may be
// structural-match (`Option::None`).
let id = cx.tcx.hir().local_def_id_to_hir_id(cx.def_id());
traits::search_for_structural_match_violation(id, cx.body.span, cx.tcx, ty).is_some()
}
fn in_adt_inherently(
cx: &ConstCx<'_, 'tcx>,
adt: &'tcx AdtDef,
substs: SubstsRef<'tcx>,
) -> bool {
let ty = cx.tcx.mk_ty(ty::Adt(adt, substs));
!ty.is_structural_eq_shallow(cx.tcx)
}
}
// FIXME: Use `mir::visit::Visitor` for the `in_*` functions if/when it supports early return.
/// Returns `true` if this `Rvalue` contains qualif `Q`.
pub fn in_rvalue<Q, F>(cx: &ConstCx<'_, 'tcx>, in_local: &mut F, rvalue: &Rvalue<'tcx>) -> bool
where
Q: Qualif,
F: FnMut(Local) -> bool,
{
match rvalue {
Rvalue::ThreadLocalRef(_) | Rvalue::NullaryOp(..) => {
Q::in_any_value_of_ty(cx, rvalue.ty(cx.body, cx.tcx))
}
Rvalue::Discriminant(place) | Rvalue::Len(place) => {
in_place::<Q, _>(cx, in_local, place.as_ref())
}
Rvalue::Use(operand)
| Rvalue::Repeat(operand, _)
| Rvalue::UnaryOp(_, operand)
| Rvalue::Cast(_, operand, _) => in_operand::<Q, _>(cx, in_local, operand),
Rvalue::BinaryOp(_, lhs, rhs) | Rvalue::CheckedBinaryOp(_, lhs, rhs) => {
in_operand::<Q, _>(cx, in_local, lhs) || in_operand::<Q, _>(cx, in_local, rhs)
}
Rvalue::Ref(_, _, place) | Rvalue::AddressOf(_, place) => {
// Special-case reborrows to be more like a copy of the reference.
if let &[ref proj_base @ .., ProjectionElem::Deref] = place.projection.as_ref() {
let base_ty = Place::ty_from(place.local, proj_base, cx.body, cx.tcx).ty;
if let ty::Ref(..) = base_ty.kind() {
return in_place::<Q, _>(
cx,
in_local,
PlaceRef { local: place.local, projection: proj_base },
);
}
}
in_place::<Q, _>(cx, in_local, place.as_ref())
}
Rvalue::Aggregate(kind, operands) => {
// Return early if we know that the struct or enum being constructed is always
// qualified.
if let AggregateKind::Adt(def, _, substs, ..) = **kind {
if Q::in_adt_inherently(cx, def, substs) {
return true;
}
}
// Otherwise, proceed structurally...
operands.iter().any(|o| in_operand::<Q, _>(cx, in_local, o))
}
}
}
/// Returns `true` if this `Place` contains qualif `Q`.
pub fn in_place<Q, F>(cx: &ConstCx<'_, 'tcx>, in_local: &mut F, place: PlaceRef<'tcx>) -> bool
where
Q: Qualif,
F: FnMut(Local) -> bool,
{
let mut projection = place.projection;
while let &[ref proj_base @ .., proj_elem] = projection {
match proj_elem {
ProjectionElem::Index(index) if in_local(index) => return true,
ProjectionElem::Deref
| ProjectionElem::Field(_, _)
| ProjectionElem::ConstantIndex { .. }
| ProjectionElem::Subslice { .. }
| ProjectionElem::Downcast(_, _)
| ProjectionElem::Index(_) => {}
}
let base_ty = Place::ty_from(place.local, proj_base, cx.body, cx.tcx);
let proj_ty = base_ty.projection_ty(cx.tcx, proj_elem).ty;
if !Q::in_any_value_of_ty(cx, proj_ty) {
return false;
}
projection = proj_base;
}
assert!(projection.is_empty());
in_local(place.local)
}
/// Returns `true` if this `Operand` contains qualif `Q`.
pub fn in_operand<Q, F>(cx: &ConstCx<'_, 'tcx>, in_local: &mut F, operand: &Operand<'tcx>) -> bool
where
Q: Qualif,
F: FnMut(Local) -> bool,
{
let constant = match operand {
Operand::Copy(place) | Operand::Move(place) => {
return in_place::<Q, _>(cx, in_local, place.as_ref());
}
Operand::Constant(c) => c,
};
// Check the qualifs of the value of `const` items.
if let ty::ConstKind::Unevaluated(def, _, promoted) = constant.literal.val {
assert!(promoted.is_none());
// Don't peek inside trait associated constants.
if cx.tcx.trait_of_item(def.did).is_none() {
let qualifs = if let Some((did, param_did)) = def.as_const_arg() {
cx.tcx.at(constant.span).mir_const_qualif_const_arg((did, param_did))
} else {
cx.tcx.at(constant.span).mir_const_qualif(def.did)
};
if !Q::in_qualifs(&qualifs) {
return false;
}
// Just in case the type is more specific than
// the definition, e.g., impl associated const
// with type parameters, take it into account.
}
}
// Otherwise use the qualifs of the type.
Q::in_any_value_of_ty(cx, constant.literal.ty)
}