blob: 66dbacb2f9d4d39af4c2b0421d5f3baf03c1dd27 [file] [log] [blame]
//! This module contains everything needed to instantiate an interpreter.
//! This separation exists to ensure that no fancy miri features like
//! interpreting common C functions leak into CTFE.
use std::borrow::{Borrow, Cow};
use std::fmt::Debug;
use std::hash::Hash;
use rustc_middle::mir;
use rustc_middle::ty::{self, Ty};
use rustc_span::def_id::DefId;
use super::{
AllocId, Allocation, AllocationExtra, CheckInAllocMsg, Frame, ImmTy, InterpCx, InterpResult,
LocalValue, MemPlace, Memory, MemoryKind, OpTy, Operand, PlaceTy, Pointer, Scalar,
};
/// Data returned by Machine::stack_pop,
/// to provide further control over the popping of the stack frame
#[derive(Eq, PartialEq, Debug, Copy, Clone)]
pub enum StackPopJump {
/// Indicates that no special handling should be
/// done - we'll either return normally or unwind
/// based on the terminator for the function
/// we're leaving.
Normal,
/// Indicates that we should *not* jump to the return/unwind address, as the callback already
/// took care of everything.
NoJump,
}
/// Whether this kind of memory is allowed to leak
pub trait MayLeak: Copy {
fn may_leak(self) -> bool;
}
/// The functionality needed by memory to manage its allocations
pub trait AllocMap<K: Hash + Eq, V> {
/// Tests if the map contains the given key.
/// Deliberately takes `&mut` because that is sufficient, and some implementations
/// can be more efficient then (using `RefCell::get_mut`).
fn contains_key<Q: ?Sized + Hash + Eq>(&mut self, k: &Q) -> bool
where
K: Borrow<Q>;
/// Inserts a new entry into the map.
fn insert(&mut self, k: K, v: V) -> Option<V>;
/// Removes an entry from the map.
fn remove<Q: ?Sized + Hash + Eq>(&mut self, k: &Q) -> Option<V>
where
K: Borrow<Q>;
/// Returns data based on the keys and values in the map.
fn filter_map_collect<T>(&self, f: impl FnMut(&K, &V) -> Option<T>) -> Vec<T>;
/// Returns a reference to entry `k`. If no such entry exists, call
/// `vacant` and either forward its error, or add its result to the map
/// and return a reference to *that*.
fn get_or<E>(&self, k: K, vacant: impl FnOnce() -> Result<V, E>) -> Result<&V, E>;
/// Returns a mutable reference to entry `k`. If no such entry exists, call
/// `vacant` and either forward its error, or add its result to the map
/// and return a reference to *that*.
fn get_mut_or<E>(&mut self, k: K, vacant: impl FnOnce() -> Result<V, E>) -> Result<&mut V, E>;
/// Read-only lookup.
fn get(&self, k: K) -> Option<&V> {
self.get_or(k, || Err(())).ok()
}
/// Mutable lookup.
fn get_mut(&mut self, k: K) -> Option<&mut V> {
self.get_mut_or(k, || Err(())).ok()
}
}
/// Methods of this trait signifies a point where CTFE evaluation would fail
/// and some use case dependent behaviour can instead be applied.
pub trait Machine<'mir, 'tcx>: Sized {
/// Additional memory kinds a machine wishes to distinguish from the builtin ones
type MemoryKind: Debug + std::fmt::Display + MayLeak + Eq + 'static;
/// Tag tracked alongside every pointer. This is used to implement "Stacked Borrows"
/// <https://www.ralfj.de/blog/2018/08/07/stacked-borrows.html>.
/// The `default()` is used for pointers to consts, statics, vtables and functions.
/// The `Debug` formatting is used for displaying pointers; we cannot use `Display`
/// as `()` does not implement that, but it should be "nice" output.
type PointerTag: Debug + Copy + Eq + Hash + 'static;
/// Machines can define extra (non-instance) things that represent values of function pointers.
/// For example, Miri uses this to return a function pointer from `dlsym`
/// that can later be called to execute the right thing.
type ExtraFnVal: Debug + Copy;
/// Extra data stored in every call frame.
type FrameExtra;
/// Extra data stored in memory. A reference to this is available when `AllocExtra`
/// gets initialized, so you can e.g., have an `Rc` here if there is global state you
/// need access to in the `AllocExtra` hooks.
type MemoryExtra;
/// Extra data stored in every allocation.
type AllocExtra: AllocationExtra<Self::PointerTag> + 'static;
/// Memory's allocation map
type MemoryMap: AllocMap<
AllocId,
(MemoryKind<Self::MemoryKind>, Allocation<Self::PointerTag, Self::AllocExtra>),
> + Default
+ Clone;
/// The memory kind to use for copied global memory (held in `tcx`) --
/// or None if such memory should not be mutated and thus any such attempt will cause
/// a `ModifiedStatic` error to be raised.
/// Statics are copied under two circumstances: When they are mutated, and when
/// `tag_allocation` (see below) returns an owned allocation
/// that is added to the memory so that the work is not done twice.
const GLOBAL_KIND: Option<Self::MemoryKind>;
/// Whether memory accesses should be alignment-checked.
fn enforce_alignment(memory_extra: &Self::MemoryExtra) -> bool;
/// Whether, when checking alignment, we should `force_int` and thus support
/// custom alignment logic based on whatever the integer address happens to be.
fn force_int_for_alignment_check(memory_extra: &Self::MemoryExtra) -> bool;
/// Whether to enforce the validity invariant
fn enforce_validity(ecx: &InterpCx<'mir, 'tcx, Self>) -> bool;
/// Entry point to all function calls.
///
/// Returns either the mir to use for the call, or `None` if execution should
/// just proceed (which usually means this hook did all the work that the
/// called function should usually have done). In the latter case, it is
/// this hook's responsibility to advance the instruction pointer!
/// (This is to support functions like `__rust_maybe_catch_panic` that neither find a MIR
/// nor just jump to `ret`, but instead push their own stack frame.)
/// Passing `dest`and `ret` in the same `Option` proved very annoying when only one of them
/// was used.
fn find_mir_or_eval_fn(
ecx: &mut InterpCx<'mir, 'tcx, Self>,
instance: ty::Instance<'tcx>,
args: &[OpTy<'tcx, Self::PointerTag>],
ret: Option<(PlaceTy<'tcx, Self::PointerTag>, mir::BasicBlock)>,
unwind: Option<mir::BasicBlock>,
) -> InterpResult<'tcx, Option<&'mir mir::Body<'tcx>>>;
/// Execute `fn_val`. It is the hook's responsibility to advance the instruction
/// pointer as appropriate.
fn call_extra_fn(
ecx: &mut InterpCx<'mir, 'tcx, Self>,
fn_val: Self::ExtraFnVal,
args: &[OpTy<'tcx, Self::PointerTag>],
ret: Option<(PlaceTy<'tcx, Self::PointerTag>, mir::BasicBlock)>,
unwind: Option<mir::BasicBlock>,
) -> InterpResult<'tcx>;
/// Directly process an intrinsic without pushing a stack frame. It is the hook's
/// responsibility to advance the instruction pointer as appropriate.
fn call_intrinsic(
ecx: &mut InterpCx<'mir, 'tcx, Self>,
instance: ty::Instance<'tcx>,
args: &[OpTy<'tcx, Self::PointerTag>],
ret: Option<(PlaceTy<'tcx, Self::PointerTag>, mir::BasicBlock)>,
unwind: Option<mir::BasicBlock>,
) -> InterpResult<'tcx>;
/// Called to evaluate `Assert` MIR terminators that trigger a panic.
fn assert_panic(
ecx: &mut InterpCx<'mir, 'tcx, Self>,
msg: &mir::AssertMessage<'tcx>,
unwind: Option<mir::BasicBlock>,
) -> InterpResult<'tcx>;
/// Called to evaluate `Abort` MIR terminator.
fn abort(_ecx: &mut InterpCx<'mir, 'tcx, Self>) -> InterpResult<'tcx, !> {
throw_unsup_format!("aborting execution is not supported")
}
/// Called for all binary operations where the LHS has pointer type.
///
/// Returns a (value, overflowed) pair if the operation succeeded
fn binary_ptr_op(
ecx: &InterpCx<'mir, 'tcx, Self>,
bin_op: mir::BinOp,
left: ImmTy<'tcx, Self::PointerTag>,
right: ImmTy<'tcx, Self::PointerTag>,
) -> InterpResult<'tcx, (Scalar<Self::PointerTag>, bool, Ty<'tcx>)>;
/// Heap allocations via the `box` keyword.
fn box_alloc(
ecx: &mut InterpCx<'mir, 'tcx, Self>,
dest: PlaceTy<'tcx, Self::PointerTag>,
) -> InterpResult<'tcx>;
/// Called to read the specified `local` from the `frame`.
/// Since reading a ZST is not actually accessing memory or locals, this is never invoked
/// for ZST reads.
#[inline]
fn access_local(
_ecx: &InterpCx<'mir, 'tcx, Self>,
frame: &Frame<'mir, 'tcx, Self::PointerTag, Self::FrameExtra>,
local: mir::Local,
) -> InterpResult<'tcx, Operand<Self::PointerTag>> {
frame.locals[local].access()
}
/// Called to write the specified `local` from the `frame`.
/// Since writing a ZST is not actually accessing memory or locals, this is never invoked
/// for ZST reads.
#[inline]
fn access_local_mut<'a>(
ecx: &'a mut InterpCx<'mir, 'tcx, Self>,
frame: usize,
local: mir::Local,
) -> InterpResult<'tcx, Result<&'a mut LocalValue<Self::PointerTag>, MemPlace<Self::PointerTag>>>
where
'tcx: 'mir,
{
ecx.stack_mut()[frame].locals[local].access_mut()
}
/// Called before a basic block terminator is executed.
/// You can use this to detect endlessly running programs.
#[inline]
fn before_terminator(_ecx: &mut InterpCx<'mir, 'tcx, Self>) -> InterpResult<'tcx> {
Ok(())
}
/// Called before a global allocation is accessed.
/// `def_id` is `Some` if this is the "lazy" allocation of a static.
#[inline]
fn before_access_global(
_memory_extra: &Self::MemoryExtra,
_alloc_id: AllocId,
_allocation: &Allocation,
_static_def_id: Option<DefId>,
_is_write: bool,
) -> InterpResult<'tcx> {
Ok(())
}
/// Return the `AllocId` for the given thread-local static in the current thread.
fn thread_local_static_alloc_id(
_ecx: &mut InterpCx<'mir, 'tcx, Self>,
def_id: DefId,
) -> InterpResult<'tcx, AllocId> {
throw_unsup!(ThreadLocalStatic(def_id))
}
/// Return the `AllocId` backing the given `extern static`.
fn extern_static_alloc_id(
mem: &Memory<'mir, 'tcx, Self>,
def_id: DefId,
) -> InterpResult<'tcx, AllocId> {
// Use the `AllocId` associated with the `DefId`. Any actual *access* will fail.
Ok(mem.tcx.create_static_alloc(def_id))
}
/// Return the "base" tag for the given *global* allocation: the one that is used for direct
/// accesses to this static/const/fn allocation. If `id` is not a global allocation,
/// this will return an unusable tag (i.e., accesses will be UB)!
///
/// Called on the id returned by `thread_local_static_alloc_id` and `extern_static_alloc_id`, if needed.
fn tag_global_base_pointer(memory_extra: &Self::MemoryExtra, id: AllocId) -> Self::PointerTag;
/// Called to initialize the "extra" state of an allocation and make the pointers
/// it contains (in relocations) tagged. The way we construct allocations is
/// to always first construct it without extra and then add the extra.
/// This keeps uniform code paths for handling both allocations created by CTFE
/// for globals, and allocations created by Miri during evaluation.
///
/// `kind` is the kind of the allocation being tagged; it can be `None` when
/// it's a global and `GLOBAL_KIND` is `None`.
///
/// This should avoid copying if no work has to be done! If this returns an owned
/// allocation (because a copy had to be done to add tags or metadata), machine memory will
/// cache the result. (This relies on `AllocMap::get_or` being able to add the
/// owned allocation to the map even when the map is shared.)
///
/// Also return the "base" tag to use for this allocation: the one that is used for direct
/// accesses to this allocation. If `kind == STATIC_KIND`, this tag must be consistent
/// with `tag_global_base_pointer`.
fn init_allocation_extra<'b>(
memory_extra: &Self::MemoryExtra,
id: AllocId,
alloc: Cow<'b, Allocation>,
kind: Option<MemoryKind<Self::MemoryKind>>,
) -> (Cow<'b, Allocation<Self::PointerTag, Self::AllocExtra>>, Self::PointerTag);
/// Called to notify the machine before a deallocation occurs.
fn before_deallocation(
_memory_extra: &mut Self::MemoryExtra,
_id: AllocId,
) -> InterpResult<'tcx> {
Ok(())
}
/// Executes a retagging operation
#[inline]
fn retag(
_ecx: &mut InterpCx<'mir, 'tcx, Self>,
_kind: mir::RetagKind,
_place: PlaceTy<'tcx, Self::PointerTag>,
) -> InterpResult<'tcx> {
Ok(())
}
/// Called immediately before a new stack frame gets pushed.
fn init_frame_extra(
ecx: &mut InterpCx<'mir, 'tcx, Self>,
frame: Frame<'mir, 'tcx, Self::PointerTag>,
) -> InterpResult<'tcx, Frame<'mir, 'tcx, Self::PointerTag, Self::FrameExtra>>;
/// Borrow the current thread's stack.
fn stack(
ecx: &'a InterpCx<'mir, 'tcx, Self>,
) -> &'a [Frame<'mir, 'tcx, Self::PointerTag, Self::FrameExtra>];
/// Mutably borrow the current thread's stack.
fn stack_mut(
ecx: &'a mut InterpCx<'mir, 'tcx, Self>,
) -> &'a mut Vec<Frame<'mir, 'tcx, Self::PointerTag, Self::FrameExtra>>;
/// Called immediately after a stack frame got pushed and its locals got initialized.
fn after_stack_push(_ecx: &mut InterpCx<'mir, 'tcx, Self>) -> InterpResult<'tcx> {
Ok(())
}
/// Called immediately after a stack frame got popped, but before jumping back to the caller.
fn after_stack_pop(
_ecx: &mut InterpCx<'mir, 'tcx, Self>,
_frame: Frame<'mir, 'tcx, Self::PointerTag, Self::FrameExtra>,
_unwinding: bool,
) -> InterpResult<'tcx, StackPopJump> {
// By default, we do not support unwinding from panics
Ok(StackPopJump::Normal)
}
fn int_to_ptr(
_mem: &Memory<'mir, 'tcx, Self>,
int: u64,
) -> InterpResult<'tcx, Pointer<Self::PointerTag>> {
Err((if int == 0 {
// This is UB, seriously.
err_ub!(DanglingIntPointer(0, CheckInAllocMsg::InboundsTest))
} else {
// This is just something we cannot support during const-eval.
err_unsup!(ReadBytesAsPointer)
})
.into())
}
fn ptr_to_int(
_mem: &Memory<'mir, 'tcx, Self>,
_ptr: Pointer<Self::PointerTag>,
) -> InterpResult<'tcx, u64>;
}
// A lot of the flexibility above is just needed for `Miri`, but all "compile-time" machines
// (CTFE and ConstProp) use the same instance. Here, we share that code.
pub macro compile_time_machine(<$mir: lifetime, $tcx: lifetime>) {
type PointerTag = ();
type ExtraFnVal = !;
type MemoryKind = !;
type MemoryMap = rustc_data_structures::fx::FxHashMap<AllocId, (MemoryKind<!>, Allocation)>;
const GLOBAL_KIND: Option<!> = None; // no copying of globals from `tcx` to machine memory
type AllocExtra = ();
type FrameExtra = ();
#[inline(always)]
fn enforce_alignment(_memory_extra: &Self::MemoryExtra) -> bool {
// We do not check for alignment to avoid having to carry an `Align`
// in `ConstValue::ByRef`.
false
}
#[inline(always)]
fn force_int_for_alignment_check(_memory_extra: &Self::MemoryExtra) -> bool {
// We do not support `force_int`.
false
}
#[inline(always)]
fn enforce_validity(_ecx: &InterpCx<$mir, $tcx, Self>) -> bool {
false // for now, we don't enforce validity
}
#[inline(always)]
fn call_extra_fn(
_ecx: &mut InterpCx<$mir, $tcx, Self>,
fn_val: !,
_args: &[OpTy<$tcx>],
_ret: Option<(PlaceTy<$tcx>, mir::BasicBlock)>,
_unwind: Option<mir::BasicBlock>,
) -> InterpResult<$tcx> {
match fn_val {}
}
#[inline(always)]
fn init_allocation_extra<'b>(
_memory_extra: &Self::MemoryExtra,
_id: AllocId,
alloc: Cow<'b, Allocation>,
_kind: Option<MemoryKind<!>>,
) -> (Cow<'b, Allocation<Self::PointerTag>>, Self::PointerTag) {
// We do not use a tag so we can just cheaply forward the allocation
(alloc, ())
}
#[inline(always)]
fn tag_global_base_pointer(
_memory_extra: &Self::MemoryExtra,
_id: AllocId,
) -> Self::PointerTag {
()
}
}