blob: 6ef73b04238d4d00cd88587a1c54b9df26b0092e [file] [log] [blame]
use super::{CompileTimeEvalContext, CompileTimeInterpreter, ConstEvalErr, MemoryExtra};
use crate::interpret::eval_nullary_intrinsic;
use crate::interpret::{
intern_const_alloc_recursive, Allocation, ConstAlloc, ConstValue, GlobalId, Immediate,
InternKind, InterpCx, InterpResult, MPlaceTy, MemoryKind, OpTy, RefTracking, Scalar,
ScalarMaybeUninit, StackPopCleanup,
};
use rustc_hir::def::DefKind;
use rustc_middle::mir;
use rustc_middle::mir::interpret::ErrorHandled;
use rustc_middle::traits::Reveal;
use rustc_middle::ty::print::with_no_trimmed_paths;
use rustc_middle::ty::{self, subst::Subst, TyCtxt};
use rustc_span::source_map::Span;
use rustc_target::abi::{Abi, LayoutOf};
use std::convert::{TryFrom, TryInto};
pub fn note_on_undefined_behavior_error() -> &'static str {
"The rules on what exactly is undefined behavior aren't clear, \
so this check might be overzealous. Please open an issue on the rustc \
repository if you believe it should not be considered undefined behavior."
}
// Returns a pointer to where the result lives
fn eval_body_using_ecx<'mir, 'tcx>(
ecx: &mut CompileTimeEvalContext<'mir, 'tcx>,
cid: GlobalId<'tcx>,
body: &'mir mir::Body<'tcx>,
) -> InterpResult<'tcx, MPlaceTy<'tcx>> {
debug!("eval_body_using_ecx: {:?}, {:?}", cid, ecx.param_env);
let tcx = *ecx.tcx;
let layout = ecx.layout_of(body.return_ty().subst(tcx, cid.instance.substs))?;
assert!(!layout.is_unsized());
let ret = ecx.allocate(layout, MemoryKind::Stack);
let name =
with_no_trimmed_paths(|| ty::tls::with(|tcx| tcx.def_path_str(cid.instance.def_id())));
let prom = cid.promoted.map_or(String::new(), |p| format!("::promoted[{:?}]", p));
trace!("eval_body_using_ecx: pushing stack frame for global: {}{}", name, prom);
// Assert all args (if any) are zero-sized types; `eval_body_using_ecx` doesn't
// make sense if the body is expecting nontrivial arguments.
// (The alternative would be to use `eval_fn_call` with an args slice.)
for arg in body.args_iter() {
let decl = body.local_decls.get(arg).expect("arg missing from local_decls");
let layout = ecx.layout_of(decl.ty.subst(tcx, cid.instance.substs))?;
assert!(layout.is_zst())
}
ecx.push_stack_frame(
cid.instance,
body,
Some(ret.into()),
StackPopCleanup::None { cleanup: false },
)?;
// The main interpreter loop.
ecx.run()?;
// Intern the result
// FIXME: since the DefId of a promoted is the DefId of its owner, this
// means that promoteds in statics are actually interned like statics!
// However, this is also currently crucial because we promote mutable
// non-empty slices in statics to extend their lifetime, and this
// ensures that they are put into a mutable allocation.
// For other kinds of promoteds in statics (like array initializers), this is rather silly.
let intern_kind = match tcx.static_mutability(cid.instance.def_id()) {
Some(m) => InternKind::Static(m),
None if cid.promoted.is_some() => InternKind::Promoted,
_ => InternKind::Constant,
};
intern_const_alloc_recursive(
ecx,
intern_kind,
ret,
body.ignore_interior_mut_in_const_validation,
);
debug!("eval_body_using_ecx done: {:?}", *ret);
Ok(ret)
}
/// The `InterpCx` is only meant to be used to do field and index projections into constants for
/// `simd_shuffle` and const patterns in match arms.
///
/// The function containing the `match` that is currently being analyzed may have generic bounds
/// that inform us about the generic bounds of the constant. E.g., using an associated constant
/// of a function's generic parameter will require knowledge about the bounds on the generic
/// parameter. These bounds are passed to `mk_eval_cx` via the `ParamEnv` argument.
pub(super) fn mk_eval_cx<'mir, 'tcx>(
tcx: TyCtxt<'tcx>,
root_span: Span,
param_env: ty::ParamEnv<'tcx>,
can_access_statics: bool,
) -> CompileTimeEvalContext<'mir, 'tcx> {
debug!("mk_eval_cx: {:?}", param_env);
InterpCx::new(
tcx,
root_span,
param_env,
CompileTimeInterpreter::new(tcx.sess.const_eval_limit()),
MemoryExtra { can_access_statics },
)
}
/// This function converts an interpreter value into a constant that is meant for use in the
/// type system.
pub(super) fn op_to_const<'tcx>(
ecx: &CompileTimeEvalContext<'_, 'tcx>,
op: OpTy<'tcx>,
) -> ConstValue<'tcx> {
// We do not have value optimizations for everything.
// Only scalars and slices, since they are very common.
// Note that further down we turn scalars of uninitialized bits back to `ByRef`. These can result
// from scalar unions that are initialized with one of their zero sized variants. We could
// instead allow `ConstValue::Scalar` to store `ScalarMaybeUninit`, but that would affect all
// the usual cases of extracting e.g. a `usize`, without there being a real use case for the
// `Undef` situation.
let try_as_immediate = match op.layout.abi {
Abi::Scalar(..) => true,
Abi::ScalarPair(..) => match op.layout.ty.kind() {
ty::Ref(_, inner, _) => match *inner.kind() {
ty::Slice(elem) => elem == ecx.tcx.types.u8,
ty::Str => true,
_ => false,
},
_ => false,
},
_ => false,
};
let immediate = if try_as_immediate {
Err(ecx.read_immediate(op).expect("normalization works on validated constants"))
} else {
// It is guaranteed that any non-slice scalar pair is actually ByRef here.
// When we come back from raw const eval, we are always by-ref. The only way our op here is
// by-val is if we are in destructure_const, i.e., if this is (a field of) something that we
// "tried to make immediate" before. We wouldn't do that for non-slice scalar pairs or
// structs containing such.
op.try_as_mplace(ecx)
};
let to_const_value = |mplace: MPlaceTy<'_>| match mplace.ptr {
Scalar::Ptr(ptr) => {
let alloc = ecx.tcx.global_alloc(ptr.alloc_id).unwrap_memory();
ConstValue::ByRef { alloc, offset: ptr.offset }
}
Scalar::Raw { data, .. } => {
assert!(mplace.layout.is_zst());
assert_eq!(
u64::try_from(data).unwrap() % mplace.layout.align.abi.bytes(),
0,
"this MPlaceTy must come from a validated constant, thus we can assume the \
alignment is correct",
);
ConstValue::Scalar(Scalar::zst())
}
};
match immediate {
Ok(mplace) => to_const_value(mplace),
// see comment on `let try_as_immediate` above
Err(imm) => match *imm {
Immediate::Scalar(x) => match x {
ScalarMaybeUninit::Scalar(s) => ConstValue::Scalar(s),
ScalarMaybeUninit::Uninit => to_const_value(op.assert_mem_place(ecx)),
},
Immediate::ScalarPair(a, b) => {
let (data, start) = match a.check_init().unwrap() {
Scalar::Ptr(ptr) => {
(ecx.tcx.global_alloc(ptr.alloc_id).unwrap_memory(), ptr.offset.bytes())
}
Scalar::Raw { .. } => (
ecx.tcx
.intern_const_alloc(Allocation::from_byte_aligned_bytes(b"" as &[u8])),
0,
),
};
let len = b.to_machine_usize(ecx).unwrap();
let start = start.try_into().unwrap();
let len: usize = len.try_into().unwrap();
ConstValue::Slice { data, start, end: start + len }
}
},
}
}
fn turn_into_const_value<'tcx>(
tcx: TyCtxt<'tcx>,
constant: ConstAlloc<'tcx>,
key: ty::ParamEnvAnd<'tcx, GlobalId<'tcx>>,
) -> ConstValue<'tcx> {
let cid = key.value;
let def_id = cid.instance.def.def_id();
let is_static = tcx.is_static(def_id);
let ecx = mk_eval_cx(tcx, tcx.def_span(key.value.instance.def_id()), key.param_env, is_static);
let mplace = ecx.raw_const_to_mplace(constant).expect(
"can only fail if layout computation failed, \
which should have given a good error before ever invoking this function",
);
assert!(
!is_static || cid.promoted.is_some(),
"the `eval_to_const_value_raw` query should not be used for statics, use `eval_to_allocation` instead"
);
// Turn this into a proper constant.
op_to_const(&ecx, mplace.into())
}
pub fn eval_to_const_value_raw_provider<'tcx>(
tcx: TyCtxt<'tcx>,
key: ty::ParamEnvAnd<'tcx, GlobalId<'tcx>>,
) -> ::rustc_middle::mir::interpret::EvalToConstValueResult<'tcx> {
// see comment in const_eval_raw_provider for what we're doing here
if key.param_env.reveal() == Reveal::All {
let mut key = key;
key.param_env = key.param_env.with_user_facing();
match tcx.eval_to_const_value_raw(key) {
// try again with reveal all as requested
Err(ErrorHandled::TooGeneric) => {}
// deduplicate calls
other => return other,
}
}
// We call `const_eval` for zero arg intrinsics, too, in order to cache their value.
// Catch such calls and evaluate them instead of trying to load a constant's MIR.
if let ty::InstanceDef::Intrinsic(def_id) = key.value.instance.def {
let ty = key.value.instance.ty(tcx, key.param_env);
let substs = match ty.kind() {
ty::FnDef(_, substs) => substs,
_ => bug!("intrinsic with type {:?}", ty),
};
return eval_nullary_intrinsic(tcx, key.param_env, def_id, substs).map_err(|error| {
let span = tcx.def_span(def_id);
let error = ConstEvalErr { error: error.kind, stacktrace: vec![], span };
error.report_as_error(tcx.at(span), "could not evaluate nullary intrinsic")
});
}
tcx.eval_to_allocation_raw(key).map(|val| turn_into_const_value(tcx, val, key))
}
pub fn eval_to_allocation_raw_provider<'tcx>(
tcx: TyCtxt<'tcx>,
key: ty::ParamEnvAnd<'tcx, GlobalId<'tcx>>,
) -> ::rustc_middle::mir::interpret::EvalToAllocationRawResult<'tcx> {
// Because the constant is computed twice (once per value of `Reveal`), we are at risk of
// reporting the same error twice here. To resolve this, we check whether we can evaluate the
// constant in the more restrictive `Reveal::UserFacing`, which most likely already was
// computed. For a large percentage of constants that will already have succeeded. Only
// associated constants of generic functions will fail due to not enough monomorphization
// information being available.
// In case we fail in the `UserFacing` variant, we just do the real computation.
if key.param_env.reveal() == Reveal::All {
let mut key = key;
key.param_env = key.param_env.with_user_facing();
match tcx.eval_to_allocation_raw(key) {
// try again with reveal all as requested
Err(ErrorHandled::TooGeneric) => {}
// deduplicate calls
other => return other,
}
}
if cfg!(debug_assertions) {
// Make sure we format the instance even if we do not print it.
// This serves as a regression test against an ICE on printing.
// The next two lines concatenated contain some discussion:
// https://rust-lang.zulipchat.com/#narrow/stream/146212-t-compiler.2Fconst-eval/
// subject/anon_const_instance_printing/near/135980032
let instance = with_no_trimmed_paths(|| key.value.instance.to_string());
trace!("const eval: {:?} ({})", key, instance);
}
let cid = key.value;
let def = cid.instance.def.with_opt_param();
if let Some(def) = def.as_local() {
if tcx.has_typeck_results(def.did) {
if let Some(error_reported) = tcx.typeck_opt_const_arg(def).tainted_by_errors {
return Err(ErrorHandled::Reported(error_reported));
}
}
}
let is_static = tcx.is_static(def.did);
let mut ecx = InterpCx::new(
tcx,
tcx.def_span(def.did),
key.param_env,
CompileTimeInterpreter::new(tcx.sess.const_eval_limit()),
MemoryExtra { can_access_statics: is_static },
);
let res = ecx.load_mir(cid.instance.def, cid.promoted);
match res.and_then(|body| eval_body_using_ecx(&mut ecx, cid, &body)) {
Err(error) => {
let err = ConstEvalErr::new(&ecx, error, None);
// errors in statics are always emitted as fatal errors
if is_static {
// Ensure that if the above error was either `TooGeneric` or `Reported`
// an error must be reported.
let v = err.report_as_error(
ecx.tcx.at(ecx.cur_span()),
"could not evaluate static initializer",
);
// If this is `Reveal:All`, then we need to make sure an error is reported but if
// this is `Reveal::UserFacing`, then it's expected that we could get a
// `TooGeneric` error. When we fall back to `Reveal::All`, then it will either
// succeed or we'll report this error then.
if key.param_env.reveal() == Reveal::All {
tcx.sess.delay_span_bug(
err.span,
&format!("static eval failure did not emit an error: {:#?}", v),
);
}
Err(v)
} else if let Some(def) = def.as_local() {
// constant defined in this crate, we can figure out a lint level!
match tcx.def_kind(def.did.to_def_id()) {
// constants never produce a hard error at the definition site. Anything else is
// a backwards compatibility hazard (and will break old versions of winapi for
// sure)
//
// note that validation may still cause a hard error on this very same constant,
// because any code that existed before validation could not have failed
// validation thus preventing such a hard error from being a backwards
// compatibility hazard
DefKind::Const | DefKind::AssocConst => {
let hir_id = tcx.hir().local_def_id_to_hir_id(def.did);
Err(err.report_as_lint(
tcx.at(tcx.def_span(def.did)),
"any use of this value will cause an error",
hir_id,
Some(err.span),
))
}
// promoting runtime code is only allowed to error if it references broken
// constants any other kind of error will be reported to the user as a
// deny-by-default lint
_ => {
if let Some(p) = cid.promoted {
let span = tcx.promoted_mir_opt_const_arg(def.to_global())[p].span;
if let err_inval!(ReferencedConstant) = err.error {
Err(err.report_as_error(
tcx.at(span),
"evaluation of constant expression failed",
))
} else {
Err(err.report_as_lint(
tcx.at(span),
"reaching this expression at runtime will panic or abort",
tcx.hir().local_def_id_to_hir_id(def.did),
Some(err.span),
))
}
// anything else (array lengths, enum initializers, constant patterns) are
// reported as hard errors
} else {
Err(err.report_as_error(
ecx.tcx.at(ecx.cur_span()),
"evaluation of constant value failed",
))
}
}
}
} else {
// use of broken constant from other crate
Err(err.report_as_error(ecx.tcx.at(ecx.cur_span()), "could not evaluate constant"))
}
}
Ok(mplace) => {
// Since evaluation had no errors, valiate the resulting constant:
let validation = try {
// FIXME do not validate promoteds until a decision on
// https://github.com/rust-lang/rust/issues/67465 is made
if cid.promoted.is_none() {
let mut ref_tracking = RefTracking::new(mplace);
while let Some((mplace, path)) = ref_tracking.todo.pop() {
ecx.const_validate_operand(
mplace.into(),
path,
&mut ref_tracking,
/*may_ref_to_static*/ ecx.memory.extra.can_access_statics,
)?;
}
}
};
if let Err(error) = validation {
// Validation failed, report an error
let err = ConstEvalErr::new(&ecx, error, None);
Err(err.struct_error(
ecx.tcx,
"it is undefined behavior to use this value",
|mut diag| {
diag.note(note_on_undefined_behavior_error());
diag.emit();
},
))
} else {
// Convert to raw constant
Ok(ConstAlloc { alloc_id: mplace.ptr.assert_ptr().alloc_id, ty: mplace.layout.ty })
}
}
}
}