blob: aa428328fe92f7058687a1ab1a464247f5012e6d [file] [log] [blame]
//! The entry point of the NLL borrow checker.
use rustc_data_structures::fx::FxHashMap;
use rustc_errors::Diagnostic;
use rustc_hir::def_id::DefId;
use rustc_index::vec::IndexVec;
use rustc_infer::infer::InferCtxt;
use rustc_middle::mir::{
BasicBlock, Body, ClosureOutlivesSubject, ClosureRegionRequirements, LocalKind, Location,
Promoted,
};
use rustc_middle::ty::{self, RegionKind, RegionVid};
use rustc_span::symbol::sym;
use std::env;
use std::fmt::Debug;
use std::io;
use std::path::PathBuf;
use std::rc::Rc;
use std::str::FromStr;
use self::mir_util::PassWhere;
use polonius_engine::{Algorithm, Output};
use crate::dataflow::impls::MaybeInitializedPlaces;
use crate::dataflow::move_paths::{InitKind, InitLocation, MoveData};
use crate::dataflow::ResultsCursor;
use crate::util as mir_util;
use crate::util::pretty;
use crate::borrow_check::{
borrow_set::BorrowSet,
constraint_generation,
diagnostics::RegionErrors,
facts::{AllFacts, AllFactsExt, RustcFacts},
invalidation,
location::LocationTable,
region_infer::{values::RegionValueElements, RegionInferenceContext},
renumber,
type_check::{self, MirTypeckRegionConstraints, MirTypeckResults},
universal_regions::UniversalRegions,
Upvar,
};
crate type PoloniusOutput = Output<RustcFacts>;
/// The output of `nll::compute_regions`. This includes the computed `RegionInferenceContext`, any
/// closure requirements to propagate, and any generated errors.
crate struct NllOutput<'tcx> {
pub regioncx: RegionInferenceContext<'tcx>,
pub opaque_type_values: FxHashMap<DefId, ty::ResolvedOpaqueTy<'tcx>>,
pub polonius_output: Option<Rc<PoloniusOutput>>,
pub opt_closure_req: Option<ClosureRegionRequirements<'tcx>>,
pub nll_errors: RegionErrors<'tcx>,
}
/// Rewrites the regions in the MIR to use NLL variables, also scraping out the set of universal
/// regions (e.g., region parameters) declared on the function. That set will need to be given to
/// `compute_regions`.
pub(in crate::borrow_check) fn replace_regions_in_mir<'cx, 'tcx>(
infcx: &InferCtxt<'cx, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
body: &mut Body<'tcx>,
promoted: &mut IndexVec<Promoted, Body<'tcx>>,
) -> UniversalRegions<'tcx> {
let def = body.source.with_opt_param().as_local().unwrap();
debug!("replace_regions_in_mir(def={:?})", def);
// Compute named region information. This also renumbers the inputs/outputs.
let universal_regions = UniversalRegions::new(infcx, def, param_env);
// Replace all remaining regions with fresh inference variables.
renumber::renumber_mir(infcx, body, promoted);
mir_util::dump_mir(infcx.tcx, None, "renumber", &0, body, |_, _| Ok(()));
universal_regions
}
// This function populates an AllFacts instance with base facts related to
// MovePaths and needed for the move analysis.
fn populate_polonius_move_facts(
all_facts: &mut AllFacts,
move_data: &MoveData<'_>,
location_table: &LocationTable,
body: &Body<'_>,
) {
all_facts
.path_is_var
.extend(move_data.rev_lookup.iter_locals_enumerated().map(|(v, &m)| (m, v)));
for (child, move_path) in move_data.move_paths.iter_enumerated() {
if let Some(parent) = move_path.parent {
all_facts.child_path.push((child, parent));
}
}
let fn_entry_start = location_table
.start_index(Location { block: BasicBlock::from_u32(0u32), statement_index: 0 });
// initialized_at
for init in move_data.inits.iter() {
match init.location {
InitLocation::Statement(location) => {
let block_data = &body[location.block];
let is_terminator = location.statement_index == block_data.statements.len();
if is_terminator && init.kind == InitKind::NonPanicPathOnly {
// We are at the terminator of an init that has a panic path,
// and where the init should not happen on panic
for &successor in block_data.terminator().successors() {
if body[successor].is_cleanup {
continue;
}
// The initialization happened in (or rather, when arriving at)
// the successors, but not in the unwind block.
let first_statement = Location { block: successor, statement_index: 0 };
all_facts
.path_assigned_at_base
.push((init.path, location_table.start_index(first_statement)));
}
} else {
// In all other cases, the initialization just happens at the
// midpoint, like any other effect.
all_facts
.path_assigned_at_base
.push((init.path, location_table.mid_index(location)));
}
}
// Arguments are initialized on function entry
InitLocation::Argument(local) => {
assert!(body.local_kind(local) == LocalKind::Arg);
all_facts.path_assigned_at_base.push((init.path, fn_entry_start));
}
}
}
for (local, &path) in move_data.rev_lookup.iter_locals_enumerated() {
if body.local_kind(local) != LocalKind::Arg {
// Non-arguments start out deinitialised; we simulate this with an
// initial move:
all_facts.path_moved_at_base.push((path, fn_entry_start));
}
}
// moved_out_at
// deinitialisation is assumed to always happen!
all_facts
.path_moved_at_base
.extend(move_data.moves.iter().map(|mo| (mo.path, location_table.mid_index(mo.source))));
}
/// Computes the (non-lexical) regions from the input MIR.
///
/// This may result in errors being reported.
pub(in crate::borrow_check) fn compute_regions<'cx, 'tcx>(
infcx: &InferCtxt<'cx, 'tcx>,
universal_regions: UniversalRegions<'tcx>,
body: &Body<'tcx>,
promoted: &IndexVec<Promoted, Body<'tcx>>,
location_table: &LocationTable,
param_env: ty::ParamEnv<'tcx>,
flow_inits: &mut ResultsCursor<'cx, 'tcx, MaybeInitializedPlaces<'cx, 'tcx>>,
move_data: &MoveData<'tcx>,
borrow_set: &BorrowSet<'tcx>,
upvars: &[Upvar],
) -> NllOutput<'tcx> {
let mut all_facts = AllFacts::enabled(infcx.tcx).then_some(AllFacts::default());
let universal_regions = Rc::new(universal_regions);
let elements = &Rc::new(RegionValueElements::new(&body));
// Run the MIR type-checker.
let MirTypeckResults { constraints, universal_region_relations, opaque_type_values } =
type_check::type_check(
infcx,
param_env,
body,
promoted,
&universal_regions,
location_table,
borrow_set,
&mut all_facts,
flow_inits,
move_data,
elements,
upvars,
);
if let Some(all_facts) = &mut all_facts {
let _prof_timer = infcx.tcx.prof.generic_activity("polonius_fact_generation");
all_facts.universal_region.extend(universal_regions.universal_regions());
populate_polonius_move_facts(all_facts, move_data, location_table, &body);
// Emit universal regions facts, and their relations, for Polonius.
//
// 1: universal regions are modeled in Polonius as a pair:
// - the universal region vid itself.
// - a "placeholder loan" associated to this universal region. Since they don't exist in
// the `borrow_set`, their `BorrowIndex` are synthesized as the universal region index
// added to the existing number of loans, as if they succeeded them in the set.
//
let borrow_count = borrow_set.len();
debug!(
"compute_regions: polonius placeholders, num_universals={}, borrow_count={}",
universal_regions.len(),
borrow_count
);
for universal_region in universal_regions.universal_regions() {
let universal_region_idx = universal_region.index();
let placeholder_loan_idx = borrow_count + universal_region_idx;
all_facts.placeholder.push((universal_region, placeholder_loan_idx.into()));
}
// 2: the universal region relations `outlives` constraints are emitted as
// `known_subset` facts.
for (fr1, fr2) in universal_region_relations.known_outlives() {
if fr1 != fr2 {
debug!(
"compute_regions: emitting polonius `known_subset` fr1={:?}, fr2={:?}",
fr1, fr2
);
all_facts.known_subset.push((*fr1, *fr2));
}
}
}
// Create the region inference context, taking ownership of the
// region inference data that was contained in `infcx`, and the
// base constraints generated by the type-check.
let var_origins = infcx.take_region_var_origins();
let MirTypeckRegionConstraints {
placeholder_indices,
placeholder_index_to_region: _,
mut liveness_constraints,
outlives_constraints,
member_constraints,
closure_bounds_mapping,
type_tests,
} = constraints;
let placeholder_indices = Rc::new(placeholder_indices);
constraint_generation::generate_constraints(
infcx,
&mut liveness_constraints,
&mut all_facts,
location_table,
&body,
borrow_set,
);
let mut regioncx = RegionInferenceContext::new(
var_origins,
universal_regions,
placeholder_indices,
universal_region_relations,
outlives_constraints,
member_constraints,
closure_bounds_mapping,
type_tests,
liveness_constraints,
elements,
);
// Generate various additional constraints.
invalidation::generate_invalidates(infcx.tcx, &mut all_facts, location_table, body, borrow_set);
let def_id = body.source.def_id();
// Dump facts if requested.
let polonius_output = all_facts.and_then(|all_facts| {
if infcx.tcx.sess.opts.debugging_opts.nll_facts {
let def_path = infcx.tcx.def_path(def_id);
let dir_path =
PathBuf::from("nll-facts").join(def_path.to_filename_friendly_no_crate());
all_facts.write_to_dir(dir_path, location_table).unwrap();
}
if infcx.tcx.sess.opts.debugging_opts.polonius {
let algorithm =
env::var("POLONIUS_ALGORITHM").unwrap_or_else(|_| String::from("Naive"));
let algorithm = Algorithm::from_str(&algorithm).unwrap();
debug!("compute_regions: using polonius algorithm {:?}", algorithm);
let _prof_timer = infcx.tcx.prof.generic_activity("polonius_analysis");
Some(Rc::new(Output::compute(&all_facts, algorithm, false)))
} else {
None
}
});
// Solve the region constraints.
let (closure_region_requirements, nll_errors) =
regioncx.solve(infcx, &body, polonius_output.clone());
if !nll_errors.is_empty() {
// Suppress unhelpful extra errors in `infer_opaque_types`.
infcx.set_tainted_by_errors();
}
let remapped_opaque_tys = regioncx.infer_opaque_types(&infcx, opaque_type_values, body.span);
NllOutput {
regioncx,
opaque_type_values: remapped_opaque_tys,
polonius_output,
opt_closure_req: closure_region_requirements,
nll_errors,
}
}
pub(super) fn dump_mir_results<'a, 'tcx>(
infcx: &InferCtxt<'a, 'tcx>,
body: &Body<'tcx>,
regioncx: &RegionInferenceContext<'tcx>,
closure_region_requirements: &Option<ClosureRegionRequirements<'_>>,
) {
if !mir_util::dump_enabled(infcx.tcx, "nll", body.source.def_id()) {
return;
}
mir_util::dump_mir(infcx.tcx, None, "nll", &0, body, |pass_where, out| {
match pass_where {
// Before the CFG, dump out the values for each region variable.
PassWhere::BeforeCFG => {
regioncx.dump_mir(infcx.tcx, out)?;
writeln!(out, "|")?;
if let Some(closure_region_requirements) = closure_region_requirements {
writeln!(out, "| Free Region Constraints")?;
for_each_region_constraint(closure_region_requirements, &mut |msg| {
writeln!(out, "| {}", msg)
})?;
writeln!(out, "|")?;
}
}
PassWhere::BeforeLocation(_) => {}
PassWhere::AfterTerminator(_) => {}
PassWhere::BeforeBlock(_) | PassWhere::AfterLocation(_) | PassWhere::AfterCFG => {}
}
Ok(())
});
// Also dump the inference graph constraints as a graphviz file.
let _: io::Result<()> = try {
let mut file =
pretty::create_dump_file(infcx.tcx, "regioncx.all.dot", None, "nll", &0, body.source)?;
regioncx.dump_graphviz_raw_constraints(&mut file)?;
};
// Also dump the inference graph constraints as a graphviz file.
let _: io::Result<()> = try {
let mut file =
pretty::create_dump_file(infcx.tcx, "regioncx.scc.dot", None, "nll", &0, body.source)?;
regioncx.dump_graphviz_scc_constraints(&mut file)?;
};
}
pub(super) fn dump_annotation<'a, 'tcx>(
infcx: &InferCtxt<'a, 'tcx>,
body: &Body<'tcx>,
regioncx: &RegionInferenceContext<'tcx>,
closure_region_requirements: &Option<ClosureRegionRequirements<'_>>,
opaque_type_values: &FxHashMap<DefId, ty::ResolvedOpaqueTy<'tcx>>,
errors_buffer: &mut Vec<Diagnostic>,
) {
let tcx = infcx.tcx;
let base_def_id = tcx.closure_base_def_id(body.source.def_id());
if !tcx.has_attr(base_def_id, sym::rustc_regions) {
return;
}
// When the enclosing function is tagged with `#[rustc_regions]`,
// we dump out various bits of state as warnings. This is useful
// for verifying that the compiler is behaving as expected. These
// warnings focus on the closure region requirements -- for
// viewing the intraprocedural state, the -Zdump-mir output is
// better.
let mut err = if let Some(closure_region_requirements) = closure_region_requirements {
let mut err = tcx.sess.diagnostic().span_note_diag(body.span, "external requirements");
regioncx.annotate(tcx, &mut err);
err.note(&format!(
"number of external vids: {}",
closure_region_requirements.num_external_vids
));
// Dump the region constraints we are imposing *between* those
// newly created variables.
for_each_region_constraint(closure_region_requirements, &mut |msg| {
err.note(msg);
Ok(())
})
.unwrap();
err
} else {
let mut err = tcx.sess.diagnostic().span_note_diag(body.span, "no external requirements");
regioncx.annotate(tcx, &mut err);
err
};
if !opaque_type_values.is_empty() {
err.note(&format!("Inferred opaque type values:\n{:#?}", opaque_type_values));
}
err.buffer(errors_buffer);
}
fn for_each_region_constraint(
closure_region_requirements: &ClosureRegionRequirements<'_>,
with_msg: &mut dyn FnMut(&str) -> io::Result<()>,
) -> io::Result<()> {
for req in &closure_region_requirements.outlives_requirements {
let subject: &dyn Debug = match &req.subject {
ClosureOutlivesSubject::Region(subject) => subject,
ClosureOutlivesSubject::Ty(ty) => ty,
};
with_msg(&format!("where {:?}: {:?}", subject, req.outlived_free_region,))?;
}
Ok(())
}
/// Right now, we piggy back on the `ReVar` to store our NLL inference
/// regions. These are indexed with `RegionVid`. This method will
/// assert that the region is a `ReVar` and extract its internal index.
/// This is reasonable because in our MIR we replace all universal regions
/// with inference variables.
pub trait ToRegionVid {
fn to_region_vid(self) -> RegionVid;
}
impl<'tcx> ToRegionVid for &'tcx RegionKind {
fn to_region_vid(self) -> RegionVid {
if let ty::ReVar(vid) = self { *vid } else { bug!("region is not an ReVar: {:?}", self) }
}
}
impl ToRegionVid for RegionVid {
fn to_region_vid(self) -> RegionVid {
self
}
}
crate trait ConstraintDescription {
fn description(&self) -> &'static str;
}