blob: ec6010e6eecf453fec73674cc58ac576329575a2 [file] [log] [blame]
use crate::ich::{self, StableHashingContext};
use crate::ty::fast_reject::SimplifiedType;
use crate::ty::fold::TypeFoldable;
use crate::ty::{self, TyCtxt};
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
use rustc_errors::ErrorReported;
use rustc_hir::def_id::{DefId, DefIdMap};
use rustc_span::symbol::Ident;
/// A per-trait graph of impls in specialization order. At the moment, this
/// graph forms a tree rooted with the trait itself, with all other nodes
/// representing impls, and parent-child relationships representing
/// specializations.
///
/// The graph provides two key services:
///
/// - Construction. This implicitly checks for overlapping impls (i.e., impls
/// that overlap but where neither specializes the other -- an artifact of the
/// simple "chain" rule.
///
/// - Parent extraction. In particular, the graph can give you the *immediate*
/// parents of a given specializing impl, which is needed for extracting
/// default items amongst other things. In the simple "chain" rule, every impl
/// has at most one parent.
#[derive(TyEncodable, TyDecodable, HashStable)]
pub struct Graph {
/// All impls have a parent; the "root" impls have as their parent the `def_id`
/// of the trait.
pub parent: DefIdMap<DefId>,
/// The "root" impls are found by looking up the trait's def_id.
pub children: DefIdMap<Children>,
/// Whether an error was emitted while constructing the graph.
pub has_errored: bool,
}
impl Graph {
pub fn new() -> Graph {
Graph { parent: Default::default(), children: Default::default(), has_errored: false }
}
/// The parent of a given impl, which is the `DefId` of the trait when the
/// impl is a "specialization root".
pub fn parent(&self, child: DefId) -> DefId {
*self.parent.get(&child).unwrap_or_else(|| panic!("Failed to get parent for {:?}", child))
}
}
/// Children of a given impl, grouped into blanket/non-blanket varieties as is
/// done in `TraitDef`.
#[derive(Default, TyEncodable, TyDecodable)]
pub struct Children {
// Impls of a trait (or specializations of a given impl). To allow for
// quicker lookup, the impls are indexed by a simplified version of their
// `Self` type: impls with a simplifiable `Self` are stored in
// `nonblanket_impls` keyed by it, while all other impls are stored in
// `blanket_impls`.
//
// A similar division is used within `TraitDef`, but the lists there collect
// together *all* the impls for a trait, and are populated prior to building
// the specialization graph.
/// Impls of the trait.
pub nonblanket_impls: FxHashMap<SimplifiedType, Vec<DefId>>,
/// Blanket impls associated with the trait.
pub blanket_impls: Vec<DefId>,
}
/// A node in the specialization graph is either an impl or a trait
/// definition; either can serve as a source of item definitions.
/// There is always exactly one trait definition node: the root.
#[derive(Debug, Copy, Clone)]
pub enum Node {
Impl(DefId),
Trait(DefId),
}
impl<'tcx> Node {
pub fn is_from_trait(&self) -> bool {
matches!(self, Node::Trait(..))
}
/// Iterate over the items defined directly by the given (impl or trait) node.
pub fn items(&self, tcx: TyCtxt<'tcx>) -> impl 'tcx + Iterator<Item = &'tcx ty::AssocItem> {
tcx.associated_items(self.def_id()).in_definition_order()
}
/// Finds an associated item defined in this node.
///
/// If this returns `None`, the item can potentially still be found in
/// parents of this node.
pub fn item(
&self,
tcx: TyCtxt<'tcx>,
trait_item_name: Ident,
trait_item_kind: ty::AssocKind,
trait_def_id: DefId,
) -> Option<ty::AssocItem> {
tcx.associated_items(self.def_id())
.filter_by_name_unhygienic(trait_item_name.name)
.find(move |impl_item| {
trait_item_kind == impl_item.kind
&& tcx.hygienic_eq(impl_item.ident, trait_item_name, trait_def_id)
})
.copied()
}
pub fn def_id(&self) -> DefId {
match *self {
Node::Impl(did) => did,
Node::Trait(did) => did,
}
}
}
#[derive(Copy, Clone)]
pub struct Ancestors<'tcx> {
trait_def_id: DefId,
specialization_graph: &'tcx Graph,
current_source: Option<Node>,
}
impl Iterator for Ancestors<'_> {
type Item = Node;
fn next(&mut self) -> Option<Node> {
let cur = self.current_source.take();
if let Some(Node::Impl(cur_impl)) = cur {
let parent = self.specialization_graph.parent(cur_impl);
self.current_source = if parent == self.trait_def_id {
Some(Node::Trait(parent))
} else {
Some(Node::Impl(parent))
};
}
cur
}
}
/// Information about the most specialized definition of an associated item.
pub struct LeafDef {
/// The associated item described by this `LeafDef`.
pub item: ty::AssocItem,
/// The node in the specialization graph containing the definition of `item`.
pub defining_node: Node,
/// The "top-most" (ie. least specialized) specialization graph node that finalized the
/// definition of `item`.
///
/// Example:
///
/// ```
/// trait Tr {
/// fn assoc(&self);
/// }
///
/// impl<T> Tr for T {
/// default fn assoc(&self) {}
/// }
///
/// impl Tr for u8 {}
/// ```
///
/// If we start the leaf definition search at `impl Tr for u8`, that impl will be the
/// `finalizing_node`, while `defining_node` will be the generic impl.
///
/// If the leaf definition search is started at the generic impl, `finalizing_node` will be
/// `None`, since the most specialized impl we found still allows overriding the method
/// (doesn't finalize it).
pub finalizing_node: Option<Node>,
}
impl LeafDef {
/// Returns whether this definition is known to not be further specializable.
pub fn is_final(&self) -> bool {
self.finalizing_node.is_some()
}
}
impl<'tcx> Ancestors<'tcx> {
/// Finds the bottom-most (ie. most specialized) definition of an associated
/// item.
pub fn leaf_def(
mut self,
tcx: TyCtxt<'tcx>,
trait_item_name: Ident,
trait_item_kind: ty::AssocKind,
) -> Option<LeafDef> {
let trait_def_id = self.trait_def_id;
let mut finalizing_node = None;
self.find_map(|node| {
if let Some(item) = node.item(tcx, trait_item_name, trait_item_kind, trait_def_id) {
if finalizing_node.is_none() {
let is_specializable = item.defaultness.is_default()
|| tcx.impl_defaultness(node.def_id()).is_default();
if !is_specializable {
finalizing_node = Some(node);
}
}
Some(LeafDef { item, defining_node: node, finalizing_node })
} else {
// Item not mentioned. This "finalizes" any defaulted item provided by an ancestor.
finalizing_node = Some(node);
None
}
})
}
}
/// Walk up the specialization ancestors of a given impl, starting with that
/// impl itself.
///
/// Returns `Err` if an error was reported while building the specialization
/// graph.
pub fn ancestors(
tcx: TyCtxt<'tcx>,
trait_def_id: DefId,
start_from_impl: DefId,
) -> Result<Ancestors<'tcx>, ErrorReported> {
let specialization_graph = tcx.specialization_graph_of(trait_def_id);
if specialization_graph.has_errored || tcx.type_of(start_from_impl).references_error() {
Err(ErrorReported)
} else {
Ok(Ancestors {
trait_def_id,
specialization_graph,
current_source: Some(Node::Impl(start_from_impl)),
})
}
}
impl<'a> HashStable<StableHashingContext<'a>> for Children {
fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) {
let Children { ref nonblanket_impls, ref blanket_impls } = *self;
ich::hash_stable_trait_impls(hcx, hasher, blanket_impls, nonblanket_impls);
}
}