blob: b096664bc74c6a4a4d40fe1a139b2c39d547d08e [file] [log] [blame]
use crate::builder::Builder;
use crate::context::CodegenCx;
use crate::llvm;
use crate::type_::Type;
use crate::type_of::LayoutLlvmExt;
use crate::value::Value;
use rustc_ast::LlvmAsmDialect;
use rustc_ast::{InlineAsmOptions, InlineAsmTemplatePiece};
use rustc_codegen_ssa::mir::operand::OperandValue;
use rustc_codegen_ssa::mir::place::PlaceRef;
use rustc_codegen_ssa::traits::*;
use rustc_data_structures::fx::FxHashMap;
use rustc_hir as hir;
use rustc_middle::span_bug;
use rustc_middle::ty::layout::TyAndLayout;
use rustc_span::{Pos, Span};
use rustc_target::abi::*;
use rustc_target::asm::*;
use libc::{c_char, c_uint};
use tracing::debug;
impl AsmBuilderMethods<'tcx> for Builder<'a, 'll, 'tcx> {
fn codegen_llvm_inline_asm(
&mut self,
ia: &hir::LlvmInlineAsmInner,
outputs: Vec<PlaceRef<'tcx, &'ll Value>>,
mut inputs: Vec<&'ll Value>,
span: Span,
) -> bool {
let mut ext_constraints = vec![];
let mut output_types = vec![];
// Prepare the output operands
let mut indirect_outputs = vec![];
for (i, (out, &place)) in ia.outputs.iter().zip(&outputs).enumerate() {
if out.is_rw {
let operand = self.load_operand(place);
if let OperandValue::Immediate(_) = operand.val {
inputs.push(operand.immediate());
}
ext_constraints.push(i.to_string());
}
if out.is_indirect {
let operand = self.load_operand(place);
if let OperandValue::Immediate(_) = operand.val {
indirect_outputs.push(operand.immediate());
}
} else {
output_types.push(place.layout.llvm_type(self.cx));
}
}
if !indirect_outputs.is_empty() {
indirect_outputs.extend_from_slice(&inputs);
inputs = indirect_outputs;
}
let clobbers = ia.clobbers.iter().map(|s| format!("~{{{}}}", &s));
// Default per-arch clobbers
// Basically what clang does
let arch_clobbers = match &self.sess().target.arch[..] {
"x86" | "x86_64" => vec!["~{dirflag}", "~{fpsr}", "~{flags}"],
"mips" | "mips64" => vec!["~{$1}"],
_ => Vec::new(),
};
let all_constraints = ia
.outputs
.iter()
.map(|out| out.constraint.to_string())
.chain(ia.inputs.iter().map(|s| s.to_string()))
.chain(ext_constraints)
.chain(clobbers)
.chain(arch_clobbers.iter().map(|s| (*s).to_string()))
.collect::<Vec<String>>()
.join(",");
debug!("Asm Constraints: {}", &all_constraints);
// Depending on how many outputs we have, the return type is different
let num_outputs = output_types.len();
let output_type = match num_outputs {
0 => self.type_void(),
1 => output_types[0],
_ => self.type_struct(&output_types, false),
};
let asm = ia.asm.as_str();
let r = inline_asm_call(
self,
&asm,
&all_constraints,
&inputs,
output_type,
ia.volatile,
ia.alignstack,
ia.dialect,
&[span],
);
if r.is_none() {
return false;
}
let r = r.unwrap();
// Again, based on how many outputs we have
let outputs = ia.outputs.iter().zip(&outputs).filter(|&(ref o, _)| !o.is_indirect);
for (i, (_, &place)) in outputs.enumerate() {
let v = if num_outputs == 1 { r } else { self.extract_value(r, i as u64) };
OperandValue::Immediate(v).store(self, place);
}
true
}
fn codegen_inline_asm(
&mut self,
template: &[InlineAsmTemplatePiece],
operands: &[InlineAsmOperandRef<'tcx, Self>],
options: InlineAsmOptions,
line_spans: &[Span],
) {
let asm_arch = self.tcx.sess.asm_arch.unwrap();
// Collect the types of output operands
let mut constraints = vec![];
let mut output_types = vec![];
let mut op_idx = FxHashMap::default();
for (idx, op) in operands.iter().enumerate() {
match *op {
InlineAsmOperandRef::Out { reg, late, place } => {
let mut layout = None;
let ty = if let Some(ref place) = place {
layout = Some(&place.layout);
llvm_fixup_output_type(self.cx, reg.reg_class(), &place.layout)
} else {
// If the output is discarded, we don't really care what
// type is used. We're just using this to tell LLVM to
// reserve the register.
dummy_output_type(self.cx, reg.reg_class())
};
output_types.push(ty);
op_idx.insert(idx, constraints.len());
let prefix = if late { "=" } else { "=&" };
constraints.push(format!("{}{}", prefix, reg_to_llvm(reg, layout)));
}
InlineAsmOperandRef::InOut { reg, late, in_value, out_place } => {
let layout = if let Some(ref out_place) = out_place {
&out_place.layout
} else {
// LLVM required tied operands to have the same type,
// so we just use the type of the input.
&in_value.layout
};
let ty = llvm_fixup_output_type(self.cx, reg.reg_class(), layout);
output_types.push(ty);
op_idx.insert(idx, constraints.len());
let prefix = if late { "=" } else { "=&" };
constraints.push(format!("{}{}", prefix, reg_to_llvm(reg, Some(layout))));
}
_ => {}
}
}
// Collect input operands
let mut inputs = vec![];
for (idx, op) in operands.iter().enumerate() {
match *op {
InlineAsmOperandRef::In { reg, value } => {
let llval =
llvm_fixup_input(self, value.immediate(), reg.reg_class(), &value.layout);
inputs.push(llval);
op_idx.insert(idx, constraints.len());
constraints.push(reg_to_llvm(reg, Some(&value.layout)));
}
InlineAsmOperandRef::InOut { reg, late: _, in_value, out_place: _ } => {
let value = llvm_fixup_input(
self,
in_value.immediate(),
reg.reg_class(),
&in_value.layout,
);
inputs.push(value);
constraints.push(format!("{}", op_idx[&idx]));
}
InlineAsmOperandRef::SymFn { instance } => {
inputs.push(self.cx.get_fn(instance));
op_idx.insert(idx, constraints.len());
constraints.push("s".to_string());
}
InlineAsmOperandRef::SymStatic { def_id } => {
inputs.push(self.cx.get_static(def_id));
op_idx.insert(idx, constraints.len());
constraints.push("s".to_string());
}
_ => {}
}
}
// Build the template string
let mut template_str = String::new();
for piece in template {
match *piece {
InlineAsmTemplatePiece::String(ref s) => {
if s.contains('$') {
for c in s.chars() {
if c == '$' {
template_str.push_str("$$");
} else {
template_str.push(c);
}
}
} else {
template_str.push_str(s)
}
}
InlineAsmTemplatePiece::Placeholder { operand_idx, modifier, span: _ } => {
match operands[operand_idx] {
InlineAsmOperandRef::In { reg, .. }
| InlineAsmOperandRef::Out { reg, .. }
| InlineAsmOperandRef::InOut { reg, .. } => {
let modifier = modifier_to_llvm(asm_arch, reg.reg_class(), modifier);
if let Some(modifier) = modifier {
template_str.push_str(&format!(
"${{{}:{}}}",
op_idx[&operand_idx], modifier
));
} else {
template_str.push_str(&format!("${{{}}}", op_idx[&operand_idx]));
}
}
InlineAsmOperandRef::Const { ref string } => {
// Const operands get injected directly into the template
template_str.push_str(string);
}
InlineAsmOperandRef::SymFn { .. }
| InlineAsmOperandRef::SymStatic { .. } => {
// Only emit the raw symbol name
template_str.push_str(&format!("${{{}:c}}", op_idx[&operand_idx]));
}
}
}
}
}
if !options.contains(InlineAsmOptions::PRESERVES_FLAGS) {
match asm_arch {
InlineAsmArch::AArch64 | InlineAsmArch::Arm => {
constraints.push("~{cc}".to_string());
}
InlineAsmArch::X86 | InlineAsmArch::X86_64 => {
constraints.extend_from_slice(&[
"~{dirflag}".to_string(),
"~{fpsr}".to_string(),
"~{flags}".to_string(),
]);
}
InlineAsmArch::RiscV32 | InlineAsmArch::RiscV64 => {}
InlineAsmArch::Nvptx64 => {}
InlineAsmArch::Hexagon => {}
InlineAsmArch::Mips | InlineAsmArch::Mips64 => {}
}
}
if !options.contains(InlineAsmOptions::NOMEM) {
// This is actually ignored by LLVM, but it's probably best to keep
// it just in case. LLVM instead uses the ReadOnly/ReadNone
// attributes on the call instruction to optimize.
constraints.push("~{memory}".to_string());
}
let volatile = !options.contains(InlineAsmOptions::PURE);
let alignstack = !options.contains(InlineAsmOptions::NOSTACK);
let output_type = match &output_types[..] {
[] => self.type_void(),
[ty] => ty,
tys => self.type_struct(&tys, false),
};
let dialect = match asm_arch {
InlineAsmArch::X86 | InlineAsmArch::X86_64
if !options.contains(InlineAsmOptions::ATT_SYNTAX) =>
{
LlvmAsmDialect::Intel
}
_ => LlvmAsmDialect::Att,
};
let result = inline_asm_call(
self,
&template_str,
&constraints.join(","),
&inputs,
output_type,
volatile,
alignstack,
dialect,
line_spans,
)
.unwrap_or_else(|| span_bug!(line_spans[0], "LLVM asm constraint validation failed"));
if options.contains(InlineAsmOptions::PURE) {
if options.contains(InlineAsmOptions::NOMEM) {
llvm::Attribute::ReadNone.apply_callsite(llvm::AttributePlace::Function, result);
} else if options.contains(InlineAsmOptions::READONLY) {
llvm::Attribute::ReadOnly.apply_callsite(llvm::AttributePlace::Function, result);
}
} else {
if options.contains(InlineAsmOptions::NOMEM) {
llvm::Attribute::InaccessibleMemOnly
.apply_callsite(llvm::AttributePlace::Function, result);
} else {
// LLVM doesn't have an attribute to represent ReadOnly + SideEffect
}
}
// Write results to outputs
for (idx, op) in operands.iter().enumerate() {
if let InlineAsmOperandRef::Out { reg, place: Some(place), .. }
| InlineAsmOperandRef::InOut { reg, out_place: Some(place), .. } = *op
{
let value = if output_types.len() == 1 {
result
} else {
self.extract_value(result, op_idx[&idx] as u64)
};
let value = llvm_fixup_output(self, value, reg.reg_class(), &place.layout);
OperandValue::Immediate(value).store(self, place);
}
}
}
}
impl AsmMethods for CodegenCx<'ll, 'tcx> {
fn codegen_global_asm(&self, ga: &hir::GlobalAsm) {
let asm = ga.asm.as_str();
unsafe {
llvm::LLVMRustAppendModuleInlineAsm(self.llmod, asm.as_ptr().cast(), asm.len());
}
}
}
fn inline_asm_call(
bx: &mut Builder<'a, 'll, 'tcx>,
asm: &str,
cons: &str,
inputs: &[&'ll Value],
output: &'ll llvm::Type,
volatile: bool,
alignstack: bool,
dia: LlvmAsmDialect,
line_spans: &[Span],
) -> Option<&'ll Value> {
let volatile = if volatile { llvm::True } else { llvm::False };
let alignstack = if alignstack { llvm::True } else { llvm::False };
let argtys = inputs
.iter()
.map(|v| {
debug!("Asm Input Type: {:?}", *v);
bx.cx.val_ty(*v)
})
.collect::<Vec<_>>();
debug!("Asm Output Type: {:?}", output);
let fty = bx.cx.type_func(&argtys[..], output);
unsafe {
// Ask LLVM to verify that the constraints are well-formed.
let constraints_ok = llvm::LLVMRustInlineAsmVerify(fty, cons.as_ptr().cast(), cons.len());
debug!("constraint verification result: {:?}", constraints_ok);
if constraints_ok {
let v = llvm::LLVMRustInlineAsm(
fty,
asm.as_ptr().cast(),
asm.len(),
cons.as_ptr().cast(),
cons.len(),
volatile,
alignstack,
llvm::AsmDialect::from_generic(dia),
);
let call = bx.call(v, inputs, None);
// Store mark in a metadata node so we can map LLVM errors
// back to source locations. See #17552.
let key = "srcloc";
let kind = llvm::LLVMGetMDKindIDInContext(
bx.llcx,
key.as_ptr() as *const c_char,
key.len() as c_uint,
);
// srcloc contains one integer for each line of assembly code.
// Unfortunately this isn't enough to encode a full span so instead
// we just encode the start position of each line.
// FIXME: Figure out a way to pass the entire line spans.
let mut srcloc = vec![];
if dia == LlvmAsmDialect::Intel && line_spans.len() > 1 {
// LLVM inserts an extra line to add the ".intel_syntax", so add
// a dummy srcloc entry for it.
//
// Don't do this if we only have 1 line span since that may be
// due to the asm template string coming from a macro. LLVM will
// default to the first srcloc for lines that don't have an
// associated srcloc.
srcloc.push(bx.const_i32(0));
}
srcloc.extend(line_spans.iter().map(|span| bx.const_i32(span.lo().to_u32() as i32)));
let md = llvm::LLVMMDNodeInContext(bx.llcx, srcloc.as_ptr(), srcloc.len() as u32);
llvm::LLVMSetMetadata(call, kind, md);
Some(call)
} else {
// LLVM has detected an issue with our constraints, bail out
None
}
}
}
/// If the register is an xmm/ymm/zmm register then return its index.
fn xmm_reg_index(reg: InlineAsmReg) -> Option<u32> {
match reg {
InlineAsmReg::X86(reg)
if reg as u32 >= X86InlineAsmReg::xmm0 as u32
&& reg as u32 <= X86InlineAsmReg::xmm15 as u32 =>
{
Some(reg as u32 - X86InlineAsmReg::xmm0 as u32)
}
InlineAsmReg::X86(reg)
if reg as u32 >= X86InlineAsmReg::ymm0 as u32
&& reg as u32 <= X86InlineAsmReg::ymm15 as u32 =>
{
Some(reg as u32 - X86InlineAsmReg::ymm0 as u32)
}
InlineAsmReg::X86(reg)
if reg as u32 >= X86InlineAsmReg::zmm0 as u32
&& reg as u32 <= X86InlineAsmReg::zmm31 as u32 =>
{
Some(reg as u32 - X86InlineAsmReg::zmm0 as u32)
}
_ => None,
}
}
/// If the register is an AArch64 vector register then return its index.
fn a64_vreg_index(reg: InlineAsmReg) -> Option<u32> {
match reg {
InlineAsmReg::AArch64(reg)
if reg as u32 >= AArch64InlineAsmReg::v0 as u32
&& reg as u32 <= AArch64InlineAsmReg::v31 as u32 =>
{
Some(reg as u32 - AArch64InlineAsmReg::v0 as u32)
}
_ => None,
}
}
/// Converts a register class to an LLVM constraint code.
fn reg_to_llvm(reg: InlineAsmRegOrRegClass, layout: Option<&TyAndLayout<'tcx>>) -> String {
match reg {
// For vector registers LLVM wants the register name to match the type size.
InlineAsmRegOrRegClass::Reg(reg) => {
if let Some(idx) = xmm_reg_index(reg) {
let class = if let Some(layout) = layout {
match layout.size.bytes() {
64 => 'z',
32 => 'y',
_ => 'x',
}
} else {
// We use f32 as the type for discarded outputs
'x'
};
format!("{{{}mm{}}}", class, idx)
} else if let Some(idx) = a64_vreg_index(reg) {
let class = if let Some(layout) = layout {
match layout.size.bytes() {
16 => 'q',
8 => 'd',
4 => 's',
2 => 'h',
1 => 'd', // We fixup i8 to i8x8
_ => unreachable!(),
}
} else {
// We use i64x2 as the type for discarded outputs
'q'
};
format!("{{{}{}}}", class, idx)
} else if reg == InlineAsmReg::AArch64(AArch64InlineAsmReg::x30) {
// LLVM doesn't recognize x30
"{lr}".to_string()
} else {
format!("{{{}}}", reg.name())
}
}
InlineAsmRegOrRegClass::RegClass(reg) => match reg {
InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::reg) => "r",
InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::vreg) => "w",
InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::vreg_low16) => "x",
InlineAsmRegClass::Arm(ArmInlineAsmRegClass::reg) => "r",
InlineAsmRegClass::Arm(ArmInlineAsmRegClass::reg_thumb) => "l",
InlineAsmRegClass::Arm(ArmInlineAsmRegClass::sreg)
| InlineAsmRegClass::Arm(ArmInlineAsmRegClass::dreg_low16)
| InlineAsmRegClass::Arm(ArmInlineAsmRegClass::qreg_low8) => "t",
InlineAsmRegClass::Arm(ArmInlineAsmRegClass::sreg_low16)
| InlineAsmRegClass::Arm(ArmInlineAsmRegClass::dreg_low8)
| InlineAsmRegClass::Arm(ArmInlineAsmRegClass::qreg_low4) => "x",
InlineAsmRegClass::Arm(ArmInlineAsmRegClass::dreg)
| InlineAsmRegClass::Arm(ArmInlineAsmRegClass::qreg) => "w",
InlineAsmRegClass::Hexagon(HexagonInlineAsmRegClass::reg) => "r",
InlineAsmRegClass::Mips(MipsInlineAsmRegClass::reg) => "r",
InlineAsmRegClass::Mips(MipsInlineAsmRegClass::freg) => "f",
InlineAsmRegClass::Nvptx(NvptxInlineAsmRegClass::reg16) => "h",
InlineAsmRegClass::Nvptx(NvptxInlineAsmRegClass::reg32) => "r",
InlineAsmRegClass::Nvptx(NvptxInlineAsmRegClass::reg64) => "l",
InlineAsmRegClass::RiscV(RiscVInlineAsmRegClass::reg) => "r",
InlineAsmRegClass::RiscV(RiscVInlineAsmRegClass::freg) => "f",
InlineAsmRegClass::X86(X86InlineAsmRegClass::reg) => "r",
InlineAsmRegClass::X86(X86InlineAsmRegClass::reg_abcd) => "Q",
InlineAsmRegClass::X86(X86InlineAsmRegClass::reg_byte) => "q",
InlineAsmRegClass::X86(X86InlineAsmRegClass::xmm_reg)
| InlineAsmRegClass::X86(X86InlineAsmRegClass::ymm_reg) => "x",
InlineAsmRegClass::X86(X86InlineAsmRegClass::zmm_reg) => "v",
InlineAsmRegClass::X86(X86InlineAsmRegClass::kreg) => "^Yk",
}
.to_string(),
}
}
/// Converts a modifier into LLVM's equivalent modifier.
fn modifier_to_llvm(
arch: InlineAsmArch,
reg: InlineAsmRegClass,
modifier: Option<char>,
) -> Option<char> {
match reg {
InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::reg) => modifier,
InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::vreg)
| InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::vreg_low16) => {
if modifier == Some('v') { None } else { modifier }
}
InlineAsmRegClass::Arm(ArmInlineAsmRegClass::reg)
| InlineAsmRegClass::Arm(ArmInlineAsmRegClass::reg_thumb) => None,
InlineAsmRegClass::Arm(ArmInlineAsmRegClass::sreg)
| InlineAsmRegClass::Arm(ArmInlineAsmRegClass::sreg_low16) => None,
InlineAsmRegClass::Arm(ArmInlineAsmRegClass::dreg)
| InlineAsmRegClass::Arm(ArmInlineAsmRegClass::dreg_low16)
| InlineAsmRegClass::Arm(ArmInlineAsmRegClass::dreg_low8) => Some('P'),
InlineAsmRegClass::Arm(ArmInlineAsmRegClass::qreg)
| InlineAsmRegClass::Arm(ArmInlineAsmRegClass::qreg_low8)
| InlineAsmRegClass::Arm(ArmInlineAsmRegClass::qreg_low4) => {
if modifier.is_none() {
Some('q')
} else {
modifier
}
}
InlineAsmRegClass::Hexagon(_) => None,
InlineAsmRegClass::Mips(_) => None,
InlineAsmRegClass::Nvptx(_) => None,
InlineAsmRegClass::RiscV(RiscVInlineAsmRegClass::reg)
| InlineAsmRegClass::RiscV(RiscVInlineAsmRegClass::freg) => None,
InlineAsmRegClass::X86(X86InlineAsmRegClass::reg)
| InlineAsmRegClass::X86(X86InlineAsmRegClass::reg_abcd) => match modifier {
None if arch == InlineAsmArch::X86_64 => Some('q'),
None => Some('k'),
Some('l') => Some('b'),
Some('h') => Some('h'),
Some('x') => Some('w'),
Some('e') => Some('k'),
Some('r') => Some('q'),
_ => unreachable!(),
},
InlineAsmRegClass::X86(X86InlineAsmRegClass::reg_byte) => None,
InlineAsmRegClass::X86(reg @ X86InlineAsmRegClass::xmm_reg)
| InlineAsmRegClass::X86(reg @ X86InlineAsmRegClass::ymm_reg)
| InlineAsmRegClass::X86(reg @ X86InlineAsmRegClass::zmm_reg) => match (reg, modifier) {
(X86InlineAsmRegClass::xmm_reg, None) => Some('x'),
(X86InlineAsmRegClass::ymm_reg, None) => Some('t'),
(X86InlineAsmRegClass::zmm_reg, None) => Some('g'),
(_, Some('x')) => Some('x'),
(_, Some('y')) => Some('t'),
(_, Some('z')) => Some('g'),
_ => unreachable!(),
},
InlineAsmRegClass::X86(X86InlineAsmRegClass::kreg) => None,
}
}
/// Type to use for outputs that are discarded. It doesn't really matter what
/// the type is, as long as it is valid for the constraint code.
fn dummy_output_type(cx: &CodegenCx<'ll, 'tcx>, reg: InlineAsmRegClass) -> &'ll Type {
match reg {
InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::reg) => cx.type_i32(),
InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::vreg)
| InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::vreg_low16) => {
cx.type_vector(cx.type_i64(), 2)
}
InlineAsmRegClass::Arm(ArmInlineAsmRegClass::reg)
| InlineAsmRegClass::Arm(ArmInlineAsmRegClass::reg_thumb) => cx.type_i32(),
InlineAsmRegClass::Arm(ArmInlineAsmRegClass::sreg)
| InlineAsmRegClass::Arm(ArmInlineAsmRegClass::sreg_low16) => cx.type_f32(),
InlineAsmRegClass::Arm(ArmInlineAsmRegClass::dreg)
| InlineAsmRegClass::Arm(ArmInlineAsmRegClass::dreg_low16)
| InlineAsmRegClass::Arm(ArmInlineAsmRegClass::dreg_low8) => cx.type_f64(),
InlineAsmRegClass::Arm(ArmInlineAsmRegClass::qreg)
| InlineAsmRegClass::Arm(ArmInlineAsmRegClass::qreg_low8)
| InlineAsmRegClass::Arm(ArmInlineAsmRegClass::qreg_low4) => {
cx.type_vector(cx.type_i64(), 2)
}
InlineAsmRegClass::Hexagon(HexagonInlineAsmRegClass::reg) => cx.type_i32(),
InlineAsmRegClass::Mips(MipsInlineAsmRegClass::reg) => cx.type_i32(),
InlineAsmRegClass::Mips(MipsInlineAsmRegClass::freg) => cx.type_f32(),
InlineAsmRegClass::Nvptx(NvptxInlineAsmRegClass::reg16) => cx.type_i16(),
InlineAsmRegClass::Nvptx(NvptxInlineAsmRegClass::reg32) => cx.type_i32(),
InlineAsmRegClass::Nvptx(NvptxInlineAsmRegClass::reg64) => cx.type_i64(),
InlineAsmRegClass::RiscV(RiscVInlineAsmRegClass::reg) => cx.type_i32(),
InlineAsmRegClass::RiscV(RiscVInlineAsmRegClass::freg) => cx.type_f32(),
InlineAsmRegClass::X86(X86InlineAsmRegClass::reg)
| InlineAsmRegClass::X86(X86InlineAsmRegClass::reg_abcd) => cx.type_i32(),
InlineAsmRegClass::X86(X86InlineAsmRegClass::reg_byte) => cx.type_i8(),
InlineAsmRegClass::X86(X86InlineAsmRegClass::xmm_reg)
| InlineAsmRegClass::X86(X86InlineAsmRegClass::ymm_reg)
| InlineAsmRegClass::X86(X86InlineAsmRegClass::zmm_reg) => cx.type_f32(),
InlineAsmRegClass::X86(X86InlineAsmRegClass::kreg) => cx.type_i16(),
}
}
/// Helper function to get the LLVM type for a Scalar. Pointers are returned as
/// the equivalent integer type.
fn llvm_asm_scalar_type(cx: &CodegenCx<'ll, 'tcx>, scalar: &Scalar) -> &'ll Type {
match scalar.value {
Primitive::Int(Integer::I8, _) => cx.type_i8(),
Primitive::Int(Integer::I16, _) => cx.type_i16(),
Primitive::Int(Integer::I32, _) => cx.type_i32(),
Primitive::Int(Integer::I64, _) => cx.type_i64(),
Primitive::F32 => cx.type_f32(),
Primitive::F64 => cx.type_f64(),
Primitive::Pointer => cx.type_isize(),
_ => unreachable!(),
}
}
/// Fix up an input value to work around LLVM bugs.
fn llvm_fixup_input(
bx: &mut Builder<'a, 'll, 'tcx>,
mut value: &'ll Value,
reg: InlineAsmRegClass,
layout: &TyAndLayout<'tcx>,
) -> &'ll Value {
match (reg, &layout.abi) {
(InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::vreg), Abi::Scalar(s)) => {
if let Primitive::Int(Integer::I8, _) = s.value {
let vec_ty = bx.cx.type_vector(bx.cx.type_i8(), 8);
bx.insert_element(bx.const_undef(vec_ty), value, bx.const_i32(0))
} else {
value
}
}
(InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::vreg_low16), Abi::Scalar(s)) => {
let elem_ty = llvm_asm_scalar_type(bx.cx, s);
let count = 16 / layout.size.bytes();
let vec_ty = bx.cx.type_vector(elem_ty, count);
if let Primitive::Pointer = s.value {
value = bx.ptrtoint(value, bx.cx.type_isize());
}
bx.insert_element(bx.const_undef(vec_ty), value, bx.const_i32(0))
}
(
InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::vreg_low16),
Abi::Vector { element, count },
) if layout.size.bytes() == 8 => {
let elem_ty = llvm_asm_scalar_type(bx.cx, element);
let vec_ty = bx.cx.type_vector(elem_ty, *count);
let indices: Vec<_> = (0..count * 2).map(|x| bx.const_i32(x as i32)).collect();
bx.shuffle_vector(value, bx.const_undef(vec_ty), bx.const_vector(&indices))
}
(InlineAsmRegClass::X86(X86InlineAsmRegClass::reg_abcd), Abi::Scalar(s))
if s.value == Primitive::F64 =>
{
bx.bitcast(value, bx.cx.type_i64())
}
(
InlineAsmRegClass::X86(X86InlineAsmRegClass::xmm_reg | X86InlineAsmRegClass::zmm_reg),
Abi::Vector { .. },
) if layout.size.bytes() == 64 => bx.bitcast(value, bx.cx.type_vector(bx.cx.type_f64(), 8)),
(
InlineAsmRegClass::Arm(ArmInlineAsmRegClass::sreg | ArmInlineAsmRegClass::sreg_low16),
Abi::Scalar(s),
) => {
if let Primitive::Int(Integer::I32, _) = s.value {
bx.bitcast(value, bx.cx.type_f32())
} else {
value
}
}
(
InlineAsmRegClass::Arm(
ArmInlineAsmRegClass::dreg
| ArmInlineAsmRegClass::dreg_low8
| ArmInlineAsmRegClass::dreg_low16,
),
Abi::Scalar(s),
) => {
if let Primitive::Int(Integer::I64, _) = s.value {
bx.bitcast(value, bx.cx.type_f64())
} else {
value
}
}
(InlineAsmRegClass::Mips(MipsInlineAsmRegClass::reg), Abi::Scalar(s)) => match s.value {
// MIPS only supports register-length arithmetics.
Primitive::Int(Integer::I8 | Integer::I16, _) => bx.zext(value, bx.cx.type_i32()),
Primitive::F32 => bx.bitcast(value, bx.cx.type_i32()),
Primitive::F64 => bx.bitcast(value, bx.cx.type_i64()),
_ => value,
},
_ => value,
}
}
/// Fix up an output value to work around LLVM bugs.
fn llvm_fixup_output(
bx: &mut Builder<'a, 'll, 'tcx>,
mut value: &'ll Value,
reg: InlineAsmRegClass,
layout: &TyAndLayout<'tcx>,
) -> &'ll Value {
match (reg, &layout.abi) {
(InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::vreg), Abi::Scalar(s)) => {
if let Primitive::Int(Integer::I8, _) = s.value {
bx.extract_element(value, bx.const_i32(0))
} else {
value
}
}
(InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::vreg_low16), Abi::Scalar(s)) => {
value = bx.extract_element(value, bx.const_i32(0));
if let Primitive::Pointer = s.value {
value = bx.inttoptr(value, layout.llvm_type(bx.cx));
}
value
}
(
InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::vreg_low16),
Abi::Vector { element, count },
) if layout.size.bytes() == 8 => {
let elem_ty = llvm_asm_scalar_type(bx.cx, element);
let vec_ty = bx.cx.type_vector(elem_ty, *count * 2);
let indices: Vec<_> = (0..*count).map(|x| bx.const_i32(x as i32)).collect();
bx.shuffle_vector(value, bx.const_undef(vec_ty), bx.const_vector(&indices))
}
(InlineAsmRegClass::X86(X86InlineAsmRegClass::reg_abcd), Abi::Scalar(s))
if s.value == Primitive::F64 =>
{
bx.bitcast(value, bx.cx.type_f64())
}
(
InlineAsmRegClass::X86(X86InlineAsmRegClass::xmm_reg | X86InlineAsmRegClass::zmm_reg),
Abi::Vector { .. },
) if layout.size.bytes() == 64 => bx.bitcast(value, layout.llvm_type(bx.cx)),
(
InlineAsmRegClass::Arm(ArmInlineAsmRegClass::sreg | ArmInlineAsmRegClass::sreg_low16),
Abi::Scalar(s),
) => {
if let Primitive::Int(Integer::I32, _) = s.value {
bx.bitcast(value, bx.cx.type_i32())
} else {
value
}
}
(
InlineAsmRegClass::Arm(
ArmInlineAsmRegClass::dreg
| ArmInlineAsmRegClass::dreg_low8
| ArmInlineAsmRegClass::dreg_low16,
),
Abi::Scalar(s),
) => {
if let Primitive::Int(Integer::I64, _) = s.value {
bx.bitcast(value, bx.cx.type_i64())
} else {
value
}
}
(InlineAsmRegClass::Mips(MipsInlineAsmRegClass::reg), Abi::Scalar(s)) => match s.value {
// MIPS only supports register-length arithmetics.
Primitive::Int(Integer::I8, _) => bx.trunc(value, bx.cx.type_i8()),
Primitive::Int(Integer::I16, _) => bx.trunc(value, bx.cx.type_i16()),
Primitive::F32 => bx.bitcast(value, bx.cx.type_f32()),
Primitive::F64 => bx.bitcast(value, bx.cx.type_f64()),
_ => value,
},
_ => value,
}
}
/// Output type to use for llvm_fixup_output.
fn llvm_fixup_output_type(
cx: &CodegenCx<'ll, 'tcx>,
reg: InlineAsmRegClass,
layout: &TyAndLayout<'tcx>,
) -> &'ll Type {
match (reg, &layout.abi) {
(InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::vreg), Abi::Scalar(s)) => {
if let Primitive::Int(Integer::I8, _) = s.value {
cx.type_vector(cx.type_i8(), 8)
} else {
layout.llvm_type(cx)
}
}
(InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::vreg_low16), Abi::Scalar(s)) => {
let elem_ty = llvm_asm_scalar_type(cx, s);
let count = 16 / layout.size.bytes();
cx.type_vector(elem_ty, count)
}
(
InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::vreg_low16),
Abi::Vector { element, count },
) if layout.size.bytes() == 8 => {
let elem_ty = llvm_asm_scalar_type(cx, element);
cx.type_vector(elem_ty, count * 2)
}
(InlineAsmRegClass::X86(X86InlineAsmRegClass::reg_abcd), Abi::Scalar(s))
if s.value == Primitive::F64 =>
{
cx.type_i64()
}
(
InlineAsmRegClass::X86(X86InlineAsmRegClass::xmm_reg | X86InlineAsmRegClass::zmm_reg),
Abi::Vector { .. },
) if layout.size.bytes() == 64 => cx.type_vector(cx.type_f64(), 8),
(
InlineAsmRegClass::Arm(ArmInlineAsmRegClass::sreg | ArmInlineAsmRegClass::sreg_low16),
Abi::Scalar(s),
) => {
if let Primitive::Int(Integer::I32, _) = s.value {
cx.type_f32()
} else {
layout.llvm_type(cx)
}
}
(
InlineAsmRegClass::Arm(
ArmInlineAsmRegClass::dreg
| ArmInlineAsmRegClass::dreg_low8
| ArmInlineAsmRegClass::dreg_low16,
),
Abi::Scalar(s),
) => {
if let Primitive::Int(Integer::I64, _) = s.value {
cx.type_f64()
} else {
layout.llvm_type(cx)
}
}
(InlineAsmRegClass::Mips(MipsInlineAsmRegClass::reg), Abi::Scalar(s)) => match s.value {
// MIPS only supports register-length arithmetics.
Primitive::Int(Integer::I8 | Integer::I16, _) => cx.type_i32(),
Primitive::F32 => cx.type_i32(),
Primitive::F64 => cx.type_i64(),
_ => layout.llvm_type(cx),
},
_ => layout.llvm_type(cx),
}
}