blob: 165174c0bcc15022dda80900fdca8c50bfa92af2 [file] [log] [blame]
use std::fmt::Debug;
use std::ops::ControlFlow;
use rustc_hir::def_id::DefId;
use rustc_infer::traits::util::PredicateSet;
use rustc_middle::bug;
use rustc_middle::query::Providers;
use rustc_middle::ty::{
self, GenericArgs, GenericParamDefKind, Ty, TyCtxt, TypeVisitableExt, Upcast, VtblEntry,
};
use rustc_span::DUMMY_SP;
use smallvec::{SmallVec, smallvec};
use tracing::debug;
use crate::traits::{impossible_predicates, is_vtable_safe_method};
#[derive(Clone, Debug)]
pub enum VtblSegment<'tcx> {
MetadataDSA,
TraitOwnEntries { trait_ref: ty::TraitRef<'tcx>, emit_vptr: bool },
}
/// Prepare the segments for a vtable
// FIXME: This should take a `PolyExistentialTraitRef`, since we don't care
// about our `Self` type here.
pub fn prepare_vtable_segments<'tcx, T>(
tcx: TyCtxt<'tcx>,
trait_ref: ty::TraitRef<'tcx>,
segment_visitor: impl FnMut(VtblSegment<'tcx>) -> ControlFlow<T>,
) -> Option<T> {
prepare_vtable_segments_inner(tcx, trait_ref, segment_visitor).break_value()
}
/// Helper for [`prepare_vtable_segments`] that returns `ControlFlow`,
/// such that we can use `?` in the body.
fn prepare_vtable_segments_inner<'tcx, T>(
tcx: TyCtxt<'tcx>,
trait_ref: ty::TraitRef<'tcx>,
mut segment_visitor: impl FnMut(VtblSegment<'tcx>) -> ControlFlow<T>,
) -> ControlFlow<T> {
// The following constraints holds for the final arrangement.
// 1. The whole virtual table of the first direct super trait is included as the
// the prefix. If this trait doesn't have any super traits, then this step
// consists of the dsa metadata.
// 2. Then comes the proper pointer metadata(vptr) and all own methods for all
// other super traits except those already included as part of the first
// direct super trait virtual table.
// 3. finally, the own methods of this trait.
// This has the advantage that trait upcasting to the first direct super trait on each level
// is zero cost, and to another trait includes only replacing the pointer with one level indirection,
// while not using too much extra memory.
// For a single inheritance relationship like this,
// D --> C --> B --> A
// The resulting vtable will consists of these segments:
// DSA, A, B, C, D
// For a multiple inheritance relationship like this,
// D --> C --> A
// \-> B
// The resulting vtable will consists of these segments:
// DSA, A, B, B-vptr, C, D
// For a diamond inheritance relationship like this,
// D --> B --> A
// \-> C -/
// The resulting vtable will consists of these segments:
// DSA, A, B, C, C-vptr, D
// For a more complex inheritance relationship like this:
// O --> G --> C --> A
// \ \ \-> B
// | |-> F --> D
// | \-> E
// |-> N --> J --> H
// \ \-> I
// |-> M --> K
// \-> L
// The resulting vtable will consists of these segments:
// DSA, A, B, B-vptr, C, D, D-vptr, E, E-vptr, F, F-vptr, G,
// H, H-vptr, I, I-vptr, J, J-vptr, K, K-vptr, L, L-vptr, M, M-vptr,
// N, N-vptr, O
// emit dsa segment first.
segment_visitor(VtblSegment::MetadataDSA)?;
let mut emit_vptr_on_new_entry = false;
let mut visited = PredicateSet::new(tcx);
let predicate = trait_ref.upcast(tcx);
let mut stack: SmallVec<[(ty::TraitRef<'tcx>, _, _); 5]> =
smallvec![(trait_ref, emit_vptr_on_new_entry, maybe_iter(None))];
visited.insert(predicate);
// the main traversal loop:
// basically we want to cut the inheritance directed graph into a few non-overlapping slices of nodes
// such that each node is emitted after all its descendants have been emitted.
// so we convert the directed graph into a tree by skipping all previously visited nodes using a visited set.
// this is done on the fly.
// Each loop run emits a slice - it starts by find a "childless" unvisited node, backtracking upwards, and it
// stops after it finds a node that has a next-sibling node.
// This next-sibling node will used as the starting point of next slice.
// Example:
// For a diamond inheritance relationship like this,
// D#1 --> B#0 --> A#0
// \-> C#1 -/
// Starting point 0 stack [D]
// Loop run #0: Stack after diving in is [D B A], A is "childless"
// after this point, all newly visited nodes won't have a vtable that equals to a prefix of this one.
// Loop run #0: Emitting the slice [B A] (in reverse order), B has a next-sibling node, so this slice stops here.
// Loop run #0: Stack after exiting out is [D C], C is the next starting point.
// Loop run #1: Stack after diving in is [D C], C is "childless", since its child A is skipped(already emitted).
// Loop run #1: Emitting the slice [D C] (in reverse order). No one has a next-sibling node.
// Loop run #1: Stack after exiting out is []. Now the function exits.
'outer: loop {
// dive deeper into the stack, recording the path
'diving_in: loop {
let &(inner_most_trait_ref, _, _) = stack.last().unwrap();
let mut direct_super_traits_iter = tcx
.explicit_super_predicates_of(inner_most_trait_ref.def_id)
.iter_identity_copied()
.filter_map(move |(pred, _)| {
pred.instantiate_supertrait(tcx, ty::Binder::dummy(inner_most_trait_ref))
.as_trait_clause()
})
.map(move |pred| {
tcx.normalize_erasing_late_bound_regions(
ty::TypingEnv::fully_monomorphized(),
pred,
)
.trait_ref
});
// Find an unvisited supertrait
match direct_super_traits_iter
.find(|&super_trait| visited.insert(super_trait.upcast(tcx)))
{
// Push it to the stack for the next iteration of 'diving_in to pick up
Some(next_super_trait) => stack.push((
next_super_trait,
emit_vptr_on_new_entry,
maybe_iter(Some(direct_super_traits_iter)),
)),
// There are no more unvisited direct super traits, dive-in finished
None => break 'diving_in,
}
}
// emit innermost item, move to next sibling and stop there if possible, otherwise jump to outer level.
while let Some((inner_most_trait_ref, emit_vptr, mut siblings)) = stack.pop() {
let has_entries = has_own_existential_vtable_entries(tcx, inner_most_trait_ref.def_id);
segment_visitor(VtblSegment::TraitOwnEntries {
trait_ref: inner_most_trait_ref,
emit_vptr: emit_vptr && has_entries && !tcx.sess.opts.unstable_opts.no_trait_vptr,
})?;
// If we've emitted (fed to `segment_visitor`) a trait that has methods present in the vtable,
// we'll need to emit vptrs from now on.
emit_vptr_on_new_entry |= has_entries;
if let Some(next_inner_most_trait_ref) =
siblings.find(|&sibling| visited.insert(sibling.upcast(tcx)))
{
stack.push((next_inner_most_trait_ref, emit_vptr_on_new_entry, siblings));
// just pushed a new trait onto the stack, so we need to go through its super traits
continue 'outer;
}
}
// the stack is empty, all done
return ControlFlow::Continue(());
}
}
/// Turns option of iterator into an iterator (this is just flatten)
fn maybe_iter<I: Iterator>(i: Option<I>) -> impl Iterator<Item = I::Item> {
// Flatten is bad perf-vise, we could probably implement a special case here that is better
i.into_iter().flatten()
}
fn has_own_existential_vtable_entries(tcx: TyCtxt<'_>, trait_def_id: DefId) -> bool {
own_existential_vtable_entries_iter(tcx, trait_def_id).next().is_some()
}
fn own_existential_vtable_entries(tcx: TyCtxt<'_>, trait_def_id: DefId) -> &[DefId] {
tcx.arena.alloc_from_iter(own_existential_vtable_entries_iter(tcx, trait_def_id))
}
fn own_existential_vtable_entries_iter(
tcx: TyCtxt<'_>,
trait_def_id: DefId,
) -> impl Iterator<Item = DefId> {
let trait_methods = tcx
.associated_items(trait_def_id)
.in_definition_order()
.filter(|item| item.kind == ty::AssocKind::Fn);
// Now list each method's DefId (for within its trait).
let own_entries = trait_methods.filter_map(move |&trait_method| {
debug!("own_existential_vtable_entry: trait_method={:?}", trait_method);
let def_id = trait_method.def_id;
// Some methods cannot be called on an object; skip those.
if !is_vtable_safe_method(tcx, trait_def_id, trait_method) {
debug!("own_existential_vtable_entry: not vtable safe");
return None;
}
Some(def_id)
});
own_entries
}
/// Given a trait `trait_ref`, iterates the vtable entries
/// that come from `trait_ref`, including its supertraits.
fn vtable_entries<'tcx>(
tcx: TyCtxt<'tcx>,
trait_ref: ty::TraitRef<'tcx>,
) -> &'tcx [VtblEntry<'tcx>] {
debug_assert!(!trait_ref.has_non_region_infer() && !trait_ref.has_non_region_param());
debug_assert_eq!(
tcx.normalize_erasing_regions(ty::TypingEnv::fully_monomorphized(), trait_ref),
trait_ref,
"vtable trait ref should be normalized"
);
debug!("vtable_entries({:?})", trait_ref);
let mut entries = vec![];
let vtable_segment_callback = |segment| -> ControlFlow<()> {
match segment {
VtblSegment::MetadataDSA => {
entries.extend(TyCtxt::COMMON_VTABLE_ENTRIES);
}
VtblSegment::TraitOwnEntries { trait_ref, emit_vptr } => {
let existential_trait_ref = ty::ExistentialTraitRef::erase_self_ty(tcx, trait_ref);
// Lookup the shape of vtable for the trait.
let own_existential_entries =
tcx.own_existential_vtable_entries(existential_trait_ref.def_id);
let own_entries = own_existential_entries.iter().copied().map(|def_id| {
debug!("vtable_entries: trait_method={:?}", def_id);
// The method may have some early-bound lifetimes; add regions for those.
// FIXME: Is this normalize needed?
let args = tcx.normalize_erasing_regions(
ty::TypingEnv::fully_monomorphized(),
GenericArgs::for_item(tcx, def_id, |param, _| match param.kind {
GenericParamDefKind::Lifetime => tcx.lifetimes.re_erased.into(),
GenericParamDefKind::Type { .. }
| GenericParamDefKind::Const { .. } => {
trait_ref.args[param.index as usize]
}
}),
);
// It's possible that the method relies on where-clauses that
// do not hold for this particular set of type parameters.
// Note that this method could then never be called, so we
// do not want to try and codegen it, in that case (see #23435).
let predicates = tcx.predicates_of(def_id).instantiate_own(tcx, args);
if impossible_predicates(
tcx,
predicates.map(|(predicate, _)| predicate).collect(),
) {
debug!("vtable_entries: predicates do not hold");
return VtblEntry::Vacant;
}
let instance = ty::Instance::expect_resolve_for_vtable(
tcx,
ty::TypingEnv::fully_monomorphized(),
def_id,
args,
DUMMY_SP,
);
VtblEntry::Method(instance)
});
entries.extend(own_entries);
if emit_vptr {
entries.push(VtblEntry::TraitVPtr(trait_ref));
}
}
}
ControlFlow::Continue(())
};
let _ = prepare_vtable_segments(tcx, trait_ref, vtable_segment_callback);
tcx.arena.alloc_from_iter(entries)
}
// Given a `dyn Subtrait: Supertrait` trait ref, find corresponding first slot
// for `Supertrait`'s methods in the vtable of `Subtrait`.
pub(crate) fn first_method_vtable_slot<'tcx>(tcx: TyCtxt<'tcx>, key: ty::TraitRef<'tcx>) -> usize {
debug_assert!(!key.has_non_region_infer() && !key.has_non_region_param());
debug_assert_eq!(
tcx.normalize_erasing_regions(ty::TypingEnv::fully_monomorphized(), key),
key,
"vtable trait ref should be normalized"
);
let ty::Dynamic(source, _, _) = *key.self_ty().kind() else {
bug!();
};
let source_principal = tcx.instantiate_bound_regions_with_erased(
source.principal().unwrap().with_self_ty(tcx, key.self_ty()),
);
// We're monomorphizing a call to a dyn trait object that can never be constructed.
if tcx.instantiate_and_check_impossible_predicates((
source_principal.def_id,
source_principal.args,
)) {
return 0;
}
let target_principal = ty::ExistentialTraitRef::erase_self_ty(tcx, key);
let vtable_segment_callback = {
let mut vptr_offset = 0;
move |segment| {
match segment {
VtblSegment::MetadataDSA => {
vptr_offset += TyCtxt::COMMON_VTABLE_ENTRIES.len();
}
VtblSegment::TraitOwnEntries { trait_ref: vtable_principal, emit_vptr } => {
if ty::ExistentialTraitRef::erase_self_ty(tcx, vtable_principal)
== target_principal
{
return ControlFlow::Break(vptr_offset);
}
vptr_offset +=
tcx.own_existential_vtable_entries(vtable_principal.def_id).len();
if emit_vptr {
vptr_offset += 1;
}
}
}
ControlFlow::Continue(())
}
};
prepare_vtable_segments(tcx, source_principal, vtable_segment_callback).unwrap()
}
/// Given a `dyn Subtrait` and `dyn Supertrait` trait object, find the slot of
/// the trait vptr in the subtrait's vtable.
///
/// A return value of `None` means that the original vtable can be reused.
pub(crate) fn supertrait_vtable_slot<'tcx>(
tcx: TyCtxt<'tcx>,
key: (
Ty<'tcx>, // Source -- `dyn Subtrait`.
Ty<'tcx>, // Target -- `dyn Supertrait` being coerced to.
),
) -> Option<usize> {
debug_assert!(!key.has_non_region_infer() && !key.has_non_region_param());
debug_assert_eq!(
tcx.normalize_erasing_regions(ty::TypingEnv::fully_monomorphized(), key),
key,
"upcasting trait refs should be normalized"
);
let (source, target) = key;
// If the target principal is `None`, we can just return `None`.
let ty::Dynamic(target_data, _, _) = *target.kind() else {
bug!();
};
let target_principal = tcx.instantiate_bound_regions_with_erased(target_data.principal()?);
// Given that we have a target principal, it is a bug for there not to be a source principal.
let ty::Dynamic(source_data, _, _) = *source.kind() else {
bug!();
};
let source_principal = tcx.instantiate_bound_regions_with_erased(
source_data.principal().unwrap().with_self_ty(tcx, source),
);
// We're monomorphizing a dyn trait object upcast that can never be constructed.
if tcx.instantiate_and_check_impossible_predicates((
source_principal.def_id,
source_principal.args,
)) {
return None;
}
let vtable_segment_callback = {
let mut vptr_offset = 0;
move |segment| {
match segment {
VtblSegment::MetadataDSA => {
vptr_offset += TyCtxt::COMMON_VTABLE_ENTRIES.len();
}
VtblSegment::TraitOwnEntries { trait_ref: vtable_principal, emit_vptr } => {
vptr_offset +=
tcx.own_existential_vtable_entries(vtable_principal.def_id).len();
if ty::ExistentialTraitRef::erase_self_ty(tcx, vtable_principal)
== target_principal
{
if emit_vptr {
return ControlFlow::Break(Some(vptr_offset));
} else {
return ControlFlow::Break(None);
}
}
if emit_vptr {
vptr_offset += 1;
}
}
}
ControlFlow::Continue(())
}
};
prepare_vtable_segments(tcx, source_principal, vtable_segment_callback).unwrap()
}
pub(super) fn provide(providers: &mut Providers) {
*providers = Providers {
own_existential_vtable_entries,
vtable_entries,
first_method_vtable_slot,
supertrait_vtable_slot,
..*providers
};
}