| //! Mono Item Collection |
| //! ==================== |
| //! |
| //! This module is responsible for discovering all items that will contribute |
| //! to code generation of the crate. The important part here is that it not only |
| //! needs to find syntax-level items (functions, structs, etc) but also all |
| //! their monomorphized instantiations. Every non-generic, non-const function |
| //! maps to one LLVM artifact. Every generic function can produce |
| //! from zero to N artifacts, depending on the sets of type arguments it |
| //! is instantiated with. |
| //! This also applies to generic items from other crates: A generic definition |
| //! in crate X might produce monomorphizations that are compiled into crate Y. |
| //! We also have to collect these here. |
| //! |
| //! The following kinds of "mono items" are handled here: |
| //! |
| //! - Functions |
| //! - Methods |
| //! - Closures |
| //! - Statics |
| //! - Drop glue |
| //! |
| //! The following things also result in LLVM artifacts, but are not collected |
| //! here, since we instantiate them locally on demand when needed in a given |
| //! codegen unit: |
| //! |
| //! - Constants |
| //! - VTables |
| //! - Object Shims |
| //! |
| //! The main entry point is `collect_crate_mono_items`, at the bottom of this file. |
| //! |
| //! General Algorithm |
| //! ----------------- |
| //! Let's define some terms first: |
| //! |
| //! - A "mono item" is something that results in a function or global in |
| //! the LLVM IR of a codegen unit. Mono items do not stand on their |
| //! own, they can use other mono items. For example, if function |
| //! `foo()` calls function `bar()` then the mono item for `foo()` |
| //! uses the mono item for function `bar()`. In general, the |
| //! definition for mono item A using a mono item B is that |
| //! the LLVM artifact produced for A uses the LLVM artifact produced |
| //! for B. |
| //! |
| //! - Mono items and the uses between them form a directed graph, |
| //! where the mono items are the nodes and uses form the edges. |
| //! Let's call this graph the "mono item graph". |
| //! |
| //! - The mono item graph for a program contains all mono items |
| //! that are needed in order to produce the complete LLVM IR of the program. |
| //! |
| //! The purpose of the algorithm implemented in this module is to build the |
| //! mono item graph for the current crate. It runs in two phases: |
| //! |
| //! 1. Discover the roots of the graph by traversing the HIR of the crate. |
| //! 2. Starting from the roots, find uses by inspecting the MIR |
| //! representation of the item corresponding to a given node, until no more |
| //! new nodes are found. |
| //! |
| //! ### Discovering roots |
| //! The roots of the mono item graph correspond to the public non-generic |
| //! syntactic items in the source code. We find them by walking the HIR of the |
| //! crate, and whenever we hit upon a public function, method, or static item, |
| //! we create a mono item consisting of the items DefId and, since we only |
| //! consider non-generic items, an empty type-parameters set. (In eager |
| //! collection mode, during incremental compilation, all non-generic functions |
| //! are considered as roots, as well as when the `-Clink-dead-code` option is |
| //! specified. Functions marked `#[no_mangle]` and functions called by inlinable |
| //! functions also always act as roots.) |
| //! |
| //! ### Finding uses |
| //! Given a mono item node, we can discover uses by inspecting its MIR. We walk |
| //! the MIR to find other mono items used by each mono item. Since the mono |
| //! item we are currently at is always monomorphic, we also know the concrete |
| //! type arguments of its used mono items. The specific forms a use can take in |
| //! MIR are quite diverse. Here is an overview: |
| //! |
| //! #### Calling Functions/Methods |
| //! The most obvious way for one mono item to use another is a |
| //! function or method call (represented by a CALL terminator in MIR). But |
| //! calls are not the only thing that might introduce a use between two |
| //! function mono items, and as we will see below, they are just a |
| //! specialization of the form described next, and consequently will not get any |
| //! special treatment in the algorithm. |
| //! |
| //! #### Taking a reference to a function or method |
| //! A function does not need to actually be called in order to be used by |
| //! another function. It suffices to just take a reference in order to introduce |
| //! an edge. Consider the following example: |
| //! |
| //! ``` |
| //! # use core::fmt::Display; |
| //! fn print_val<T: Display>(x: T) { |
| //! println!("{}", x); |
| //! } |
| //! |
| //! fn call_fn(f: &dyn Fn(i32), x: i32) { |
| //! f(x); |
| //! } |
| //! |
| //! fn main() { |
| //! let print_i32 = print_val::<i32>; |
| //! call_fn(&print_i32, 0); |
| //! } |
| //! ``` |
| //! The MIR of none of these functions will contain an explicit call to |
| //! `print_val::<i32>`. Nonetheless, in order to mono this program, we need |
| //! an instance of this function. Thus, whenever we encounter a function or |
| //! method in operand position, we treat it as a use of the current |
| //! mono item. Calls are just a special case of that. |
| //! |
| //! #### Drop glue |
| //! Drop glue mono items are introduced by MIR drop-statements. The |
| //! generated mono item will have additional drop-glue item uses if the |
| //! type to be dropped contains nested values that also need to be dropped. It |
| //! might also have a function item use for the explicit `Drop::drop` |
| //! implementation of its type. |
| //! |
| //! #### Unsizing Casts |
| //! A subtle way of introducing use edges is by casting to a trait object. |
| //! Since the resulting wide-pointer contains a reference to a vtable, we need to |
| //! instantiate all dyn-compatible methods of the trait, as we need to store |
| //! pointers to these functions even if they never get called anywhere. This can |
| //! be seen as a special case of taking a function reference. |
| //! |
| //! |
| //! Interaction with Cross-Crate Inlining |
| //! ------------------------------------- |
| //! The binary of a crate will not only contain machine code for the items |
| //! defined in the source code of that crate. It will also contain monomorphic |
| //! instantiations of any extern generic functions and of functions marked with |
| //! `#[inline]`. |
| //! The collection algorithm handles this more or less mono. If it is |
| //! about to create a mono item for something with an external `DefId`, |
| //! it will take a look if the MIR for that item is available, and if so just |
| //! proceed normally. If the MIR is not available, it assumes that the item is |
| //! just linked to and no node is created; which is exactly what we want, since |
| //! no machine code should be generated in the current crate for such an item. |
| //! |
| //! Eager and Lazy Collection Strategy |
| //! ---------------------------------- |
| //! Mono item collection can be performed with one of two strategies: |
| //! |
| //! - Lazy strategy means that items will only be instantiated when actually |
| //! used. The goal is to produce the least amount of machine code |
| //! possible. |
| //! |
| //! - Eager strategy is meant to be used in conjunction with incremental compilation |
| //! where a stable set of mono items is more important than a minimal |
| //! one. Thus, eager strategy will instantiate drop-glue for every drop-able type |
| //! in the crate, even if no drop call for that type exists (yet). It will |
| //! also instantiate default implementations of trait methods, something that |
| //! otherwise is only done on demand. |
| //! |
| //! Collection-time const evaluation and "mentioned" items |
| //! ------------------------------------------------------ |
| //! |
| //! One important role of collection is to evaluate all constants that are used by all the items |
| //! which are being collected. Codegen can then rely on only encountering constants that evaluate |
| //! successfully, and if a constant fails to evaluate, the collector has much better context to be |
| //! able to show where this constant comes up. |
| //! |
| //! However, the exact set of "used" items (collected as described above), and therefore the exact |
| //! set of used constants, can depend on optimizations. Optimizing away dead code may optimize away |
| //! a function call that uses a failing constant, so an unoptimized build may fail where an |
| //! optimized build succeeds. This is undesirable. |
| //! |
| //! To avoid this, the collector has the concept of "mentioned" items. Some time during the MIR |
| //! pipeline, before any optimization-level-dependent optimizations, we compute a list of all items |
| //! that syntactically appear in the code. These are considered "mentioned", and even if they are in |
| //! dead code and get optimized away (which makes them no longer "used"), they are still |
| //! "mentioned". For every used item, the collector ensures that all mentioned items, recursively, |
| //! do not use a failing constant. This is reflected via the [`CollectionMode`], which determines |
| //! whether we are visiting a used item or merely a mentioned item. |
| //! |
| //! The collector and "mentioned items" gathering (which lives in `rustc_mir_transform::mentioned_items`) |
| //! need to stay in sync in the following sense: |
| //! |
| //! - For every item that the collector gather that could eventually lead to build failure (most |
| //! likely due to containing a constant that fails to evaluate), a corresponding mentioned item |
| //! must be added. This should use the exact same strategy as the ecollector to make sure they are |
| //! in sync. However, while the collector works on monomorphized types, mentioned items are |
| //! collected on generic MIR -- so any time the collector checks for a particular type (such as |
| //! `ty::FnDef`), we have to just onconditionally add this as a mentioned item. |
| //! - In `visit_mentioned_item`, we then do with that mentioned item exactly what the collector |
| //! would have done during regular MIR visiting. Basically you can think of the collector having |
| //! two stages, a pre-monomorphization stage and a post-monomorphization stage (usually quite |
| //! literally separated by a call to `self.monomorphize`); the pre-monomorphizationn stage is |
| //! duplicated in mentioned items gathering and the post-monomorphization stage is duplicated in |
| //! `visit_mentioned_item`. |
| //! - Finally, as a performance optimization, the collector should fill `used_mentioned_item` during |
| //! its MIR traversal with exactly what mentioned item gathering would have added in the same |
| //! situation. This detects mentioned items that have *not* been optimized away and hence don't |
| //! need a dedicated traversal. |
| //! |
| //! Open Issues |
| //! ----------- |
| //! Some things are not yet fully implemented in the current version of this |
| //! module. |
| //! |
| //! ### Const Fns |
| //! Ideally, no mono item should be generated for const fns unless there |
| //! is a call to them that cannot be evaluated at compile time. At the moment |
| //! this is not implemented however: a mono item will be produced |
| //! regardless of whether it is actually needed or not. |
| |
| use std::path::PathBuf; |
| |
| use rustc_attr_parsing::InlineAttr; |
| use rustc_data_structures::fx::FxIndexMap; |
| use rustc_data_structures::sync::{MTLock, par_for_each_in}; |
| use rustc_data_structures::unord::{UnordMap, UnordSet}; |
| use rustc_hir as hir; |
| use rustc_hir::def::DefKind; |
| use rustc_hir::def_id::{DefId, DefIdMap, LocalDefId}; |
| use rustc_hir::lang_items::LangItem; |
| use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrFlags; |
| use rustc_middle::mir::interpret::{AllocId, ErrorHandled, GlobalAlloc, Scalar}; |
| use rustc_middle::mir::mono::{CollectionMode, InstantiationMode, MonoItem}; |
| use rustc_middle::mir::visit::Visitor as MirVisitor; |
| use rustc_middle::mir::{self, Location, MentionedItem, traversal}; |
| use rustc_middle::query::TyCtxtAt; |
| use rustc_middle::ty::adjustment::{CustomCoerceUnsized, PointerCoercion}; |
| use rustc_middle::ty::layout::ValidityRequirement; |
| use rustc_middle::ty::print::{shrunk_instance_name, with_no_trimmed_paths}; |
| use rustc_middle::ty::{ |
| self, GenericArgs, GenericParamDefKind, Instance, InstanceKind, Ty, TyCtxt, TypeFoldable, |
| TypeVisitableExt, VtblEntry, |
| }; |
| use rustc_middle::util::Providers; |
| use rustc_middle::{bug, span_bug}; |
| use rustc_session::Limit; |
| use rustc_session::config::{DebugInfo, EntryFnType}; |
| use rustc_span::source_map::{Spanned, dummy_spanned, respan}; |
| use rustc_span::{DUMMY_SP, Span}; |
| use tracing::{debug, instrument, trace}; |
| |
| use crate::errors::{self, EncounteredErrorWhileInstantiating, NoOptimizedMir, RecursionLimit}; |
| |
| #[derive(PartialEq)] |
| pub(crate) enum MonoItemCollectionStrategy { |
| Eager, |
| Lazy, |
| } |
| |
| /// The state that is shared across the concurrent threads that are doing collection. |
| struct SharedState<'tcx> { |
| /// Items that have been or are currently being recursively collected. |
| visited: MTLock<UnordSet<MonoItem<'tcx>>>, |
| /// Items that have been or are currently being recursively treated as "mentioned", i.e., their |
| /// consts are evaluated but nothing is added to the collection. |
| mentioned: MTLock<UnordSet<MonoItem<'tcx>>>, |
| /// Which items are being used where, for better errors. |
| usage_map: MTLock<UsageMap<'tcx>>, |
| } |
| |
| pub(crate) struct UsageMap<'tcx> { |
| // Maps every mono item to the mono items used by it. |
| pub used_map: UnordMap<MonoItem<'tcx>, Vec<MonoItem<'tcx>>>, |
| |
| // Maps every mono item to the mono items that use it. |
| user_map: UnordMap<MonoItem<'tcx>, Vec<MonoItem<'tcx>>>, |
| } |
| |
| impl<'tcx> UsageMap<'tcx> { |
| fn new() -> UsageMap<'tcx> { |
| UsageMap { used_map: Default::default(), user_map: Default::default() } |
| } |
| |
| fn record_used<'a>(&mut self, user_item: MonoItem<'tcx>, used_items: &'a MonoItems<'tcx>) |
| where |
| 'tcx: 'a, |
| { |
| for used_item in used_items.items() { |
| self.user_map.entry(used_item).or_default().push(user_item); |
| } |
| |
| assert!(self.used_map.insert(user_item, used_items.items().collect()).is_none()); |
| } |
| |
| pub(crate) fn get_user_items(&self, item: MonoItem<'tcx>) -> &[MonoItem<'tcx>] { |
| self.user_map.get(&item).map(|items| items.as_slice()).unwrap_or(&[]) |
| } |
| |
| /// Internally iterate over all inlined items used by `item`. |
| pub(crate) fn for_each_inlined_used_item<F>( |
| &self, |
| tcx: TyCtxt<'tcx>, |
| item: MonoItem<'tcx>, |
| mut f: F, |
| ) where |
| F: FnMut(MonoItem<'tcx>), |
| { |
| let used_items = self.used_map.get(&item).unwrap(); |
| for used_item in used_items.iter() { |
| let is_inlined = used_item.instantiation_mode(tcx) == InstantiationMode::LocalCopy; |
| if is_inlined { |
| f(*used_item); |
| } |
| } |
| } |
| } |
| |
| struct MonoItems<'tcx> { |
| // We want a set of MonoItem + Span where trying to re-insert a MonoItem with a different Span |
| // is ignored. Map does that, but it looks odd. |
| items: FxIndexMap<MonoItem<'tcx>, Span>, |
| } |
| |
| impl<'tcx> MonoItems<'tcx> { |
| fn new() -> Self { |
| Self { items: FxIndexMap::default() } |
| } |
| |
| fn is_empty(&self) -> bool { |
| self.items.is_empty() |
| } |
| |
| fn push(&mut self, item: Spanned<MonoItem<'tcx>>) { |
| // Insert only if the entry does not exist. A normal insert would stomp the first span that |
| // got inserted. |
| self.items.entry(item.node).or_insert(item.span); |
| } |
| |
| fn items(&self) -> impl Iterator<Item = MonoItem<'tcx>> { |
| self.items.keys().cloned() |
| } |
| } |
| |
| impl<'tcx> IntoIterator for MonoItems<'tcx> { |
| type Item = Spanned<MonoItem<'tcx>>; |
| type IntoIter = impl Iterator<Item = Spanned<MonoItem<'tcx>>>; |
| |
| fn into_iter(self) -> Self::IntoIter { |
| self.items.into_iter().map(|(item, span)| respan(span, item)) |
| } |
| } |
| |
| impl<'tcx> Extend<Spanned<MonoItem<'tcx>>> for MonoItems<'tcx> { |
| fn extend<I>(&mut self, iter: I) |
| where |
| I: IntoIterator<Item = Spanned<MonoItem<'tcx>>>, |
| { |
| for item in iter { |
| self.push(item) |
| } |
| } |
| } |
| |
| /// Collect all monomorphized items reachable from `starting_point`, and emit a note diagnostic if a |
| /// post-monomorphization error is encountered during a collection step. |
| /// |
| /// `mode` determined whether we are scanning for [used items][CollectionMode::UsedItems] |
| /// or [mentioned items][CollectionMode::MentionedItems]. |
| #[instrument(skip(tcx, state, recursion_depths, recursion_limit), level = "debug")] |
| fn collect_items_rec<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| starting_item: Spanned<MonoItem<'tcx>>, |
| state: &SharedState<'tcx>, |
| recursion_depths: &mut DefIdMap<usize>, |
| recursion_limit: Limit, |
| mode: CollectionMode, |
| ) { |
| if mode == CollectionMode::UsedItems { |
| if !state.visited.lock_mut().insert(starting_item.node) { |
| // We've been here already, no need to search again. |
| return; |
| } |
| } else { |
| if state.visited.lock().contains(&starting_item.node) { |
| // We've already done a *full* visit on this one, no need to do the "mention" visit. |
| return; |
| } |
| if !state.mentioned.lock_mut().insert(starting_item.node) { |
| // We've been here already, no need to search again. |
| return; |
| } |
| // There's some risk that we first do a 'mention' visit and then a full visit. But there's no |
| // harm in that, the mention visit will trigger all the queries and the results are cached. |
| } |
| |
| let mut used_items = MonoItems::new(); |
| let mut mentioned_items = MonoItems::new(); |
| let recursion_depth_reset; |
| |
| // Post-monomorphization errors MVP |
| // |
| // We can encounter errors while monomorphizing an item, but we don't have a good way of |
| // showing a complete stack of spans ultimately leading to collecting the erroneous one yet. |
| // (It's also currently unclear exactly which diagnostics and information would be interesting |
| // to report in such cases) |
| // |
| // This leads to suboptimal error reporting: a post-monomorphization error (PME) will be |
| // shown with just a spanned piece of code causing the error, without information on where |
| // it was called from. This is especially obscure if the erroneous mono item is in a |
| // dependency. See for example issue #85155, where, before minimization, a PME happened two |
| // crates downstream from libcore's stdarch, without a way to know which dependency was the |
| // cause. |
| // |
| // If such an error occurs in the current crate, its span will be enough to locate the |
| // source. If the cause is in another crate, the goal here is to quickly locate which mono |
| // item in the current crate is ultimately responsible for causing the error. |
| // |
| // To give at least _some_ context to the user: while collecting mono items, we check the |
| // error count. If it has changed, a PME occurred, and we trigger some diagnostics about the |
| // current step of mono items collection. |
| // |
| // FIXME: don't rely on global state, instead bubble up errors. Note: this is very hard to do. |
| let error_count = tcx.dcx().err_count(); |
| |
| // In `mentioned_items` we collect items that were mentioned in this MIR but possibly do not |
| // need to be monomorphized. This is done to ensure that optimizing away function calls does not |
| // hide const-eval errors that those calls would otherwise have triggered. |
| match starting_item.node { |
| MonoItem::Static(def_id) => { |
| recursion_depth_reset = None; |
| |
| // Statics always get evaluated (which is possible because they can't be generic), so for |
| // `MentionedItems` collection there's nothing to do here. |
| if mode == CollectionMode::UsedItems { |
| let instance = Instance::mono(tcx, def_id); |
| |
| // Sanity check whether this ended up being collected accidentally |
| debug_assert!(tcx.should_codegen_locally(instance)); |
| |
| let DefKind::Static { nested, .. } = tcx.def_kind(def_id) else { bug!() }; |
| // Nested statics have no type. |
| if !nested { |
| let ty = instance.ty(tcx, ty::TypingEnv::fully_monomorphized()); |
| visit_drop_use(tcx, ty, true, starting_item.span, &mut used_items); |
| } |
| |
| if let Ok(alloc) = tcx.eval_static_initializer(def_id) { |
| for &prov in alloc.inner().provenance().ptrs().values() { |
| collect_alloc(tcx, prov.alloc_id(), &mut used_items); |
| } |
| } |
| |
| if tcx.needs_thread_local_shim(def_id) { |
| used_items.push(respan( |
| starting_item.span, |
| MonoItem::Fn(Instance { |
| def: InstanceKind::ThreadLocalShim(def_id), |
| args: GenericArgs::empty(), |
| }), |
| )); |
| } |
| } |
| |
| // mentioned_items stays empty since there's no codegen for statics. statics don't get |
| // optimized, and if they did then the const-eval interpreter would have to worry about |
| // mentioned_items. |
| } |
| MonoItem::Fn(instance) => { |
| // Sanity check whether this ended up being collected accidentally |
| debug_assert!(tcx.should_codegen_locally(instance)); |
| |
| // Keep track of the monomorphization recursion depth |
| recursion_depth_reset = Some(check_recursion_limit( |
| tcx, |
| instance, |
| starting_item.span, |
| recursion_depths, |
| recursion_limit, |
| )); |
| |
| rustc_data_structures::stack::ensure_sufficient_stack(|| { |
| let (used, mentioned) = tcx.items_of_instance((instance, mode)); |
| used_items.extend(used.into_iter().copied()); |
| mentioned_items.extend(mentioned.into_iter().copied()); |
| }); |
| } |
| MonoItem::GlobalAsm(item_id) => { |
| assert!( |
| mode == CollectionMode::UsedItems, |
| "should never encounter global_asm when collecting mentioned items" |
| ); |
| recursion_depth_reset = None; |
| |
| let item = tcx.hir_item(item_id); |
| if let hir::ItemKind::GlobalAsm { asm, .. } = item.kind { |
| for (op, op_sp) in asm.operands { |
| match *op { |
| hir::InlineAsmOperand::Const { .. } => { |
| // Only constants which resolve to a plain integer |
| // are supported. Therefore the value should not |
| // depend on any other items. |
| } |
| hir::InlineAsmOperand::SymFn { expr } => { |
| let fn_ty = tcx.typeck(item_id.owner_id).expr_ty(expr); |
| visit_fn_use(tcx, fn_ty, false, *op_sp, &mut used_items); |
| } |
| hir::InlineAsmOperand::SymStatic { path: _, def_id } => { |
| let instance = Instance::mono(tcx, def_id); |
| if tcx.should_codegen_locally(instance) { |
| trace!("collecting static {:?}", def_id); |
| used_items.push(dummy_spanned(MonoItem::Static(def_id))); |
| } |
| } |
| hir::InlineAsmOperand::In { .. } |
| | hir::InlineAsmOperand::Out { .. } |
| | hir::InlineAsmOperand::InOut { .. } |
| | hir::InlineAsmOperand::SplitInOut { .. } |
| | hir::InlineAsmOperand::Label { .. } => { |
| span_bug!(*op_sp, "invalid operand type for global_asm!") |
| } |
| } |
| } |
| } else { |
| span_bug!(item.span, "Mismatch between hir::Item type and MonoItem type") |
| } |
| |
| // mention_items stays empty as nothing gets optimized here. |
| } |
| }; |
| |
| // Check for PMEs and emit a diagnostic if one happened. To try to show relevant edges of the |
| // mono item graph. |
| if tcx.dcx().err_count() > error_count |
| && starting_item.node.is_generic_fn() |
| && starting_item.node.is_user_defined() |
| { |
| let formatted_item = with_no_trimmed_paths!(starting_item.node.to_string()); |
| tcx.dcx().emit_note(EncounteredErrorWhileInstantiating { |
| span: starting_item.span, |
| formatted_item, |
| }); |
| } |
| // Only updating `usage_map` for used items as otherwise we may be inserting the same item |
| // multiple times (if it is first 'mentioned' and then later actuall used), and the usage map |
| // logic does not like that. |
| // This is part of the output of collection and hence only relevant for "used" items. |
| // ("Mentioned" items are only considered internally during collection.) |
| if mode == CollectionMode::UsedItems { |
| state.usage_map.lock_mut().record_used(starting_item.node, &used_items); |
| } |
| |
| if mode == CollectionMode::MentionedItems { |
| assert!(used_items.is_empty(), "'mentioned' collection should never encounter used items"); |
| } else { |
| for used_item in used_items { |
| collect_items_rec( |
| tcx, |
| used_item, |
| state, |
| recursion_depths, |
| recursion_limit, |
| CollectionMode::UsedItems, |
| ); |
| } |
| } |
| |
| // Walk over mentioned items *after* used items, so that if an item is both mentioned and used then |
| // the loop above has fully collected it, so this loop will skip it. |
| for mentioned_item in mentioned_items { |
| collect_items_rec( |
| tcx, |
| mentioned_item, |
| state, |
| recursion_depths, |
| recursion_limit, |
| CollectionMode::MentionedItems, |
| ); |
| } |
| |
| if let Some((def_id, depth)) = recursion_depth_reset { |
| recursion_depths.insert(def_id, depth); |
| } |
| } |
| |
| fn check_recursion_limit<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| instance: Instance<'tcx>, |
| span: Span, |
| recursion_depths: &mut DefIdMap<usize>, |
| recursion_limit: Limit, |
| ) -> (DefId, usize) { |
| let def_id = instance.def_id(); |
| let recursion_depth = recursion_depths.get(&def_id).cloned().unwrap_or(0); |
| debug!(" => recursion depth={}", recursion_depth); |
| |
| let adjusted_recursion_depth = if tcx.is_lang_item(def_id, LangItem::DropInPlace) { |
| // HACK: drop_in_place creates tight monomorphization loops. Give |
| // it more margin. |
| recursion_depth / 4 |
| } else { |
| recursion_depth |
| }; |
| |
| // Code that needs to instantiate the same function recursively |
| // more than the recursion limit is assumed to be causing an |
| // infinite expansion. |
| if !recursion_limit.value_within_limit(adjusted_recursion_depth) { |
| let def_span = tcx.def_span(def_id); |
| let def_path_str = tcx.def_path_str(def_id); |
| let (shrunk, written_to_path) = shrunk_instance_name(tcx, instance); |
| let mut path = PathBuf::new(); |
| let was_written = if let Some(written_to_path) = written_to_path { |
| path = written_to_path; |
| true |
| } else { |
| false |
| }; |
| tcx.dcx().emit_fatal(RecursionLimit { |
| span, |
| shrunk, |
| def_span, |
| def_path_str, |
| was_written, |
| path, |
| }); |
| } |
| |
| recursion_depths.insert(def_id, recursion_depth + 1); |
| |
| (def_id, recursion_depth) |
| } |
| |
| struct MirUsedCollector<'a, 'tcx> { |
| tcx: TyCtxt<'tcx>, |
| body: &'a mir::Body<'tcx>, |
| used_items: &'a mut MonoItems<'tcx>, |
| /// See the comment in `collect_items_of_instance` for the purpose of this set. |
| /// Note that this contains *not-monomorphized* items! |
| used_mentioned_items: &'a mut UnordSet<MentionedItem<'tcx>>, |
| instance: Instance<'tcx>, |
| } |
| |
| impl<'a, 'tcx> MirUsedCollector<'a, 'tcx> { |
| fn monomorphize<T>(&self, value: T) -> T |
| where |
| T: TypeFoldable<TyCtxt<'tcx>>, |
| { |
| trace!("monomorphize: self.instance={:?}", self.instance); |
| self.instance.instantiate_mir_and_normalize_erasing_regions( |
| self.tcx, |
| ty::TypingEnv::fully_monomorphized(), |
| ty::EarlyBinder::bind(value), |
| ) |
| } |
| |
| /// Evaluates a *not yet monomorphized* constant. |
| fn eval_constant( |
| &mut self, |
| constant: &mir::ConstOperand<'tcx>, |
| ) -> Option<mir::ConstValue<'tcx>> { |
| let const_ = self.monomorphize(constant.const_); |
| // Evaluate the constant. This makes const eval failure a collection-time error (rather than |
| // a codegen-time error). rustc stops after collection if there was an error, so this |
| // ensures codegen never has to worry about failing consts. |
| // (codegen relies on this and ICEs will happen if this is violated.) |
| match const_.eval(self.tcx, ty::TypingEnv::fully_monomorphized(), constant.span) { |
| Ok(v) => Some(v), |
| Err(ErrorHandled::TooGeneric(..)) => span_bug!( |
| constant.span, |
| "collection encountered polymorphic constant: {:?}", |
| const_ |
| ), |
| Err(err @ ErrorHandled::Reported(..)) => { |
| err.emit_note(self.tcx); |
| return None; |
| } |
| } |
| } |
| } |
| |
| impl<'a, 'tcx> MirVisitor<'tcx> for MirUsedCollector<'a, 'tcx> { |
| fn visit_rvalue(&mut self, rvalue: &mir::Rvalue<'tcx>, location: Location) { |
| debug!("visiting rvalue {:?}", *rvalue); |
| |
| let span = self.body.source_info(location).span; |
| |
| match *rvalue { |
| // When doing an cast from a regular pointer to a wide pointer, we |
| // have to instantiate all methods of the trait being cast to, so we |
| // can build the appropriate vtable. |
| mir::Rvalue::Cast( |
| mir::CastKind::PointerCoercion(PointerCoercion::Unsize, _) |
| | mir::CastKind::PointerCoercion(PointerCoercion::DynStar, _), |
| ref operand, |
| target_ty, |
| ) => { |
| let source_ty = operand.ty(self.body, self.tcx); |
| // *Before* monomorphizing, record that we already handled this mention. |
| self.used_mentioned_items |
| .insert(MentionedItem::UnsizeCast { source_ty, target_ty }); |
| let target_ty = self.monomorphize(target_ty); |
| let source_ty = self.monomorphize(source_ty); |
| let (source_ty, target_ty) = |
| find_vtable_types_for_unsizing(self.tcx.at(span), source_ty, target_ty); |
| // This could also be a different Unsize instruction, like |
| // from a fixed sized array to a slice. But we are only |
| // interested in things that produce a vtable. |
| if (target_ty.is_trait() && !source_ty.is_trait()) |
| || (target_ty.is_dyn_star() && !source_ty.is_dyn_star()) |
| { |
| create_mono_items_for_vtable_methods( |
| self.tcx, |
| target_ty, |
| source_ty, |
| span, |
| self.used_items, |
| ); |
| } |
| } |
| mir::Rvalue::Cast( |
| mir::CastKind::PointerCoercion(PointerCoercion::ReifyFnPointer, _), |
| ref operand, |
| _, |
| ) => { |
| let fn_ty = operand.ty(self.body, self.tcx); |
| // *Before* monomorphizing, record that we already handled this mention. |
| self.used_mentioned_items.insert(MentionedItem::Fn(fn_ty)); |
| let fn_ty = self.monomorphize(fn_ty); |
| visit_fn_use(self.tcx, fn_ty, false, span, self.used_items); |
| } |
| mir::Rvalue::Cast( |
| mir::CastKind::PointerCoercion(PointerCoercion::ClosureFnPointer(_), _), |
| ref operand, |
| _, |
| ) => { |
| let source_ty = operand.ty(self.body, self.tcx); |
| // *Before* monomorphizing, record that we already handled this mention. |
| self.used_mentioned_items.insert(MentionedItem::Closure(source_ty)); |
| let source_ty = self.monomorphize(source_ty); |
| if let ty::Closure(def_id, args) = *source_ty.kind() { |
| let instance = |
| Instance::resolve_closure(self.tcx, def_id, args, ty::ClosureKind::FnOnce); |
| if self.tcx.should_codegen_locally(instance) { |
| self.used_items.push(create_fn_mono_item(self.tcx, instance, span)); |
| } |
| } else { |
| bug!() |
| } |
| } |
| mir::Rvalue::ThreadLocalRef(def_id) => { |
| assert!(self.tcx.is_thread_local_static(def_id)); |
| let instance = Instance::mono(self.tcx, def_id); |
| if self.tcx.should_codegen_locally(instance) { |
| trace!("collecting thread-local static {:?}", def_id); |
| self.used_items.push(respan(span, MonoItem::Static(def_id))); |
| } |
| } |
| _ => { /* not interesting */ } |
| } |
| |
| self.super_rvalue(rvalue, location); |
| } |
| |
| /// This does not walk the MIR of the constant as that is not needed for codegen, all we need is |
| /// to ensure that the constant evaluates successfully and walk the result. |
| #[instrument(skip(self), level = "debug")] |
| fn visit_const_operand(&mut self, constant: &mir::ConstOperand<'tcx>, _location: Location) { |
| // No `super_constant` as we don't care about `visit_ty`/`visit_ty_const`. |
| let Some(val) = self.eval_constant(constant) else { return }; |
| collect_const_value(self.tcx, val, self.used_items); |
| } |
| |
| fn visit_terminator(&mut self, terminator: &mir::Terminator<'tcx>, location: Location) { |
| debug!("visiting terminator {:?} @ {:?}", terminator, location); |
| let source = self.body.source_info(location).span; |
| |
| let tcx = self.tcx; |
| let push_mono_lang_item = |this: &mut Self, lang_item: LangItem| { |
| let instance = Instance::mono(tcx, tcx.require_lang_item(lang_item, Some(source))); |
| if tcx.should_codegen_locally(instance) { |
| this.used_items.push(create_fn_mono_item(tcx, instance, source)); |
| } |
| }; |
| |
| match terminator.kind { |
| mir::TerminatorKind::Call { ref func, .. } |
| | mir::TerminatorKind::TailCall { ref func, .. } => { |
| let callee_ty = func.ty(self.body, tcx); |
| // *Before* monomorphizing, record that we already handled this mention. |
| self.used_mentioned_items.insert(MentionedItem::Fn(callee_ty)); |
| let callee_ty = self.monomorphize(callee_ty); |
| visit_fn_use(self.tcx, callee_ty, true, source, &mut self.used_items) |
| } |
| mir::TerminatorKind::Drop { ref place, .. } => { |
| let ty = place.ty(self.body, self.tcx).ty; |
| // *Before* monomorphizing, record that we already handled this mention. |
| self.used_mentioned_items.insert(MentionedItem::Drop(ty)); |
| let ty = self.monomorphize(ty); |
| visit_drop_use(self.tcx, ty, true, source, self.used_items); |
| } |
| mir::TerminatorKind::InlineAsm { ref operands, .. } => { |
| for op in operands { |
| match *op { |
| mir::InlineAsmOperand::SymFn { ref value } => { |
| let fn_ty = value.const_.ty(); |
| // *Before* monomorphizing, record that we already handled this mention. |
| self.used_mentioned_items.insert(MentionedItem::Fn(fn_ty)); |
| let fn_ty = self.monomorphize(fn_ty); |
| visit_fn_use(self.tcx, fn_ty, false, source, self.used_items); |
| } |
| mir::InlineAsmOperand::SymStatic { def_id } => { |
| let instance = Instance::mono(self.tcx, def_id); |
| if self.tcx.should_codegen_locally(instance) { |
| trace!("collecting asm sym static {:?}", def_id); |
| self.used_items.push(respan(source, MonoItem::Static(def_id))); |
| } |
| } |
| _ => {} |
| } |
| } |
| } |
| mir::TerminatorKind::Assert { ref msg, .. } => match &**msg { |
| mir::AssertKind::BoundsCheck { .. } => { |
| push_mono_lang_item(self, LangItem::PanicBoundsCheck); |
| } |
| mir::AssertKind::MisalignedPointerDereference { .. } => { |
| push_mono_lang_item(self, LangItem::PanicMisalignedPointerDereference); |
| } |
| mir::AssertKind::NullPointerDereference => { |
| push_mono_lang_item(self, LangItem::PanicNullPointerDereference); |
| } |
| _ => { |
| push_mono_lang_item(self, msg.panic_function()); |
| } |
| }, |
| mir::TerminatorKind::UnwindTerminate(reason) => { |
| push_mono_lang_item(self, reason.lang_item()); |
| } |
| mir::TerminatorKind::Goto { .. } |
| | mir::TerminatorKind::SwitchInt { .. } |
| | mir::TerminatorKind::UnwindResume |
| | mir::TerminatorKind::Return |
| | mir::TerminatorKind::Unreachable => {} |
| mir::TerminatorKind::CoroutineDrop |
| | mir::TerminatorKind::Yield { .. } |
| | mir::TerminatorKind::FalseEdge { .. } |
| | mir::TerminatorKind::FalseUnwind { .. } => bug!(), |
| } |
| |
| if let Some(mir::UnwindAction::Terminate(reason)) = terminator.unwind() { |
| push_mono_lang_item(self, reason.lang_item()); |
| } |
| |
| self.super_terminator(terminator, location); |
| } |
| } |
| |
| fn visit_drop_use<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| ty: Ty<'tcx>, |
| is_direct_call: bool, |
| source: Span, |
| output: &mut MonoItems<'tcx>, |
| ) { |
| let instance = Instance::resolve_drop_in_place(tcx, ty); |
| visit_instance_use(tcx, instance, is_direct_call, source, output); |
| } |
| |
| /// For every call of this function in the visitor, make sure there is a matching call in the |
| /// `mentioned_items` pass! |
| fn visit_fn_use<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| ty: Ty<'tcx>, |
| is_direct_call: bool, |
| source: Span, |
| output: &mut MonoItems<'tcx>, |
| ) { |
| if let ty::FnDef(def_id, args) = *ty.kind() { |
| let instance = if is_direct_call { |
| ty::Instance::expect_resolve( |
| tcx, |
| ty::TypingEnv::fully_monomorphized(), |
| def_id, |
| args, |
| source, |
| ) |
| } else { |
| match ty::Instance::resolve_for_fn_ptr( |
| tcx, |
| ty::TypingEnv::fully_monomorphized(), |
| def_id, |
| args, |
| ) { |
| Some(instance) => instance, |
| _ => bug!("failed to resolve instance for {ty}"), |
| } |
| }; |
| visit_instance_use(tcx, instance, is_direct_call, source, output); |
| } |
| } |
| |
| fn visit_instance_use<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| instance: ty::Instance<'tcx>, |
| is_direct_call: bool, |
| source: Span, |
| output: &mut MonoItems<'tcx>, |
| ) { |
| debug!("visit_item_use({:?}, is_direct_call={:?})", instance, is_direct_call); |
| if !tcx.should_codegen_locally(instance) { |
| return; |
| } |
| if let Some(intrinsic) = tcx.intrinsic(instance.def_id()) { |
| if let Some(_requirement) = ValidityRequirement::from_intrinsic(intrinsic.name) { |
| // The intrinsics assert_inhabited, assert_zero_valid, and assert_mem_uninitialized_valid will |
| // be lowered in codegen to nothing or a call to panic_nounwind. So if we encounter any |
| // of those intrinsics, we need to include a mono item for panic_nounwind, else we may try to |
| // codegen a call to that function without generating code for the function itself. |
| let def_id = tcx.require_lang_item(LangItem::PanicNounwind, None); |
| let panic_instance = Instance::mono(tcx, def_id); |
| if tcx.should_codegen_locally(panic_instance) { |
| output.push(create_fn_mono_item(tcx, panic_instance, source)); |
| } |
| } else if !intrinsic.must_be_overridden { |
| // Codegen the fallback body of intrinsics with fallback bodies. |
| // We explicitly skip this otherwise to ensure we get a linker error |
| // if anyone tries to call this intrinsic and the codegen backend did not |
| // override the implementation. |
| let instance = ty::Instance::new(instance.def_id(), instance.args); |
| if tcx.should_codegen_locally(instance) { |
| output.push(create_fn_mono_item(tcx, instance, source)); |
| } |
| } |
| } |
| |
| match instance.def { |
| ty::InstanceKind::Virtual(..) | ty::InstanceKind::Intrinsic(_) => { |
| if !is_direct_call { |
| bug!("{:?} being reified", instance); |
| } |
| } |
| ty::InstanceKind::ThreadLocalShim(..) => { |
| bug!("{:?} being reified", instance); |
| } |
| ty::InstanceKind::DropGlue(_, None) | ty::InstanceKind::AsyncDropGlueCtorShim(_, None) => { |
| // Don't need to emit noop drop glue if we are calling directly. |
| if !is_direct_call { |
| output.push(create_fn_mono_item(tcx, instance, source)); |
| } |
| } |
| ty::InstanceKind::DropGlue(_, Some(_)) |
| | ty::InstanceKind::AsyncDropGlueCtorShim(_, Some(_)) |
| | ty::InstanceKind::VTableShim(..) |
| | ty::InstanceKind::ReifyShim(..) |
| | ty::InstanceKind::ClosureOnceShim { .. } |
| | ty::InstanceKind::ConstructCoroutineInClosureShim { .. } |
| | ty::InstanceKind::Item(..) |
| | ty::InstanceKind::FnPtrShim(..) |
| | ty::InstanceKind::CloneShim(..) |
| | ty::InstanceKind::FnPtrAddrShim(..) => { |
| output.push(create_fn_mono_item(tcx, instance, source)); |
| } |
| } |
| } |
| |
| /// Returns `true` if we should codegen an instance in the local crate, or returns `false` if we |
| /// can just link to the upstream crate and therefore don't need a mono item. |
| fn should_codegen_locally<'tcx>(tcx: TyCtxt<'tcx>, instance: Instance<'tcx>) -> bool { |
| let Some(def_id) = instance.def.def_id_if_not_guaranteed_local_codegen() else { |
| return true; |
| }; |
| |
| if tcx.is_foreign_item(def_id) { |
| // Foreign items are always linked against, there's no way of instantiating them. |
| return false; |
| } |
| |
| if tcx.def_kind(def_id).has_codegen_attrs() |
| && matches!(tcx.codegen_fn_attrs(def_id).inline, InlineAttr::Force { .. }) |
| { |
| // `#[rustc_force_inline]` items should never be codegened. This should be caught by |
| // the MIR validator. |
| tcx.dcx().delayed_bug("attempt to codegen `#[rustc_force_inline]` item"); |
| } |
| |
| if def_id.is_local() { |
| // Local items cannot be referred to locally without monomorphizing them locally. |
| return true; |
| } |
| |
| if tcx.is_reachable_non_generic(def_id) || instance.upstream_monomorphization(tcx).is_some() { |
| // We can link to the item in question, no instance needed in this crate. |
| return false; |
| } |
| |
| if let DefKind::Static { .. } = tcx.def_kind(def_id) { |
| // We cannot monomorphize statics from upstream crates. |
| return false; |
| } |
| |
| if !tcx.is_mir_available(def_id) { |
| tcx.dcx().emit_fatal(NoOptimizedMir { |
| span: tcx.def_span(def_id), |
| crate_name: tcx.crate_name(def_id.krate), |
| instance: instance.to_string(), |
| }); |
| } |
| |
| true |
| } |
| |
| /// For a given pair of source and target type that occur in an unsizing coercion, |
| /// this function finds the pair of types that determines the vtable linking |
| /// them. |
| /// |
| /// For example, the source type might be `&SomeStruct` and the target type |
| /// might be `&dyn SomeTrait` in a cast like: |
| /// |
| /// ```rust,ignore (not real code) |
| /// let src: &SomeStruct = ...; |
| /// let target = src as &dyn SomeTrait; |
| /// ``` |
| /// |
| /// Then the output of this function would be (SomeStruct, SomeTrait) since for |
| /// constructing the `target` wide-pointer we need the vtable for that pair. |
| /// |
| /// Things can get more complicated though because there's also the case where |
| /// the unsized type occurs as a field: |
| /// |
| /// ```rust |
| /// struct ComplexStruct<T: ?Sized> { |
| /// a: u32, |
| /// b: f64, |
| /// c: T |
| /// } |
| /// ``` |
| /// |
| /// In this case, if `T` is sized, `&ComplexStruct<T>` is a thin pointer. If `T` |
| /// is unsized, `&SomeStruct` is a wide pointer, and the vtable it points to is |
| /// for the pair of `T` (which is a trait) and the concrete type that `T` was |
| /// originally coerced from: |
| /// |
| /// ```rust,ignore (not real code) |
| /// let src: &ComplexStruct<SomeStruct> = ...; |
| /// let target = src as &ComplexStruct<dyn SomeTrait>; |
| /// ``` |
| /// |
| /// Again, we want this `find_vtable_types_for_unsizing()` to provide the pair |
| /// `(SomeStruct, SomeTrait)`. |
| /// |
| /// Finally, there is also the case of custom unsizing coercions, e.g., for |
| /// smart pointers such as `Rc` and `Arc`. |
| fn find_vtable_types_for_unsizing<'tcx>( |
| tcx: TyCtxtAt<'tcx>, |
| source_ty: Ty<'tcx>, |
| target_ty: Ty<'tcx>, |
| ) -> (Ty<'tcx>, Ty<'tcx>) { |
| let ptr_vtable = |inner_source: Ty<'tcx>, inner_target: Ty<'tcx>| { |
| let typing_env = ty::TypingEnv::fully_monomorphized(); |
| if tcx.type_has_metadata(inner_source, typing_env) { |
| (inner_source, inner_target) |
| } else { |
| tcx.struct_lockstep_tails_for_codegen(inner_source, inner_target, typing_env) |
| } |
| }; |
| |
| match (source_ty.kind(), target_ty.kind()) { |
| (&ty::Ref(_, a, _), &ty::Ref(_, b, _) | &ty::RawPtr(b, _)) |
| | (&ty::RawPtr(a, _), &ty::RawPtr(b, _)) => ptr_vtable(a, b), |
| (_, _) |
| if let Some(source_boxed) = source_ty.boxed_ty() |
| && let Some(target_boxed) = target_ty.boxed_ty() => |
| { |
| ptr_vtable(source_boxed, target_boxed) |
| } |
| |
| // T as dyn* Trait |
| (_, &ty::Dynamic(_, _, ty::DynStar)) => ptr_vtable(source_ty, target_ty), |
| |
| (&ty::Adt(source_adt_def, source_args), &ty::Adt(target_adt_def, target_args)) => { |
| assert_eq!(source_adt_def, target_adt_def); |
| |
| let CustomCoerceUnsized::Struct(coerce_index) = |
| match crate::custom_coerce_unsize_info(tcx, source_ty, target_ty) { |
| Ok(ccu) => ccu, |
| Err(e) => { |
| let e = Ty::new_error(tcx.tcx, e); |
| return (e, e); |
| } |
| }; |
| |
| let source_fields = &source_adt_def.non_enum_variant().fields; |
| let target_fields = &target_adt_def.non_enum_variant().fields; |
| |
| assert!( |
| coerce_index.index() < source_fields.len() |
| && source_fields.len() == target_fields.len() |
| ); |
| |
| find_vtable_types_for_unsizing( |
| tcx, |
| source_fields[coerce_index].ty(*tcx, source_args), |
| target_fields[coerce_index].ty(*tcx, target_args), |
| ) |
| } |
| _ => bug!( |
| "find_vtable_types_for_unsizing: invalid coercion {:?} -> {:?}", |
| source_ty, |
| target_ty |
| ), |
| } |
| } |
| |
| #[instrument(skip(tcx), level = "debug", ret)] |
| fn create_fn_mono_item<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| instance: Instance<'tcx>, |
| source: Span, |
| ) -> Spanned<MonoItem<'tcx>> { |
| let def_id = instance.def_id(); |
| if tcx.sess.opts.unstable_opts.profile_closures |
| && def_id.is_local() |
| && tcx.is_closure_like(def_id) |
| { |
| crate::util::dump_closure_profile(tcx, instance); |
| } |
| |
| respan(source, MonoItem::Fn(instance)) |
| } |
| |
| /// Creates a `MonoItem` for each method that is referenced by the vtable for |
| /// the given trait/impl pair. |
| fn create_mono_items_for_vtable_methods<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| trait_ty: Ty<'tcx>, |
| impl_ty: Ty<'tcx>, |
| source: Span, |
| output: &mut MonoItems<'tcx>, |
| ) { |
| assert!(!trait_ty.has_escaping_bound_vars() && !impl_ty.has_escaping_bound_vars()); |
| |
| let ty::Dynamic(trait_ty, ..) = trait_ty.kind() else { |
| bug!("create_mono_items_for_vtable_methods: {trait_ty:?} not a trait type"); |
| }; |
| if let Some(principal) = trait_ty.principal() { |
| let trait_ref = |
| tcx.instantiate_bound_regions_with_erased(principal.with_self_ty(tcx, impl_ty)); |
| assert!(!trait_ref.has_escaping_bound_vars()); |
| |
| // Walk all methods of the trait, including those of its supertraits |
| let entries = tcx.vtable_entries(trait_ref); |
| debug!(?entries); |
| let methods = entries |
| .iter() |
| .filter_map(|entry| match entry { |
| VtblEntry::MetadataDropInPlace |
| | VtblEntry::MetadataSize |
| | VtblEntry::MetadataAlign |
| | VtblEntry::Vacant => None, |
| VtblEntry::TraitVPtr(_) => { |
| // all super trait items already covered, so skip them. |
| None |
| } |
| VtblEntry::Method(instance) => { |
| Some(*instance).filter(|instance| tcx.should_codegen_locally(*instance)) |
| } |
| }) |
| .map(|item| create_fn_mono_item(tcx, item, source)); |
| output.extend(methods); |
| } |
| |
| // Also add the destructor. |
| visit_drop_use(tcx, impl_ty, false, source, output); |
| } |
| |
| /// Scans the CTFE alloc in order to find function pointers and statics that must be monomorphized. |
| fn collect_alloc<'tcx>(tcx: TyCtxt<'tcx>, alloc_id: AllocId, output: &mut MonoItems<'tcx>) { |
| match tcx.global_alloc(alloc_id) { |
| GlobalAlloc::Static(def_id) => { |
| assert!(!tcx.is_thread_local_static(def_id)); |
| let instance = Instance::mono(tcx, def_id); |
| if tcx.should_codegen_locally(instance) { |
| trace!("collecting static {:?}", def_id); |
| output.push(dummy_spanned(MonoItem::Static(def_id))); |
| } |
| } |
| GlobalAlloc::Memory(alloc) => { |
| trace!("collecting {:?} with {:#?}", alloc_id, alloc); |
| let ptrs = alloc.inner().provenance().ptrs(); |
| // avoid `ensure_sufficient_stack` in the common case of "no pointers" |
| if !ptrs.is_empty() { |
| rustc_data_structures::stack::ensure_sufficient_stack(move || { |
| for &prov in ptrs.values() { |
| collect_alloc(tcx, prov.alloc_id(), output); |
| } |
| }); |
| } |
| } |
| GlobalAlloc::Function { instance, .. } => { |
| if tcx.should_codegen_locally(instance) { |
| trace!("collecting {:?} with {:#?}", alloc_id, instance); |
| output.push(create_fn_mono_item(tcx, instance, DUMMY_SP)); |
| } |
| } |
| GlobalAlloc::VTable(ty, dyn_ty) => { |
| let alloc_id = tcx.vtable_allocation(( |
| ty, |
| dyn_ty |
| .principal() |
| .map(|principal| tcx.instantiate_bound_regions_with_erased(principal)), |
| )); |
| collect_alloc(tcx, alloc_id, output) |
| } |
| } |
| } |
| |
| /// Scans the MIR in order to find function calls, closures, and drop-glue. |
| /// |
| /// Anything that's found is added to `output`. Furthermore the "mentioned items" of the MIR are returned. |
| #[instrument(skip(tcx), level = "debug")] |
| fn collect_items_of_instance<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| instance: Instance<'tcx>, |
| mode: CollectionMode, |
| ) -> (MonoItems<'tcx>, MonoItems<'tcx>) { |
| // This item is getting monomorphized, do mono-time checks. |
| tcx.ensure_ok().check_mono_item(instance); |
| |
| let body = tcx.instance_mir(instance.def); |
| // Naively, in "used" collection mode, all functions get added to *both* `used_items` and |
| // `mentioned_items`. Mentioned items processing will then notice that they have already been |
| // visited, but at that point each mentioned item has been monomorphized, added to the |
| // `mentioned_items` worklist, and checked in the global set of visited items. To remove that |
| // overhead, we have a special optimization that avoids adding items to `mentioned_items` when |
| // they are already added in `used_items`. We could just scan `used_items`, but that's a linear |
| // scan and not very efficient. Furthermore we can only do that *after* monomorphizing the |
| // mentioned item. So instead we collect all pre-monomorphized `MentionedItem` that were already |
| // added to `used_items` in a hash set, which can efficiently query in the |
| // `body.mentioned_items` loop below without even having to monomorphize the item. |
| let mut used_items = MonoItems::new(); |
| let mut mentioned_items = MonoItems::new(); |
| let mut used_mentioned_items = Default::default(); |
| let mut collector = MirUsedCollector { |
| tcx, |
| body, |
| used_items: &mut used_items, |
| used_mentioned_items: &mut used_mentioned_items, |
| instance, |
| }; |
| |
| if mode == CollectionMode::UsedItems { |
| if tcx.sess.opts.debuginfo == DebugInfo::Full { |
| for var_debug_info in &body.var_debug_info { |
| collector.visit_var_debug_info(var_debug_info); |
| } |
| } |
| for (bb, data) in traversal::mono_reachable(body, tcx, instance) { |
| collector.visit_basic_block_data(bb, data) |
| } |
| } |
| |
| // Always visit all `required_consts`, so that we evaluate them and abort compilation if any of |
| // them errors. |
| for const_op in body.required_consts() { |
| if let Some(val) = collector.eval_constant(const_op) { |
| collect_const_value(tcx, val, &mut mentioned_items); |
| } |
| } |
| |
| // Always gather mentioned items. We try to avoid processing items that we have already added to |
| // `used_items` above. |
| for item in body.mentioned_items() { |
| if !collector.used_mentioned_items.contains(&item.node) { |
| let item_mono = collector.monomorphize(item.node); |
| visit_mentioned_item(tcx, &item_mono, item.span, &mut mentioned_items); |
| } |
| } |
| |
| (used_items, mentioned_items) |
| } |
| |
| fn items_of_instance<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| (instance, mode): (Instance<'tcx>, CollectionMode), |
| ) -> (&'tcx [Spanned<MonoItem<'tcx>>], &'tcx [Spanned<MonoItem<'tcx>>]) { |
| let (used_items, mentioned_items) = collect_items_of_instance(tcx, instance, mode); |
| |
| let used_items = tcx.arena.alloc_from_iter(used_items); |
| let mentioned_items = tcx.arena.alloc_from_iter(mentioned_items); |
| |
| (used_items, mentioned_items) |
| } |
| |
| /// `item` must be already monomorphized. |
| #[instrument(skip(tcx, span, output), level = "debug")] |
| fn visit_mentioned_item<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| item: &MentionedItem<'tcx>, |
| span: Span, |
| output: &mut MonoItems<'tcx>, |
| ) { |
| match *item { |
| MentionedItem::Fn(ty) => { |
| if let ty::FnDef(def_id, args) = *ty.kind() { |
| let instance = Instance::expect_resolve( |
| tcx, |
| ty::TypingEnv::fully_monomorphized(), |
| def_id, |
| args, |
| span, |
| ); |
| // `visit_instance_use` was written for "used" item collection but works just as well |
| // for "mentioned" item collection. |
| // We can set `is_direct_call`; that just means we'll skip a bunch of shims that anyway |
| // can't have their own failing constants. |
| visit_instance_use(tcx, instance, /*is_direct_call*/ true, span, output); |
| } |
| } |
| MentionedItem::Drop(ty) => { |
| visit_drop_use(tcx, ty, /*is_direct_call*/ true, span, output); |
| } |
| MentionedItem::UnsizeCast { source_ty, target_ty } => { |
| let (source_ty, target_ty) = |
| find_vtable_types_for_unsizing(tcx.at(span), source_ty, target_ty); |
| // This could also be a different Unsize instruction, like |
| // from a fixed sized array to a slice. But we are only |
| // interested in things that produce a vtable. |
| if (target_ty.is_trait() && !source_ty.is_trait()) |
| || (target_ty.is_dyn_star() && !source_ty.is_dyn_star()) |
| { |
| create_mono_items_for_vtable_methods(tcx, target_ty, source_ty, span, output); |
| } |
| } |
| MentionedItem::Closure(source_ty) => { |
| if let ty::Closure(def_id, args) = *source_ty.kind() { |
| let instance = |
| Instance::resolve_closure(tcx, def_id, args, ty::ClosureKind::FnOnce); |
| if tcx.should_codegen_locally(instance) { |
| output.push(create_fn_mono_item(tcx, instance, span)); |
| } |
| } else { |
| bug!() |
| } |
| } |
| } |
| } |
| |
| #[instrument(skip(tcx, output), level = "debug")] |
| fn collect_const_value<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| value: mir::ConstValue<'tcx>, |
| output: &mut MonoItems<'tcx>, |
| ) { |
| match value { |
| mir::ConstValue::Scalar(Scalar::Ptr(ptr, _size)) => { |
| collect_alloc(tcx, ptr.provenance.alloc_id(), output) |
| } |
| mir::ConstValue::Indirect { alloc_id, .. } => collect_alloc(tcx, alloc_id, output), |
| mir::ConstValue::Slice { data, meta: _ } => { |
| for &prov in data.inner().provenance().ptrs().values() { |
| collect_alloc(tcx, prov.alloc_id(), output); |
| } |
| } |
| _ => {} |
| } |
| } |
| |
| //=----------------------------------------------------------------------------- |
| // Root Collection |
| //=----------------------------------------------------------------------------- |
| |
| // Find all non-generic items by walking the HIR. These items serve as roots to |
| // start monomorphizing from. |
| #[instrument(skip(tcx, mode), level = "debug")] |
| fn collect_roots(tcx: TyCtxt<'_>, mode: MonoItemCollectionStrategy) -> Vec<MonoItem<'_>> { |
| debug!("collecting roots"); |
| let mut roots = MonoItems::new(); |
| |
| { |
| let entry_fn = tcx.entry_fn(()); |
| |
| debug!("collect_roots: entry_fn = {:?}", entry_fn); |
| |
| let mut collector = RootCollector { tcx, strategy: mode, entry_fn, output: &mut roots }; |
| |
| let crate_items = tcx.hir_crate_items(()); |
| |
| for id in crate_items.free_items() { |
| collector.process_item(id); |
| } |
| |
| for id in crate_items.impl_items() { |
| collector.process_impl_item(id); |
| } |
| |
| for id in crate_items.nested_bodies() { |
| collector.process_nested_body(id); |
| } |
| |
| collector.push_extra_entry_roots(); |
| } |
| |
| // We can only codegen items that are instantiable - items all of |
| // whose predicates hold. Luckily, items that aren't instantiable |
| // can't actually be used, so we can just skip codegenning them. |
| roots |
| .into_iter() |
| .filter_map(|Spanned { node: mono_item, .. }| { |
| mono_item.is_instantiable(tcx).then_some(mono_item) |
| }) |
| .collect() |
| } |
| |
| struct RootCollector<'a, 'tcx> { |
| tcx: TyCtxt<'tcx>, |
| strategy: MonoItemCollectionStrategy, |
| output: &'a mut MonoItems<'tcx>, |
| entry_fn: Option<(DefId, EntryFnType)>, |
| } |
| |
| impl<'v> RootCollector<'_, 'v> { |
| fn process_item(&mut self, id: hir::ItemId) { |
| match self.tcx.def_kind(id.owner_id) { |
| DefKind::Enum | DefKind::Struct | DefKind::Union => { |
| if self.strategy == MonoItemCollectionStrategy::Eager |
| && !self.tcx.generics_of(id.owner_id).requires_monomorphization(self.tcx) |
| { |
| debug!("RootCollector: ADT drop-glue for `{id:?}`",); |
| let id_args = |
| ty::GenericArgs::for_item(self.tcx, id.owner_id.to_def_id(), |param, _| { |
| match param.kind { |
| GenericParamDefKind::Lifetime => { |
| self.tcx.lifetimes.re_erased.into() |
| } |
| GenericParamDefKind::Type { .. } |
| | GenericParamDefKind::Const { .. } => { |
| unreachable!( |
| "`own_requires_monomorphization` check means that \ |
| we should have no type/const params" |
| ) |
| } |
| } |
| }); |
| |
| // This type is impossible to instantiate, so we should not try to |
| // generate a `drop_in_place` instance for it. |
| if self.tcx.instantiate_and_check_impossible_predicates(( |
| id.owner_id.to_def_id(), |
| id_args, |
| )) { |
| return; |
| } |
| |
| let ty = |
| self.tcx.type_of(id.owner_id.to_def_id()).instantiate(self.tcx, id_args); |
| assert!(!ty.has_non_region_param()); |
| visit_drop_use(self.tcx, ty, true, DUMMY_SP, self.output); |
| } |
| } |
| DefKind::GlobalAsm => { |
| debug!( |
| "RootCollector: ItemKind::GlobalAsm({})", |
| self.tcx.def_path_str(id.owner_id) |
| ); |
| self.output.push(dummy_spanned(MonoItem::GlobalAsm(id))); |
| } |
| DefKind::Static { .. } => { |
| let def_id = id.owner_id.to_def_id(); |
| debug!("RootCollector: ItemKind::Static({})", self.tcx.def_path_str(def_id)); |
| self.output.push(dummy_spanned(MonoItem::Static(def_id))); |
| } |
| DefKind::Const => { |
| // Const items only generate mono items if they are actually used somewhere. |
| // Just declaring them is insufficient. |
| |
| // But even just declaring them must collect the items they refer to |
| // unless their generics require monomorphization. |
| if !self.tcx.generics_of(id.owner_id).requires_monomorphization(self.tcx) |
| && let Ok(val) = self.tcx.const_eval_poly(id.owner_id.to_def_id()) |
| { |
| collect_const_value(self.tcx, val, self.output); |
| } |
| } |
| DefKind::Impl { .. } => { |
| if self.strategy == MonoItemCollectionStrategy::Eager { |
| create_mono_items_for_default_impls(self.tcx, id, self.output); |
| } |
| } |
| DefKind::Fn => { |
| self.push_if_root(id.owner_id.def_id); |
| } |
| _ => {} |
| } |
| } |
| |
| fn process_impl_item(&mut self, id: hir::ImplItemId) { |
| if matches!(self.tcx.def_kind(id.owner_id), DefKind::AssocFn) { |
| self.push_if_root(id.owner_id.def_id); |
| } |
| } |
| |
| fn process_nested_body(&mut self, def_id: LocalDefId) { |
| match self.tcx.def_kind(def_id) { |
| DefKind::Closure => { |
| if self.strategy == MonoItemCollectionStrategy::Eager |
| && !self |
| .tcx |
| .generics_of(self.tcx.typeck_root_def_id(def_id.to_def_id())) |
| .requires_monomorphization(self.tcx) |
| { |
| let instance = match *self.tcx.type_of(def_id).instantiate_identity().kind() { |
| ty::Closure(def_id, args) |
| | ty::Coroutine(def_id, args) |
| | ty::CoroutineClosure(def_id, args) => { |
| Instance::new(def_id, self.tcx.erase_regions(args)) |
| } |
| _ => unreachable!(), |
| }; |
| let Ok(instance) = self.tcx.try_normalize_erasing_regions( |
| ty::TypingEnv::fully_monomorphized(), |
| instance, |
| ) else { |
| // Don't ICE on an impossible-to-normalize closure. |
| return; |
| }; |
| let mono_item = create_fn_mono_item(self.tcx, instance, DUMMY_SP); |
| if mono_item.node.is_instantiable(self.tcx) { |
| self.output.push(mono_item); |
| } |
| } |
| } |
| _ => {} |
| } |
| } |
| |
| fn is_root(&self, def_id: LocalDefId) -> bool { |
| !self.tcx.generics_of(def_id).requires_monomorphization(self.tcx) |
| && match self.strategy { |
| MonoItemCollectionStrategy::Eager => { |
| !matches!(self.tcx.codegen_fn_attrs(def_id).inline, InlineAttr::Force { .. }) |
| } |
| MonoItemCollectionStrategy::Lazy => { |
| self.entry_fn.and_then(|(id, _)| id.as_local()) == Some(def_id) |
| || self.tcx.is_reachable_non_generic(def_id) |
| || self |
| .tcx |
| .codegen_fn_attrs(def_id) |
| .flags |
| .contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL) |
| } |
| } |
| } |
| |
| /// If `def_id` represents a root, pushes it onto the list of |
| /// outputs. (Note that all roots must be monomorphic.) |
| #[instrument(skip(self), level = "debug")] |
| fn push_if_root(&mut self, def_id: LocalDefId) { |
| if self.is_root(def_id) { |
| debug!("found root"); |
| |
| let instance = Instance::mono(self.tcx, def_id.to_def_id()); |
| self.output.push(create_fn_mono_item(self.tcx, instance, DUMMY_SP)); |
| } |
| } |
| |
| /// As a special case, when/if we encounter the |
| /// `main()` function, we also have to generate a |
| /// monomorphized copy of the start lang item based on |
| /// the return type of `main`. This is not needed when |
| /// the user writes their own `start` manually. |
| fn push_extra_entry_roots(&mut self) { |
| let Some((main_def_id, EntryFnType::Main { .. })) = self.entry_fn else { |
| return; |
| }; |
| |
| let Some(start_def_id) = self.tcx.lang_items().start_fn() else { |
| self.tcx.dcx().emit_fatal(errors::StartNotFound); |
| }; |
| let main_ret_ty = self.tcx.fn_sig(main_def_id).no_bound_vars().unwrap().output(); |
| |
| // Given that `main()` has no arguments, |
| // then its return type cannot have |
| // late-bound regions, since late-bound |
| // regions must appear in the argument |
| // listing. |
| let main_ret_ty = self.tcx.normalize_erasing_regions( |
| ty::TypingEnv::fully_monomorphized(), |
| main_ret_ty.no_bound_vars().unwrap(), |
| ); |
| |
| let start_instance = Instance::expect_resolve( |
| self.tcx, |
| ty::TypingEnv::fully_monomorphized(), |
| start_def_id, |
| self.tcx.mk_args(&[main_ret_ty.into()]), |
| DUMMY_SP, |
| ); |
| |
| self.output.push(create_fn_mono_item(self.tcx, start_instance, DUMMY_SP)); |
| } |
| } |
| |
| #[instrument(level = "debug", skip(tcx, output))] |
| fn create_mono_items_for_default_impls<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| item: hir::ItemId, |
| output: &mut MonoItems<'tcx>, |
| ) { |
| let Some(impl_) = tcx.impl_trait_header(item.owner_id) else { |
| return; |
| }; |
| |
| if matches!(impl_.polarity, ty::ImplPolarity::Negative) { |
| return; |
| } |
| |
| if tcx.generics_of(item.owner_id).own_requires_monomorphization() { |
| return; |
| } |
| |
| // Lifetimes never affect trait selection, so we are allowed to eagerly |
| // instantiate an instance of an impl method if the impl (and method, |
| // which we check below) is only parameterized over lifetime. In that case, |
| // we use the ReErased, which has no lifetime information associated with |
| // it, to validate whether or not the impl is legal to instantiate at all. |
| let only_region_params = |param: &ty::GenericParamDef, _: &_| match param.kind { |
| GenericParamDefKind::Lifetime => tcx.lifetimes.re_erased.into(), |
| GenericParamDefKind::Type { .. } | GenericParamDefKind::Const { .. } => { |
| unreachable!( |
| "`own_requires_monomorphization` check means that \ |
| we should have no type/const params" |
| ) |
| } |
| }; |
| let impl_args = GenericArgs::for_item(tcx, item.owner_id.to_def_id(), only_region_params); |
| let trait_ref = impl_.trait_ref.instantiate(tcx, impl_args); |
| |
| // Unlike 'lazy' monomorphization that begins by collecting items transitively |
| // called by `main` or other global items, when eagerly monomorphizing impl |
| // items, we never actually check that the predicates of this impl are satisfied |
| // in a empty param env (i.e. with no assumptions). |
| // |
| // Even though this impl has no type or const generic parameters, because we don't |
| // consider higher-ranked predicates such as `for<'a> &'a mut [u8]: Copy` to |
| // be trivially false. We must now check that the impl has no impossible-to-satisfy |
| // predicates. |
| if tcx.instantiate_and_check_impossible_predicates((item.owner_id.to_def_id(), impl_args)) { |
| return; |
| } |
| |
| let typing_env = ty::TypingEnv::fully_monomorphized(); |
| let trait_ref = tcx.normalize_erasing_regions(typing_env, trait_ref); |
| let overridden_methods = tcx.impl_item_implementor_ids(item.owner_id); |
| for method in tcx.provided_trait_methods(trait_ref.def_id) { |
| if overridden_methods.contains_key(&method.def_id) { |
| continue; |
| } |
| |
| if tcx.generics_of(method.def_id).own_requires_monomorphization() { |
| continue; |
| } |
| |
| // As mentioned above, the method is legal to eagerly instantiate if it |
| // only has lifetime generic parameters. This is validated by calling |
| // `own_requires_monomorphization` on both the impl and method. |
| let args = trait_ref.args.extend_to(tcx, method.def_id, only_region_params); |
| let instance = ty::Instance::expect_resolve(tcx, typing_env, method.def_id, args, DUMMY_SP); |
| |
| let mono_item = create_fn_mono_item(tcx, instance, DUMMY_SP); |
| if mono_item.node.is_instantiable(tcx) && tcx.should_codegen_locally(instance) { |
| output.push(mono_item); |
| } |
| } |
| } |
| |
| //=----------------------------------------------------------------------------- |
| // Top-level entry point, tying it all together |
| //=----------------------------------------------------------------------------- |
| |
| #[instrument(skip(tcx, strategy), level = "debug")] |
| pub(crate) fn collect_crate_mono_items<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| strategy: MonoItemCollectionStrategy, |
| ) -> (Vec<MonoItem<'tcx>>, UsageMap<'tcx>) { |
| let _prof_timer = tcx.prof.generic_activity("monomorphization_collector"); |
| |
| let roots = tcx |
| .sess |
| .time("monomorphization_collector_root_collections", || collect_roots(tcx, strategy)); |
| |
| debug!("building mono item graph, beginning at roots"); |
| |
| let state = SharedState { |
| visited: MTLock::new(UnordSet::default()), |
| mentioned: MTLock::new(UnordSet::default()), |
| usage_map: MTLock::new(UsageMap::new()), |
| }; |
| let recursion_limit = tcx.recursion_limit(); |
| |
| tcx.sess.time("monomorphization_collector_graph_walk", || { |
| par_for_each_in(roots, |root| { |
| let mut recursion_depths = DefIdMap::default(); |
| collect_items_rec( |
| tcx, |
| dummy_spanned(*root), |
| &state, |
| &mut recursion_depths, |
| recursion_limit, |
| CollectionMode::UsedItems, |
| ); |
| }); |
| }); |
| |
| // The set of MonoItems was created in an inherently indeterministic order because |
| // of parallelism. We sort it here to ensure that the output is deterministic. |
| let mono_items = tcx.with_stable_hashing_context(move |ref hcx| { |
| state.visited.into_inner().into_sorted(hcx, true) |
| }); |
| |
| (mono_items, state.usage_map.into_inner()) |
| } |
| |
| pub(crate) fn provide(providers: &mut Providers) { |
| providers.hooks.should_codegen_locally = should_codegen_locally; |
| providers.items_of_instance = items_of_instance; |
| } |