| use std::ptr; |
| |
| use rustc_ast::expand::autodiff_attrs::{AutoDiffAttrs, AutoDiffItem, DiffActivity, DiffMode}; |
| use rustc_codegen_ssa::ModuleCodegen; |
| use rustc_codegen_ssa::back::write::ModuleConfig; |
| use rustc_codegen_ssa::common::TypeKind; |
| use rustc_codegen_ssa::traits::BaseTypeCodegenMethods; |
| use rustc_errors::FatalError; |
| use rustc_middle::bug; |
| use tracing::{debug, trace}; |
| |
| use crate::back::write::llvm_err; |
| use crate::builder::SBuilder; |
| use crate::context::SimpleCx; |
| use crate::declare::declare_simple_fn; |
| use crate::errors::{AutoDiffWithoutEnable, LlvmError}; |
| use crate::llvm::AttributePlace::Function; |
| use crate::llvm::{Metadata, True}; |
| use crate::value::Value; |
| use crate::{CodegenContext, LlvmCodegenBackend, ModuleLlvm, attributes, llvm}; |
| |
| fn get_params(fnc: &Value) -> Vec<&Value> { |
| let param_num = llvm::LLVMCountParams(fnc) as usize; |
| let mut fnc_args: Vec<&Value> = vec![]; |
| fnc_args.reserve(param_num); |
| unsafe { |
| llvm::LLVMGetParams(fnc, fnc_args.as_mut_ptr()); |
| fnc_args.set_len(param_num); |
| } |
| fnc_args |
| } |
| |
| fn has_sret(fnc: &Value) -> bool { |
| let num_args = llvm::LLVMCountParams(fnc) as usize; |
| if num_args == 0 { |
| false |
| } else { |
| unsafe { llvm::LLVMRustHasAttributeAtIndex(fnc, 0, llvm::AttributeKind::StructRet) } |
| } |
| } |
| |
| // When we call the `__enzyme_autodiff` or `__enzyme_fwddiff` function, we need to pass all the |
| // original inputs, as well as metadata and the additional shadow arguments. |
| // This function matches the arguments from the outer function to the inner enzyme call. |
| // |
| // This function also considers that Rust level arguments not always match the llvm-ir level |
| // arguments. A slice, `&[f32]`, for example, is represented as a pointer and a length on |
| // llvm-ir level. The number of activities matches the number of Rust level arguments, so we |
| // need to match those. |
| // FIXME(ZuseZ4): This logic is a bit more complicated than it should be, can we simplify it |
| // using iterators and peek()? |
| fn match_args_from_caller_to_enzyme<'ll>( |
| cx: &SimpleCx<'ll>, |
| width: u32, |
| args: &mut Vec<&'ll llvm::Value>, |
| inputs: &[DiffActivity], |
| outer_args: &[&'ll llvm::Value], |
| has_sret: bool, |
| ) { |
| debug!("matching autodiff arguments"); |
| // We now handle the issue that Rust level arguments not always match the llvm-ir level |
| // arguments. A slice, `&[f32]`, for example, is represented as a pointer and a length on |
| // llvm-ir level. The number of activities matches the number of Rust level arguments, so we |
| // need to match those. |
| // FIXME(ZuseZ4): This logic is a bit more complicated than it should be, can we simplify it |
| // using iterators and peek()? |
| let mut outer_pos: usize = 0; |
| let mut activity_pos = 0; |
| |
| if has_sret { |
| // Then the first outer arg is the sret pointer. Enzyme doesn't know about sret, so the |
| // inner function will still return something. We increase our outer_pos by one, |
| // and once we're done with all other args we will take the return of the inner call and |
| // update the sret pointer with it |
| outer_pos = 1; |
| } |
| |
| let enzyme_const = cx.create_metadata("enzyme_const".to_string()).unwrap(); |
| let enzyme_out = cx.create_metadata("enzyme_out".to_string()).unwrap(); |
| let enzyme_dup = cx.create_metadata("enzyme_dup".to_string()).unwrap(); |
| let enzyme_dupnoneed = cx.create_metadata("enzyme_dupnoneed".to_string()).unwrap(); |
| |
| while activity_pos < inputs.len() { |
| let diff_activity = inputs[activity_pos as usize]; |
| // Duplicated arguments received a shadow argument, into which enzyme will write the |
| // gradient. |
| let (activity, duplicated): (&Metadata, bool) = match diff_activity { |
| DiffActivity::None => panic!("not a valid input activity"), |
| DiffActivity::Const => (enzyme_const, false), |
| DiffActivity::Active => (enzyme_out, false), |
| DiffActivity::ActiveOnly => (enzyme_out, false), |
| DiffActivity::Dual => (enzyme_dup, true), |
| DiffActivity::DualOnly => (enzyme_dupnoneed, true), |
| DiffActivity::Duplicated => (enzyme_dup, true), |
| DiffActivity::DuplicatedOnly => (enzyme_dupnoneed, true), |
| DiffActivity::FakeActivitySize => (enzyme_const, false), |
| }; |
| let outer_arg = outer_args[outer_pos]; |
| args.push(cx.get_metadata_value(activity)); |
| args.push(outer_arg); |
| if duplicated { |
| // We know that duplicated args by construction have a following argument, |
| // so this can not be out of bounds. |
| let next_outer_arg = outer_args[outer_pos + 1]; |
| let next_outer_ty = cx.val_ty(next_outer_arg); |
| // FIXME(ZuseZ4): We should add support for Vec here too, but it's less urgent since |
| // vectors behind references (&Vec<T>) are already supported. Users can not pass a |
| // Vec by value for reverse mode, so this would only help forward mode autodiff. |
| let slice = { |
| if activity_pos + 1 >= inputs.len() { |
| // If there is no arg following our ptr, it also can't be a slice, |
| // since that would lead to a ptr, int pair. |
| false |
| } else { |
| let next_activity = inputs[activity_pos + 1]; |
| // We analyze the MIR types and add this dummy activity if we visit a slice. |
| next_activity == DiffActivity::FakeActivitySize |
| } |
| }; |
| if slice { |
| // A duplicated slice will have the following two outer_fn arguments: |
| // (..., ptr1, int1, ptr2, int2, ...). We add the following llvm-ir to our __enzyme call: |
| // (..., metadata! enzyme_dup, ptr, ptr, int1, ...). |
| // FIXME(ZuseZ4): We will upstream a safety check later which asserts that |
| // int2 >= int1, which means the shadow vector is large enough to store the gradient. |
| assert_eq!(cx.type_kind(next_outer_ty), TypeKind::Integer); |
| |
| for i in 0..(width as usize) { |
| let next_outer_arg2 = outer_args[outer_pos + 2 * (i + 1)]; |
| let next_outer_ty2 = cx.val_ty(next_outer_arg2); |
| assert_eq!(cx.type_kind(next_outer_ty2), TypeKind::Pointer); |
| let next_outer_arg3 = outer_args[outer_pos + 2 * (i + 1) + 1]; |
| let next_outer_ty3 = cx.val_ty(next_outer_arg3); |
| assert_eq!(cx.type_kind(next_outer_ty3), TypeKind::Integer); |
| args.push(next_outer_arg2); |
| } |
| args.push(cx.get_metadata_value(enzyme_const)); |
| args.push(next_outer_arg); |
| outer_pos += 2 + 2 * width as usize; |
| activity_pos += 2; |
| } else { |
| // A duplicated pointer will have the following two outer_fn arguments: |
| // (..., ptr, ptr, ...). We add the following llvm-ir to our __enzyme call: |
| // (..., metadata! enzyme_dup, ptr, ptr, ...). |
| if matches!(diff_activity, DiffActivity::Duplicated | DiffActivity::DuplicatedOnly) |
| { |
| assert_eq!(cx.type_kind(next_outer_ty), TypeKind::Pointer); |
| } |
| // In the case of Dual we don't have assumptions, e.g. f32 would be valid. |
| args.push(next_outer_arg); |
| outer_pos += 2; |
| activity_pos += 1; |
| |
| // Now, if width > 1, we need to account for that |
| for _ in 1..width { |
| let next_outer_arg = outer_args[outer_pos]; |
| args.push(next_outer_arg); |
| outer_pos += 1; |
| } |
| } |
| } else { |
| // We do not differentiate with resprect to this argument. |
| // We already added the metadata and argument above, so just increase the counters. |
| outer_pos += 1; |
| activity_pos += 1; |
| } |
| } |
| } |
| |
| // On LLVM-IR, we can luckily declare __enzyme_ functions without specifying the input |
| // arguments. We do however need to declare them with their correct return type. |
| // We already figured the correct return type out in our frontend, when generating the outer_fn, |
| // so we can now just go ahead and use that. This is not always trivial, e.g. because sret. |
| // Beyond sret, this article describes our challenges nicely: |
| // <https://yorickpeterse.com/articles/the-mess-that-is-handling-structure-arguments-and-returns-in-llvm/> |
| // I.e. (i32, f32) will get merged into i64, but we don't handle that yet. |
| fn compute_enzyme_fn_ty<'ll>( |
| cx: &SimpleCx<'ll>, |
| attrs: &AutoDiffAttrs, |
| fn_to_diff: &'ll Value, |
| outer_fn: &'ll Value, |
| ) -> &'ll llvm::Type { |
| let fn_ty = cx.get_type_of_global(outer_fn); |
| let mut ret_ty = cx.get_return_type(fn_ty); |
| |
| let has_sret = has_sret(outer_fn); |
| |
| if has_sret { |
| // Now we don't just forward the return type, so we have to figure it out based on the |
| // primal return type, in combination with the autodiff settings. |
| let fn_ty = cx.get_type_of_global(fn_to_diff); |
| let inner_ret_ty = cx.get_return_type(fn_ty); |
| |
| let void_ty = unsafe { llvm::LLVMVoidTypeInContext(cx.llcx) }; |
| if inner_ret_ty == void_ty { |
| // This indicates that even the inner function has an sret. |
| // Right now I only look for an sret in the outer function. |
| // This *probably* needs some extra handling, but I never ran |
| // into such a case. So I'll wait for user reports to have a test case. |
| bug!("sret in inner function"); |
| } |
| |
| if attrs.width == 1 { |
| // Enzyme returns a struct of style: |
| // `{ original_ret(if requested), float, float, ... }` |
| let mut struct_elements = vec![]; |
| if attrs.has_primal_ret() { |
| struct_elements.push(inner_ret_ty); |
| } |
| // Next, we push the list of active floats, since they will be lowered to `enzyme_out`, |
| // and therefore part of the return struct. |
| let param_tys = cx.func_params_types(fn_ty); |
| for (act, param_ty) in attrs.input_activity.iter().zip(param_tys) { |
| if matches!(act, DiffActivity::Active) { |
| // Now find the float type at position i based on the fn_ty, |
| // to know what (f16/f32/f64/...) to add to the struct. |
| struct_elements.push(param_ty); |
| } |
| } |
| ret_ty = cx.type_struct(&struct_elements, false); |
| } else { |
| // First we check if we also have to deal with the primal return. |
| match attrs.mode { |
| DiffMode::Forward => match attrs.ret_activity { |
| DiffActivity::Dual => { |
| let arr_ty = |
| unsafe { llvm::LLVMArrayType2(inner_ret_ty, attrs.width as u64 + 1) }; |
| ret_ty = arr_ty; |
| } |
| DiffActivity::DualOnly => { |
| let arr_ty = |
| unsafe { llvm::LLVMArrayType2(inner_ret_ty, attrs.width as u64) }; |
| ret_ty = arr_ty; |
| } |
| DiffActivity::Const => { |
| todo!("Not sure, do we need to do something here?"); |
| } |
| _ => { |
| bug!("unreachable"); |
| } |
| }, |
| DiffMode::Reverse => { |
| todo!("Handle sret for reverse mode"); |
| } |
| _ => { |
| bug!("unreachable"); |
| } |
| } |
| } |
| } |
| |
| // LLVM can figure out the input types on it's own, so we take a shortcut here. |
| unsafe { llvm::LLVMFunctionType(ret_ty, ptr::null(), 0, True) } |
| } |
| |
| /// When differentiating `fn_to_diff`, take a `outer_fn` and generate another |
| /// function with expected naming and calling conventions[^1] which will be |
| /// discovered by the enzyme LLVM pass and its body populated with the differentiated |
| /// `fn_to_diff`. `outer_fn` is then modified to have a call to the generated |
| /// function and handle the differences between the Rust calling convention and |
| /// Enzyme. |
| /// [^1]: <https://enzyme.mit.edu/getting_started/CallingConvention/> |
| // FIXME(ZuseZ4): `outer_fn` should include upstream safety checks to |
| // cover some assumptions of enzyme/autodiff, which could lead to UB otherwise. |
| fn generate_enzyme_call<'ll>( |
| cx: &SimpleCx<'ll>, |
| fn_to_diff: &'ll Value, |
| outer_fn: &'ll Value, |
| attrs: AutoDiffAttrs, |
| ) { |
| // We have to pick the name depending on whether we want forward or reverse mode autodiff. |
| let mut ad_name: String = match attrs.mode { |
| DiffMode::Forward => "__enzyme_fwddiff", |
| DiffMode::Reverse => "__enzyme_autodiff", |
| _ => panic!("logic bug in autodiff, unrecognized mode"), |
| } |
| .to_string(); |
| |
| // add outer_fn name to ad_name to make it unique, in case users apply autodiff to multiple |
| // functions. Unwrap will only panic, if LLVM gave us an invalid string. |
| let name = llvm::get_value_name(outer_fn); |
| let outer_fn_name = std::str::from_utf8(name).unwrap(); |
| ad_name.push_str(outer_fn_name); |
| |
| // Let us assume the user wrote the following function square: |
| // |
| // ```llvm |
| // define double @square(double %x) { |
| // entry: |
| // %0 = fmul double %x, %x |
| // ret double %0 |
| // } |
| // ``` |
| // |
| // The user now applies autodiff to the function square, in which case fn_to_diff will be `square`. |
| // Our macro generates the following placeholder code (slightly simplified): |
| // |
| // ```llvm |
| // define double @dsquare(double %x) { |
| // ; placeholder code |
| // return 0.0; |
| // } |
| // ``` |
| // |
| // so our `outer_fn` will be `dsquare`. The unsafe code section below now removes the placeholder |
| // code and inserts an autodiff call. We also add a declaration for the __enzyme_autodiff call. |
| // Again, the arguments to all functions are slightly simplified. |
| // ```llvm |
| // declare double @__enzyme_autodiff_square(...) |
| // |
| // define double @dsquare(double %x) { |
| // entry: |
| // %0 = tail call double (...) @__enzyme_autodiff_square(double (double)* nonnull @square, double %x) |
| // ret double %0 |
| // } |
| // ``` |
| unsafe { |
| let enzyme_ty = compute_enzyme_fn_ty(cx, &attrs, fn_to_diff, outer_fn); |
| |
| // FIXME(ZuseZ4): the CC/Addr/Vis values are best effort guesses, we should look at tests and |
| // think a bit more about what should go here. |
| let cc = llvm::LLVMGetFunctionCallConv(outer_fn); |
| let ad_fn = declare_simple_fn( |
| cx, |
| &ad_name, |
| llvm::CallConv::try_from(cc).expect("invalid callconv"), |
| llvm::UnnamedAddr::No, |
| llvm::Visibility::Default, |
| enzyme_ty, |
| ); |
| |
| // Otherwise LLVM might inline our temporary code before the enzyme pass has a chance to |
| // do it's work. |
| let attr = llvm::AttributeKind::NoInline.create_attr(cx.llcx); |
| attributes::apply_to_llfn(ad_fn, Function, &[attr]); |
| |
| // first, remove all calls from fnc |
| let entry = llvm::LLVMGetFirstBasicBlock(outer_fn); |
| let br = llvm::LLVMRustGetTerminator(entry); |
| llvm::LLVMRustEraseInstFromParent(br); |
| |
| let last_inst = llvm::LLVMRustGetLastInstruction(entry).unwrap(); |
| let mut builder = SBuilder::build(cx, entry); |
| |
| let num_args = llvm::LLVMCountParams(&fn_to_diff); |
| let mut args = Vec::with_capacity(num_args as usize + 1); |
| args.push(fn_to_diff); |
| |
| let enzyme_primal_ret = cx.create_metadata("enzyme_primal_return".to_string()).unwrap(); |
| if matches!(attrs.ret_activity, DiffActivity::Dual | DiffActivity::Active) { |
| args.push(cx.get_metadata_value(enzyme_primal_ret)); |
| } |
| if attrs.width > 1 { |
| let enzyme_width = cx.create_metadata("enzyme_width".to_string()).unwrap(); |
| args.push(cx.get_metadata_value(enzyme_width)); |
| args.push(cx.get_const_i64(attrs.width as u64)); |
| } |
| |
| let has_sret = has_sret(outer_fn); |
| let outer_args: Vec<&llvm::Value> = get_params(outer_fn); |
| match_args_from_caller_to_enzyme( |
| &cx, |
| attrs.width, |
| &mut args, |
| &attrs.input_activity, |
| &outer_args, |
| has_sret, |
| ); |
| |
| let call = builder.call(enzyme_ty, ad_fn, &args, None); |
| |
| // This part is a bit iffy. LLVM requires that a call to an inlineable function has some |
| // metadata attached to it, but we just created this code oota. Given that the |
| // differentiated function already has partly confusing metadata, and given that this |
| // affects nothing but the auttodiff IR, we take a shortcut and just steal metadata from the |
| // dummy code which we inserted at a higher level. |
| // FIXME(ZuseZ4): Work with Enzyme core devs to clarify what debug metadata issues we have, |
| // and how to best improve it for enzyme core and rust-enzyme. |
| let md_ty = cx.get_md_kind_id("dbg"); |
| if llvm::LLVMRustHasMetadata(last_inst, md_ty) { |
| let md = llvm::LLVMRustDIGetInstMetadata(last_inst) |
| .expect("failed to get instruction metadata"); |
| let md_todiff = cx.get_metadata_value(md); |
| llvm::LLVMSetMetadata(call, md_ty, md_todiff); |
| } else { |
| // We don't panic, since depending on whether we are in debug or release mode, we might |
| // have no debug info to copy, which would then be ok. |
| trace!("no dbg info"); |
| } |
| |
| // Now that we copied the metadata, get rid of dummy code. |
| llvm::LLVMRustEraseInstUntilInclusive(entry, last_inst); |
| |
| if cx.val_ty(call) == cx.type_void() || has_sret { |
| if has_sret { |
| // This is what we already have in our outer_fn (shortened): |
| // define void @_foo(ptr <..> sret([32 x i8]) initializes((0, 32)) %0, <...>) { |
| // %7 = call [4 x double] (...) @__enzyme_fwddiff_foo(ptr @square, metadata !"enzyme_width", i64 4, <...>) |
| // <Here we are, we want to add the following two lines> |
| // store [4 x double] %7, ptr %0, align 8 |
| // ret void |
| // } |
| |
| // now store the result of the enzyme call into the sret pointer. |
| let sret_ptr = outer_args[0]; |
| let call_ty = cx.val_ty(call); |
| if attrs.width == 1 { |
| assert_eq!(cx.type_kind(call_ty), TypeKind::Struct); |
| } else { |
| assert_eq!(cx.type_kind(call_ty), TypeKind::Array); |
| } |
| llvm::LLVMBuildStore(&builder.llbuilder, call, sret_ptr); |
| } |
| builder.ret_void(); |
| } else { |
| builder.ret(call); |
| } |
| |
| // Let's crash in case that we messed something up above and generated invalid IR. |
| llvm::LLVMRustVerifyFunction( |
| outer_fn, |
| llvm::LLVMRustVerifierFailureAction::LLVMAbortProcessAction, |
| ); |
| } |
| } |
| |
| pub(crate) fn differentiate<'ll>( |
| module: &'ll ModuleCodegen<ModuleLlvm>, |
| cgcx: &CodegenContext<LlvmCodegenBackend>, |
| diff_items: Vec<AutoDiffItem>, |
| _config: &ModuleConfig, |
| ) -> Result<(), FatalError> { |
| for item in &diff_items { |
| trace!("{}", item); |
| } |
| |
| let diag_handler = cgcx.create_dcx(); |
| |
| let cx = SimpleCx::new(module.module_llvm.llmod(), module.module_llvm.llcx, cgcx.pointer_size); |
| |
| // First of all, did the user try to use autodiff without using the -Zautodiff=Enable flag? |
| if !diff_items.is_empty() |
| && !cgcx.opts.unstable_opts.autodiff.contains(&rustc_session::config::AutoDiff::Enable) |
| { |
| return Err(diag_handler.handle().emit_almost_fatal(AutoDiffWithoutEnable)); |
| } |
| |
| // Before dumping the module, we want all the TypeTrees to become part of the module. |
| for item in diff_items.iter() { |
| let name = item.source.clone(); |
| let fn_def: Option<&llvm::Value> = cx.get_function(&name); |
| let Some(fn_def) = fn_def else { |
| return Err(llvm_err( |
| diag_handler.handle(), |
| LlvmError::PrepareAutoDiff { |
| src: item.source.clone(), |
| target: item.target.clone(), |
| error: "could not find source function".to_owned(), |
| }, |
| )); |
| }; |
| debug!(?item.target); |
| let fn_target: Option<&llvm::Value> = cx.get_function(&item.target); |
| let Some(fn_target) = fn_target else { |
| return Err(llvm_err( |
| diag_handler.handle(), |
| LlvmError::PrepareAutoDiff { |
| src: item.source.clone(), |
| target: item.target.clone(), |
| error: "could not find target function".to_owned(), |
| }, |
| )); |
| }; |
| |
| generate_enzyme_call(&cx, fn_def, fn_target, item.attrs.clone()); |
| } |
| |
| // FIXME(ZuseZ4): support SanitizeHWAddress and prevent illegal/unsupported opts |
| |
| trace!("done with differentiate()"); |
| |
| Ok(()) |
| } |