blob: c34013a7bbbb1b56d8955e44954e748ec32ba02d [file] [log] [blame]
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Output a CSV file containing the output from rustc's analysis. The data is
//! primarily designed to be used as input to the DXR tool, specifically its
//! Rust plugin. It could also be used by IDEs or other code browsing, search, or
//! cross-referencing tools.
//!
//! Dumping the analysis is implemented by walking the AST and getting a bunch of
//! info out from all over the place. We use Def IDs to identify objects. The
//! tricky part is getting syntactic (span, source text) and semantic (reference
//! Def IDs) information for parts of expressions which the compiler has discarded.
//! E.g., in a path `foo::bar::baz`, the compiler only keeps a span for the whole
//! path and a reference to `baz`, but we want spans and references for all three
//! idents.
//!
//! SpanUtils is used to manipulate spans. In particular, to extract sub-spans
//! from spans (e.g., the span for `bar` from the above example path).
//! Recorder is used for recording the output in csv format. FmtStrs separates
//! the format of the output away from extracting it from the compiler.
//! DumpCsvVisitor walks the AST and processes it.
use super::{escape, generated_code, recorder, SaveContext, PathCollector, Data};
use session::Session;
use middle::def;
use middle::def_id::DefId;
use middle::ty;
use std::fs::File;
use syntax::ast::{self, NodeId};
use syntax::codemap::*;
use syntax::parse::token::{self, keywords};
use syntax::visit::{self, Visitor};
use syntax::print::pprust::{path_to_string, ty_to_string};
use syntax::ptr::P;
use rustc_front::lowering::{lower_expr, LoweringContext};
use super::span_utils::SpanUtils;
use super::recorder::{Recorder, FmtStrs};
macro_rules! down_cast_data {
($id:ident, $kind:ident, $this:ident, $sp:expr) => {
let $id = if let super::Data::$kind(data) = $id {
data
} else {
$this.sess.span_bug($sp, &format!("unexpected data kind: {:?}", $id));
}
};
}
pub struct DumpCsvVisitor<'l, 'tcx: 'l> {
save_ctxt: SaveContext<'l, 'tcx>,
sess: &'l Session,
tcx: &'l ty::ctxt<'tcx>,
analysis: &'l ty::CrateAnalysis<'l>,
span: SpanUtils<'l>,
fmt: FmtStrs<'l, 'tcx>,
cur_scope: NodeId,
}
impl <'l, 'tcx> DumpCsvVisitor<'l, 'tcx> {
pub fn new(tcx: &'l ty::ctxt<'tcx>,
lcx: &'l LoweringContext<'l>,
analysis: &'l ty::CrateAnalysis<'l>,
output_file: Box<File>)
-> DumpCsvVisitor<'l, 'tcx> {
let span_utils = SpanUtils::new(&tcx.sess);
DumpCsvVisitor {
sess: &tcx.sess,
tcx: tcx,
save_ctxt: SaveContext::from_span_utils(tcx, lcx, span_utils.clone()),
analysis: analysis,
span: span_utils.clone(),
fmt: FmtStrs::new(box Recorder {
out: output_file,
dump_spans: false,
},
span_utils,
tcx),
cur_scope: 0,
}
}
fn nest<F>(&mut self, scope_id: NodeId, f: F)
where F: FnOnce(&mut DumpCsvVisitor<'l, 'tcx>)
{
let parent_scope = self.cur_scope;
self.cur_scope = scope_id;
f(self);
self.cur_scope = parent_scope;
}
pub fn dump_crate_info(&mut self, name: &str, krate: &ast::Crate) {
let source_file = self.tcx.sess.local_crate_source_file.as_ref();
let crate_root = match source_file {
Some(source_file) => match source_file.file_name() {
Some(_) => source_file.parent().unwrap().display().to_string(),
None => source_file.display().to_string(),
},
None => "<no source>".to_owned(),
};
// The current crate.
self.fmt.crate_str(krate.span, name, &crate_root);
// Dump info about all the external crates referenced from this crate.
for c in &self.save_ctxt.get_external_crates() {
self.fmt.external_crate_str(krate.span, &c.name, c.number);
}
self.fmt.recorder.record("end_external_crates\n");
}
// Return all non-empty prefixes of a path.
// For each prefix, we return the span for the last segment in the prefix and
// a str representation of the entire prefix.
fn process_path_prefixes(&self, path: &ast::Path) -> Vec<(Span, String)> {
let spans = self.span.spans_for_path_segments(path);
// Paths to enums seem to not match their spans - the span includes all the
// variants too. But they seem to always be at the end, so I hope we can cope with
// always using the first ones. So, only error out if we don't have enough spans.
// What could go wrong...?
if spans.len() < path.segments.len() {
error!("Mis-calculated spans for path '{}'. Found {} spans, expected {}. Found spans:",
path_to_string(path),
spans.len(),
path.segments.len());
for s in &spans {
let loc = self.sess.codemap().lookup_char_pos(s.lo);
error!(" '{}' in {}, line {}",
self.span.snippet(*s),
loc.file.name,
loc.line);
}
return vec!();
}
let mut result: Vec<(Span, String)> = vec!();
let mut segs = vec!();
for (i, (seg, span)) in path.segments.iter().zip(&spans).enumerate() {
segs.push(seg.clone());
let sub_path = ast::Path {
span: *span, // span for the last segment
global: path.global,
segments: segs,
};
let qualname = if i == 0 && path.global {
format!("::{}", path_to_string(&sub_path))
} else {
path_to_string(&sub_path)
};
result.push((*span, qualname));
segs = sub_path.segments;
}
result
}
// The global arg allows us to override the global-ness of the path (which
// actually means 'does the path start with `::`', rather than 'is the path
// semantically global). We use the override for `use` imports (etc.) where
// the syntax is non-global, but the semantics are global.
fn write_sub_paths(&mut self, path: &ast::Path, global: bool) {
let sub_paths = self.process_path_prefixes(path);
for (i, &(ref span, ref qualname)) in sub_paths.iter().enumerate() {
let qualname = if i == 0 && global && !path.global {
format!("::{}", qualname)
} else {
qualname.clone()
};
self.fmt.sub_mod_ref_str(path.span, *span, &qualname, self.cur_scope);
}
}
// As write_sub_paths, but does not process the last ident in the path (assuming it
// will be processed elsewhere). See note on write_sub_paths about global.
fn write_sub_paths_truncated(&mut self, path: &ast::Path, global: bool) {
let sub_paths = self.process_path_prefixes(path);
let len = sub_paths.len();
if len <= 1 {
return;
}
let sub_paths = &sub_paths[..len-1];
for (i, &(ref span, ref qualname)) in sub_paths.iter().enumerate() {
let qualname = if i == 0 && global && !path.global {
format!("::{}", qualname)
} else {
qualname.clone()
};
self.fmt.sub_mod_ref_str(path.span, *span, &qualname, self.cur_scope);
}
}
// As write_sub_paths, but expects a path of the form module_path::trait::method
// Where trait could actually be a struct too.
fn write_sub_path_trait_truncated(&mut self, path: &ast::Path) {
let sub_paths = self.process_path_prefixes(path);
let len = sub_paths.len();
if len <= 1 {
return;
}
let sub_paths = &sub_paths[.. (len-1)];
// write the trait part of the sub-path
let (ref span, ref qualname) = sub_paths[len-2];
self.fmt.sub_type_ref_str(path.span, *span, &qualname);
// write the other sub-paths
if len <= 2 {
return;
}
let sub_paths = &sub_paths[..len-2];
for &(ref span, ref qualname) in sub_paths {
self.fmt.sub_mod_ref_str(path.span, *span, &qualname, self.cur_scope);
}
}
// looks up anything, not just a type
fn lookup_type_ref(&self, ref_id: NodeId) -> Option<DefId> {
if !self.tcx.def_map.borrow().contains_key(&ref_id) {
self.sess.bug(&format!("def_map has no key for {} in lookup_type_ref",
ref_id));
}
let def = self.tcx.def_map.borrow().get(&ref_id).unwrap().full_def();
match def {
def::DefPrimTy(..) => None,
def::DefSelfTy(..) => None,
_ => Some(def.def_id()),
}
}
fn lookup_def_kind(&self, ref_id: NodeId, span: Span) -> Option<recorder::Row> {
let def_map = self.tcx.def_map.borrow();
if !def_map.contains_key(&ref_id) {
self.sess.span_bug(span,
&format!("def_map has no key for {} in lookup_def_kind",
ref_id));
}
let def = def_map.get(&ref_id).unwrap().full_def();
match def {
def::DefMod(_) |
def::DefForeignMod(_) => Some(recorder::ModRef),
def::DefStruct(_) => Some(recorder::TypeRef),
def::DefTy(..) |
def::DefAssociatedTy(..) |
def::DefTrait(_) => Some(recorder::TypeRef),
def::DefStatic(_, _) |
def::DefConst(_) |
def::DefAssociatedConst(..) |
def::DefLocal(..) |
def::DefVariant(_, _, _) |
def::DefUpvar(..) => Some(recorder::VarRef),
def::DefFn(..) => Some(recorder::FnRef),
def::DefSelfTy(..) |
def::DefLabel(_) |
def::DefTyParam(..) |
def::DefMethod(..) |
def::DefPrimTy(_) |
def::DefErr => {
self.sess.span_bug(span,
&format!("lookup_def_kind for unexpected item: {:?}", def));
}
}
}
fn process_formals(&mut self, formals: &Vec<ast::Arg>, qualname: &str) {
for arg in formals {
self.visit_pat(&arg.pat);
let mut collector = PathCollector::new();
collector.visit_pat(&arg.pat);
let span_utils = self.span.clone();
for &(id, ref p, _, _) in &collector.collected_paths {
let typ = self.tcx.node_types().get(&id).unwrap().to_string();
// get the span only for the name of the variable (I hope the path is only ever a
// variable name, but who knows?)
self.fmt.formal_str(p.span,
span_utils.span_for_last_ident(p.span),
id,
qualname,
&path_to_string(p),
&typ);
}
}
}
fn process_method(&mut self,
sig: &ast::MethodSig,
body: Option<&ast::Block>,
id: ast::NodeId,
name: ast::Name,
span: Span) {
if generated_code(span) {
return;
}
debug!("process_method: {}:{}", id, name);
let method_data = self.save_ctxt.get_method_data(id, name, span);
if body.is_some() {
self.fmt.method_str(span,
Some(method_data.span),
method_data.id,
&method_data.qualname,
method_data.declaration,
method_data.scope);
self.process_formals(&sig.decl.inputs, &method_data.qualname);
} else {
self.fmt.method_decl_str(span,
Some(method_data.span),
method_data.id,
&method_data.qualname,
method_data.scope);
}
// walk arg and return types
for arg in &sig.decl.inputs {
self.visit_ty(&arg.ty);
}
if let ast::Return(ref ret_ty) = sig.decl.output {
self.visit_ty(ret_ty);
}
// walk the fn body
if let Some(body) = body {
self.nest(id, |v| v.visit_block(body));
}
self.process_generic_params(&sig.generics, span, &method_data.qualname, id);
}
fn process_trait_ref(&mut self, trait_ref: &ast::TraitRef) {
let trait_ref_data = self.save_ctxt.get_trait_ref_data(trait_ref, self.cur_scope);
if let Some(trait_ref_data) = trait_ref_data {
self.fmt.ref_str(recorder::TypeRef,
trait_ref.path.span,
Some(trait_ref_data.span),
trait_ref_data.ref_id,
trait_ref_data.scope);
visit::walk_path(self, &trait_ref.path);
}
}
fn process_struct_field_def(&mut self, field: &ast::StructField, parent_id: NodeId) {
let field_data = self.save_ctxt.get_field_data(field, parent_id);
if let Some(field_data) = field_data {
self.fmt.field_str(field.span,
Some(field_data.span),
field_data.id,
&field_data.name,
&field_data.qualname,
&field_data.type_value,
field_data.scope);
}
}
// Dump generic params bindings, then visit_generics
fn process_generic_params(&mut self,
generics: &ast::Generics,
full_span: Span,
prefix: &str,
id: NodeId) {
// We can't only use visit_generics since we don't have spans for param
// bindings, so we reparse the full_span to get those sub spans.
// However full span is the entire enum/fn/struct block, so we only want
// the first few to match the number of generics we're looking for.
let param_sub_spans = self.span.spans_for_ty_params(full_span,
(generics.ty_params.len() as isize));
for (param, param_ss) in generics.ty_params.iter().zip(param_sub_spans) {
// Append $id to name to make sure each one is unique
let name = format!("{}::{}${}",
prefix,
escape(self.span.snippet(param_ss)),
id);
self.fmt.typedef_str(full_span, Some(param_ss), param.id, &name, "");
}
self.visit_generics(generics);
}
fn process_fn(&mut self,
item: &ast::Item,
decl: &ast::FnDecl,
ty_params: &ast::Generics,
body: &ast::Block) {
let fn_data = self.save_ctxt.get_item_data(item);
down_cast_data!(fn_data, FunctionData, self, item.span);
self.fmt.fn_str(item.span,
Some(fn_data.span),
fn_data.id,
&fn_data.qualname,
fn_data.scope);
self.process_formals(&decl.inputs, &fn_data.qualname);
self.process_generic_params(ty_params, item.span, &fn_data.qualname, item.id);
for arg in &decl.inputs {
self.visit_ty(&arg.ty);
}
if let ast::Return(ref ret_ty) = decl.output {
self.visit_ty(&ret_ty);
}
self.nest(item.id, |v| v.visit_block(&body));
}
fn process_static_or_const_item(&mut self, item: &ast::Item, typ: &ast::Ty, expr: &ast::Expr) {
let var_data = self.save_ctxt.get_item_data(item);
down_cast_data!(var_data, VariableData, self, item.span);
self.fmt.static_str(item.span,
Some(var_data.span),
var_data.id,
&var_data.name,
&var_data.qualname,
&var_data.value,
&var_data.type_value,
var_data.scope);
self.visit_ty(&typ);
self.visit_expr(expr);
}
fn process_const(&mut self,
id: ast::NodeId,
name: ast::Name,
span: Span,
typ: &ast::Ty,
expr: &ast::Expr) {
let qualname = format!("::{}", self.tcx.map.path_to_string(id));
let sub_span = self.span.sub_span_after_keyword(span, keywords::Const);
self.fmt.static_str(span,
sub_span,
id,
&name.as_str(),
&qualname,
&self.span.snippet(expr.span),
&ty_to_string(&*typ),
self.cur_scope);
// walk type and init value
self.visit_ty(typ);
self.visit_expr(expr);
}
fn process_struct(&mut self,
item: &ast::Item,
def: &ast::VariantData,
ty_params: &ast::Generics) {
let qualname = format!("::{}", self.tcx.map.path_to_string(item.id));
let val = self.span.snippet(item.span);
let sub_span = self.span.sub_span_after_keyword(item.span, keywords::Struct);
self.fmt.struct_str(item.span,
sub_span,
item.id,
def.id(),
&qualname,
self.cur_scope,
&val);
// fields
for field in def.fields() {
self.process_struct_field_def(field, item.id);
self.visit_ty(&field.node.ty);
}
self.process_generic_params(ty_params, item.span, &qualname, item.id);
}
fn process_enum(&mut self,
item: &ast::Item,
enum_definition: &ast::EnumDef,
ty_params: &ast::Generics) {
let enum_data = self.save_ctxt.get_item_data(item);
down_cast_data!(enum_data, EnumData, self, item.span);
self.fmt.enum_str(item.span,
Some(enum_data.span),
enum_data.id,
&enum_data.qualname,
enum_data.scope,
&enum_data.value);
for variant in &enum_definition.variants {
let name = &variant.node.name.name.as_str();
let mut qualname = enum_data.qualname.clone();
qualname.push_str("::");
qualname.push_str(name);
let val = self.span.snippet(variant.span);
self.fmt.struct_variant_str(variant.span,
self.span.span_for_first_ident(variant.span),
variant.node.data.id(),
variant.node.data.id(),
&qualname,
&enum_data.qualname,
&val,
enum_data.id);
for field in variant.node.data.fields() {
self.process_struct_field_def(field, variant.node.data.id());
self.visit_ty(&*field.node.ty);
}
}
self.process_generic_params(ty_params, item.span, &enum_data.qualname, enum_data.id);
}
fn process_impl(&mut self,
item: &ast::Item,
type_parameters: &ast::Generics,
trait_ref: &Option<ast::TraitRef>,
typ: &ast::Ty,
impl_items: &[P<ast::ImplItem>]) {
let impl_data = self.save_ctxt.get_item_data(item);
down_cast_data!(impl_data, ImplData, self, item.span);
match impl_data.self_ref {
Some(ref self_ref) => {
self.fmt.ref_str(recorder::TypeRef,
item.span,
Some(self_ref.span),
self_ref.ref_id,
self_ref.scope);
}
None => {
self.visit_ty(&typ);
}
}
if let Some(ref trait_ref_data) = impl_data.trait_ref {
self.fmt.ref_str(recorder::TypeRef,
item.span,
Some(trait_ref_data.span),
trait_ref_data.ref_id,
trait_ref_data.scope);
visit::walk_path(self, &trait_ref.as_ref().unwrap().path);
}
self.fmt.impl_str(item.span,
Some(impl_data.span),
impl_data.id,
impl_data.self_ref.map(|data| data.ref_id),
impl_data.trait_ref.map(|data| data.ref_id),
impl_data.scope);
self.process_generic_params(type_parameters, item.span, "", item.id);
for impl_item in impl_items {
self.visit_impl_item(impl_item);
}
}
fn process_trait(&mut self,
item: &ast::Item,
generics: &ast::Generics,
trait_refs: &ast::TyParamBounds,
methods: &[P<ast::TraitItem>]) {
let qualname = format!("::{}", self.tcx.map.path_to_string(item.id));
let val = self.span.snippet(item.span);
let sub_span = self.span.sub_span_after_keyword(item.span, keywords::Trait);
self.fmt.trait_str(item.span,
sub_span,
item.id,
&qualname,
self.cur_scope,
&val);
// super-traits
for super_bound in trait_refs.iter() {
let trait_ref = match *super_bound {
ast::TraitTyParamBound(ref trait_ref, _) => {
trait_ref
}
ast::RegionTyParamBound(..) => {
continue;
}
};
let trait_ref = &trait_ref.trait_ref;
match self.lookup_type_ref(trait_ref.ref_id) {
Some(id) => {
let sub_span = self.span.sub_span_for_type_name(trait_ref.path.span);
self.fmt.ref_str(recorder::TypeRef,
trait_ref.path.span,
sub_span,
id,
self.cur_scope);
self.fmt.inherit_str(trait_ref.path.span, sub_span, id, item.id);
}
None => (),
}
}
// walk generics and methods
self.process_generic_params(generics, item.span, &qualname, item.id);
for method in methods {
self.visit_trait_item(method)
}
}
// `item` is the module in question, represented as an item.
fn process_mod(&mut self, item: &ast::Item) {
let mod_data = self.save_ctxt.get_item_data(item);
down_cast_data!(mod_data, ModData, self, item.span);
self.fmt.mod_str(item.span,
Some(mod_data.span),
mod_data.id,
&mod_data.qualname,
mod_data.scope,
&mod_data.filename);
}
fn process_path(&mut self, id: NodeId, path: &ast::Path, ref_kind: Option<recorder::Row>) {
if generated_code(path.span) {
return;
}
let path_data = self.save_ctxt.get_path_data(id, path);
let path_data = match path_data {
Some(pd) => pd,
None => {
self.tcx.sess.span_bug(path.span,
&format!("Unexpected def kind while looking up path in \
`{}`",
self.span.snippet(path.span)))
}
};
match path_data {
Data::VariableRefData(ref vrd) => {
self.fmt.ref_str(ref_kind.unwrap_or(recorder::VarRef),
path.span,
Some(vrd.span),
vrd.ref_id,
vrd.scope);
}
Data::TypeRefData(ref trd) => {
self.fmt.ref_str(recorder::TypeRef,
path.span,
Some(trd.span),
trd.ref_id,
trd.scope);
}
Data::MethodCallData(ref mcd) => {
self.fmt.meth_call_str(path.span,
Some(mcd.span),
mcd.ref_id,
mcd.decl_id,
mcd.scope);
}
Data::FunctionCallData(fcd) => {
self.fmt.fn_call_str(path.span, Some(fcd.span), fcd.ref_id, fcd.scope);
}
_ => {
self.sess.span_bug(path.span,
&format!("Unexpected data: {:?}", path_data));
}
}
// Modules or types in the path prefix.
let def_map = self.tcx.def_map.borrow();
let def = def_map.get(&id).unwrap().full_def();
match def {
def::DefMethod(did) => {
let ti = self.tcx.impl_or_trait_item(did);
if let ty::MethodTraitItem(m) = ti {
if m.explicit_self == ty::ExplicitSelfCategory::Static {
self.write_sub_path_trait_truncated(path);
}
}
}
def::DefLocal(..) |
def::DefStatic(_,_) |
def::DefConst(..) |
def::DefAssociatedConst(..) |
def::DefStruct(_) |
def::DefVariant(..) |
def::DefFn(..) => self.write_sub_paths_truncated(path, false),
_ => {}
}
}
fn process_struct_lit(&mut self,
ex: &ast::Expr,
path: &ast::Path,
fields: &Vec<ast::Field>,
variant: ty::VariantDef,
base: &Option<P<ast::Expr>>) {
if generated_code(path.span) {
return
}
self.write_sub_paths_truncated(path, false);
if let Some(struct_lit_data) = self.save_ctxt.get_expr_data(ex) {
down_cast_data!(struct_lit_data, TypeRefData, self, ex.span);
self.fmt.ref_str(recorder::TypeRef,
ex.span,
Some(struct_lit_data.span),
struct_lit_data.ref_id,
struct_lit_data.scope);
let scope = self.save_ctxt.enclosing_scope(ex.id);
for field in fields {
if generated_code(field.ident.span) {
continue;
}
let field_data = self.save_ctxt.get_field_ref_data(field, variant, scope);
self.fmt.ref_str(recorder::VarRef,
field.ident.span,
Some(field_data.span),
field_data.ref_id,
field_data.scope);
self.visit_expr(&field.expr)
}
}
walk_list!(self, visit_expr, base);
}
fn process_method_call(&mut self, ex: &ast::Expr, args: &Vec<P<ast::Expr>>) {
if let Some(call_data) = self.save_ctxt.get_expr_data(ex) {
down_cast_data!(call_data, MethodCallData, self, ex.span);
self.fmt.meth_call_str(ex.span,
Some(call_data.span),
call_data.ref_id,
call_data.decl_id,
call_data.scope);
}
// walk receiver and args
walk_list!(self, visit_expr, args);
}
fn process_pat(&mut self, p: &ast::Pat) {
if generated_code(p.span) {
return;
}
match p.node {
ast::PatStruct(ref path, ref fields, _) => {
visit::walk_path(self, path);
let adt = self.tcx.node_id_to_type(p.id).ty_adt_def().unwrap();
let def = self.tcx.def_map.borrow()[&p.id].full_def();
let variant = adt.variant_of_def(def);
for &Spanned { node: ref field, span } in fields {
if generated_code(span) {
continue;
}
let sub_span = self.span.span_for_first_ident(span);
if let Some(f) = variant.find_field_named(field.ident.name) {
self.fmt.ref_str(recorder::VarRef, span, sub_span, f.did, self.cur_scope);
}
self.visit_pat(&field.pat);
}
}
_ => visit::walk_pat(self, p),
}
}
fn process_var_decl(&mut self, p: &ast::Pat, value: String) {
// The local could declare multiple new vars, we must walk the
// pattern and collect them all.
let mut collector = PathCollector::new();
collector.visit_pat(&p);
self.visit_pat(&p);
for &(id, ref p, immut, _) in &collector.collected_paths {
let value = if immut == ast::MutImmutable {
value.to_string()
} else {
"<mutable>".to_string()
};
let types = self.tcx.node_types();
let typ = types.get(&id).unwrap().to_string();
// Get the span only for the name of the variable (I hope the path
// is only ever a variable name, but who knows?).
let sub_span = self.span.span_for_last_ident(p.span);
// Rust uses the id of the pattern for var lookups, so we'll use it too.
self.fmt.variable_str(p.span,
sub_span,
id,
&path_to_string(p),
&value,
&typ);
}
}
}
impl<'l, 'tcx, 'v> Visitor<'v> for DumpCsvVisitor<'l, 'tcx> {
fn visit_item(&mut self, item: &ast::Item) {
if generated_code(item.span) {
return
}
match item.node {
ast::ItemUse(ref use_item) => {
match use_item.node {
ast::ViewPathSimple(ident, ref path) => {
let sub_span = self.span.span_for_last_ident(path.span);
let mod_id = match self.lookup_type_ref(item.id) {
Some(def_id) => {
match self.lookup_def_kind(item.id, path.span) {
Some(kind) => self.fmt.ref_str(kind,
path.span,
sub_span,
def_id,
self.cur_scope),
None => {}
}
Some(def_id)
}
None => None,
};
// 'use' always introduces an alias, if there is not an explicit
// one, there is an implicit one.
let sub_span = match self.span.sub_span_after_keyword(use_item.span,
keywords::As) {
Some(sub_span) => Some(sub_span),
None => sub_span,
};
self.fmt.use_alias_str(path.span,
sub_span,
item.id,
mod_id,
&ident.name.as_str(),
self.cur_scope);
self.write_sub_paths_truncated(path, true);
}
ast::ViewPathGlob(ref path) => {
// Make a comma-separated list of names of imported modules.
let mut name_string = String::new();
let glob_map = &self.analysis.glob_map;
let glob_map = glob_map.as_ref().unwrap();
if glob_map.contains_key(&item.id) {
for n in glob_map.get(&item.id).unwrap() {
if !name_string.is_empty() {
name_string.push_str(", ");
}
name_string.push_str(&n.as_str());
}
}
let sub_span = self.span
.sub_span_of_token(path.span, token::BinOp(token::Star));
self.fmt.use_glob_str(path.span,
sub_span,
item.id,
&name_string,
self.cur_scope);
self.write_sub_paths(path, true);
}
ast::ViewPathList(ref path, ref list) => {
for plid in list {
match plid.node {
ast::PathListIdent { id, .. } => {
match self.lookup_type_ref(id) {
Some(def_id) => match self.lookup_def_kind(id, plid.span) {
Some(kind) => {
self.fmt.ref_str(kind,
plid.span,
Some(plid.span),
def_id,
self.cur_scope);
}
None => (),
},
None => (),
}
}
ast::PathListMod { .. } => (),
}
}
self.write_sub_paths(path, true);
}
}
}
ast::ItemExternCrate(ref s) => {
let location = match *s {
Some(s) => s.to_string(),
None => item.ident.to_string(),
};
let alias_span = self.span.span_for_last_ident(item.span);
let cnum = match self.sess.cstore.extern_mod_stmt_cnum(item.id) {
Some(cnum) => cnum,
None => 0,
};
self.fmt.extern_crate_str(item.span,
alias_span,
item.id,
cnum,
&item.ident.name.as_str(),
&location,
self.cur_scope);
}
ast::ItemFn(ref decl, _, _, _, ref ty_params, ref body) =>
self.process_fn(item, &**decl, ty_params, &**body),
ast::ItemStatic(ref typ, _, ref expr) =>
self.process_static_or_const_item(item, typ, expr),
ast::ItemConst(ref typ, ref expr) =>
self.process_static_or_const_item(item, &typ, &expr),
ast::ItemStruct(ref def, ref ty_params) => self.process_struct(item, def, ty_params),
ast::ItemEnum(ref def, ref ty_params) => self.process_enum(item, def, ty_params),
ast::ItemImpl(_, _,
ref ty_params,
ref trait_ref,
ref typ,
ref impl_items) => {
self.process_impl(item, ty_params, trait_ref, &typ, impl_items)
}
ast::ItemTrait(_, ref generics, ref trait_refs, ref methods) =>
self.process_trait(item, generics, trait_refs, methods),
ast::ItemMod(ref m) => {
self.process_mod(item);
self.nest(item.id, |v| visit::walk_mod(v, m));
}
ast::ItemTy(ref ty, ref ty_params) => {
let qualname = format!("::{}", self.tcx.map.path_to_string(item.id));
let value = ty_to_string(&**ty);
let sub_span = self.span.sub_span_after_keyword(item.span, keywords::Type);
self.fmt.typedef_str(item.span, sub_span, item.id, &qualname, &value);
self.visit_ty(&**ty);
self.process_generic_params(ty_params, item.span, &qualname, item.id);
}
ast::ItemMac(_) => (),
_ => visit::walk_item(self, item),
}
}
fn visit_generics(&mut self, generics: &ast::Generics) {
for param in generics.ty_params.iter() {
for bound in param.bounds.iter() {
if let ast::TraitTyParamBound(ref trait_ref, _) = *bound {
self.process_trait_ref(&trait_ref.trait_ref);
}
}
if let Some(ref ty) = param.default {
self.visit_ty(&**ty);
}
}
}
fn visit_trait_item(&mut self, trait_item: &ast::TraitItem) {
match trait_item.node {
ast::ConstTraitItem(ref ty, Some(ref expr)) => {
self.process_const(trait_item.id,
trait_item.ident.name,
trait_item.span,
&*ty,
&*expr);
}
ast::MethodTraitItem(ref sig, ref body) => {
self.process_method(sig,
body.as_ref().map(|x| &**x),
trait_item.id,
trait_item.ident.name,
trait_item.span);
}
ast::ConstTraitItem(_, None) |
ast::TypeTraitItem(..) => {}
}
}
fn visit_impl_item(&mut self, impl_item: &ast::ImplItem) {
match impl_item.node {
ast::ImplItemKind::Const(ref ty, ref expr) => {
self.process_const(impl_item.id,
impl_item.ident.name,
impl_item.span,
&ty,
&expr);
}
ast::ImplItemKind::Method(ref sig, ref body) => {
self.process_method(sig,
Some(body),
impl_item.id,
impl_item.ident.name,
impl_item.span);
}
ast::ImplItemKind::Type(_) |
ast::ImplItemKind::Macro(_) => {}
}
}
fn visit_ty(&mut self, t: &ast::Ty) {
if generated_code(t.span) {
return
}
match t.node {
ast::TyPath(_, ref path) => {
match self.lookup_type_ref(t.id) {
Some(id) => {
let sub_span = self.span.sub_span_for_type_name(t.span);
self.fmt.ref_str(recorder::TypeRef, t.span, sub_span, id, self.cur_scope);
}
None => (),
}
self.write_sub_paths_truncated(path, false);
visit::walk_path(self, path);
}
_ => visit::walk_ty(self, t),
}
}
fn visit_expr(&mut self, ex: &ast::Expr) {
if generated_code(ex.span) {
return
}
match ex.node {
ast::ExprCall(ref _f, ref _args) => {
// Don't need to do anything for function calls,
// because just walking the callee path does what we want.
visit::walk_expr(self, ex);
}
ast::ExprPath(_, ref path) => {
self.process_path(ex.id, path, None);
visit::walk_expr(self, ex);
}
ast::ExprStruct(ref path, ref fields, ref base) => {
let hir_expr = lower_expr(self.save_ctxt.lcx, ex);
let adt = self.tcx.expr_ty(&hir_expr).ty_adt_def().unwrap();
let def = self.tcx.resolve_expr(&hir_expr);
self.process_struct_lit(ex, path, fields, adt.variant_of_def(def), base)
}
ast::ExprMethodCall(_, _, ref args) => self.process_method_call(ex, args),
ast::ExprField(ref sub_ex, _) => {
if generated_code(sub_ex.span) {
return
}
self.visit_expr(&sub_ex);
if let Some(field_data) = self.save_ctxt.get_expr_data(ex) {
down_cast_data!(field_data, VariableRefData, self, ex.span);
self.fmt.ref_str(recorder::VarRef,
ex.span,
Some(field_data.span),
field_data.ref_id,
field_data.scope);
}
}
ast::ExprTupField(ref sub_ex, idx) => {
if generated_code(sub_ex.span) {
return
}
self.visit_expr(&**sub_ex);
let hir_node = lower_expr(self.save_ctxt.lcx, sub_ex);
let ty = &self.tcx.expr_ty_adjusted(&hir_node).sty;
match *ty {
ty::TyStruct(def, _) => {
let sub_span = self.span.sub_span_after_token(ex.span, token::Dot);
self.fmt.ref_str(recorder::VarRef,
ex.span,
sub_span,
def.struct_variant().fields[idx.node].did,
self.cur_scope);
}
ty::TyTuple(_) => {}
_ => self.sess.span_bug(ex.span,
&format!("Expected struct or tuple type, found {:?}",
ty)),
}
}
ast::ExprClosure(_, ref decl, ref body) => {
if generated_code(body.span) {
return
}
let mut id = String::from("$");
id.push_str(&ex.id.to_string());
self.process_formals(&decl.inputs, &id);
// walk arg and return types
for arg in &decl.inputs {
self.visit_ty(&*arg.ty);
}
if let ast::Return(ref ret_ty) = decl.output {
self.visit_ty(&**ret_ty);
}
// walk the body
self.nest(ex.id, |v| v.visit_block(&**body));
}
ast::ExprForLoop(ref pattern, ref subexpression, ref block, _) |
ast::ExprWhileLet(ref pattern, ref subexpression, ref block, _) => {
let value = self.span.snippet(mk_sp(ex.span.lo, subexpression.span.hi));
self.process_var_decl(pattern, value);
visit::walk_expr(self, subexpression);
visit::walk_block(self, block);
}
ast::ExprIfLet(ref pattern, ref subexpression, ref block, ref opt_else) => {
let value = self.span.snippet(mk_sp(ex.span.lo, subexpression.span.hi));
self.process_var_decl(pattern, value);
visit::walk_expr(self, subexpression);
visit::walk_block(self, block);
opt_else.as_ref().map(|el| visit::walk_expr(self, el));
}
_ => {
visit::walk_expr(self, ex)
}
}
}
fn visit_mac(&mut self, _: &ast::Mac) {
// Just stop, macros are poison to us.
}
fn visit_pat(&mut self, p: &ast::Pat) {
self.process_pat(p);
}
fn visit_arm(&mut self, arm: &ast::Arm) {
let mut collector = PathCollector::new();
for pattern in &arm.pats {
// collect paths from the arm's patterns
collector.visit_pat(&pattern);
self.visit_pat(&pattern);
}
// This is to get around borrow checking, because we need mut self to call process_path.
let mut paths_to_process = vec![];
// process collected paths
for &(id, ref p, immut, ref_kind) in &collector.collected_paths {
let def_map = self.tcx.def_map.borrow();
if !def_map.contains_key(&id) {
self.sess.span_bug(p.span,
&format!("def_map has no key for {} in visit_arm", id));
}
let def = def_map.get(&id).unwrap().full_def();
match def {
def::DefLocal(_, id) => {
let value = if immut == ast::MutImmutable {
self.span.snippet(p.span).to_string()
} else {
"<mutable>".to_string()
};
assert!(p.segments.len() == 1,
"qualified path for local variable def in arm");
self.fmt.variable_str(p.span, Some(p.span), id, &path_to_string(p), &value, "")
}
def::DefVariant(..) | def::DefTy(..) | def::DefStruct(..) => {
paths_to_process.push((id, p.clone(), Some(ref_kind)))
}
// FIXME(nrc) what are these doing here?
def::DefStatic(_, _) |
def::DefConst(..) |
def::DefAssociatedConst(..) => {}
_ => error!("unexpected definition kind when processing collected paths: {:?}",
def),
}
}
for &(id, ref path, ref_kind) in &paths_to_process {
self.process_path(id, path, ref_kind);
}
walk_list!(self, visit_expr, &arm.guard);
self.visit_expr(&arm.body);
}
fn visit_stmt(&mut self, s: &ast::Stmt) {
if generated_code(s.span) {
return
}
visit::walk_stmt(self, s)
}
fn visit_local(&mut self, l: &ast::Local) {
if generated_code(l.span) {
return
}
let value = self.span.snippet(l.span);
self.process_var_decl(&l.pat, value);
// Just walk the initialiser and type (don't want to walk the pattern again).
walk_list!(self, visit_ty, &l.ty);
walk_list!(self, visit_expr, &l.init);
}
}