blob: 8d1f07f916c9b2cf41ba5cb956bafb871a116301 [file] [log] [blame]
use std::ffi::{OsStr, OsString};
use std::fmt::Write;
use std::str::FromStr;
use std::time::{Duration, SystemTime};
use chrono::{DateTime, Datelike, Offset, Timelike, Utc};
use chrono_tz::Tz;
use crate::concurrency::thread::MachineCallback;
use crate::*;
/// Returns the time elapsed between the provided time and the unix epoch as a `Duration`.
pub fn system_time_to_duration<'tcx>(time: &SystemTime) -> InterpResult<'tcx, Duration> {
time.duration_since(SystemTime::UNIX_EPOCH)
.map_err(|_| err_unsup_format!("times before the Unix epoch are not supported").into())
}
impl<'mir, 'tcx: 'mir> EvalContextExt<'mir, 'tcx> for crate::MiriInterpCx<'mir, 'tcx> {}
pub trait EvalContextExt<'mir, 'tcx: 'mir>: crate::MiriInterpCxExt<'mir, 'tcx> {
fn clock_gettime(
&mut self,
clk_id_op: &OpTy<'tcx, Provenance>,
tp_op: &OpTy<'tcx, Provenance>,
) -> InterpResult<'tcx, Scalar<Provenance>> {
// This clock support is deliberately minimal because a lot of clock types have fiddly
// properties (is it possible for Miri to be suspended independently of the host?). If you
// have a use for another clock type, please open an issue.
let this = self.eval_context_mut();
this.assert_target_os_is_unix("clock_gettime");
let clk_id = this.read_scalar(clk_id_op)?.to_i32()?;
let tp = this.deref_pointer_as(tp_op, this.libc_ty_layout("timespec"))?;
let absolute_clocks;
let mut relative_clocks;
match this.tcx.sess.target.os.as_ref() {
"linux" | "freebsd" => {
// Linux and FreeBSD have two main kinds of clocks. REALTIME clocks return the actual time since the
// Unix epoch, including effects which may cause time to move backwards such as NTP.
// Linux further distinguishes regular and "coarse" clocks, but the "coarse" version
// is just specified to be "faster and less precise", so we implement both the same way.
absolute_clocks = vec![
this.eval_libc_i32("CLOCK_REALTIME"),
this.eval_libc_i32("CLOCK_REALTIME_COARSE"),
];
// The second kind is MONOTONIC clocks for which 0 is an arbitrary time point, but they are
// never allowed to go backwards. We don't need to do any additional monotonicity
// enforcement because std::time::Instant already guarantees that it is monotonic.
relative_clocks = vec![
this.eval_libc_i32("CLOCK_MONOTONIC"),
this.eval_libc_i32("CLOCK_MONOTONIC_COARSE"),
];
}
"macos" => {
absolute_clocks = vec![this.eval_libc_i32("CLOCK_REALTIME")];
relative_clocks = vec![this.eval_libc_i32("CLOCK_MONOTONIC")];
// `CLOCK_UPTIME_RAW` supposed to not increment while the system is asleep... but
// that's not really something a program running inside Miri can tell, anyway.
// We need to support it because std uses it.
relative_clocks.push(this.eval_libc_i32("CLOCK_UPTIME_RAW"));
}
target => throw_unsup_format!("`clock_gettime` is not supported on target OS {target}"),
}
let duration = if absolute_clocks.contains(&clk_id) {
this.check_no_isolation("`clock_gettime` with `REALTIME` clocks")?;
system_time_to_duration(&SystemTime::now())?
} else if relative_clocks.contains(&clk_id) {
this.machine.clock.now().duration_since(this.machine.clock.anchor())
} else {
let einval = this.eval_libc("EINVAL");
this.set_last_error(einval)?;
return Ok(Scalar::from_i32(-1));
};
let tv_sec = duration.as_secs();
let tv_nsec = duration.subsec_nanos();
this.write_int_fields(&[tv_sec.into(), tv_nsec.into()], &tp)?;
Ok(Scalar::from_i32(0))
}
fn gettimeofday(
&mut self,
tv_op: &OpTy<'tcx, Provenance>,
tz_op: &OpTy<'tcx, Provenance>,
) -> InterpResult<'tcx, i32> {
let this = self.eval_context_mut();
this.assert_target_os_is_unix("gettimeofday");
this.check_no_isolation("`gettimeofday`")?;
let tv = this.deref_pointer_as(tv_op, this.libc_ty_layout("timeval"))?;
// Using tz is obsolete and should always be null
let tz = this.read_pointer(tz_op)?;
if !this.ptr_is_null(tz)? {
let einval = this.eval_libc("EINVAL");
this.set_last_error(einval)?;
return Ok(-1);
}
let duration = system_time_to_duration(&SystemTime::now())?;
let tv_sec = duration.as_secs();
let tv_usec = duration.subsec_micros();
this.write_int_fields(&[tv_sec.into(), tv_usec.into()], &tv)?;
Ok(0)
}
// The localtime() function shall convert the time in seconds since the Epoch pointed to by
// timer into a broken-down time, expressed as a local time.
// https://linux.die.net/man/3/localtime_r
fn localtime_r(
&mut self,
timep: &OpTy<'tcx, Provenance>,
result_op: &OpTy<'tcx, Provenance>,
) -> InterpResult<'tcx, Pointer<Option<Provenance>>> {
let this = self.eval_context_mut();
this.assert_target_os_is_unix("localtime_r");
this.check_no_isolation("`localtime_r`")?;
let timep = this.deref_pointer(timep)?;
let result = this.deref_pointer_as(result_op, this.libc_ty_layout("tm"))?;
// The input "represents the number of seconds elapsed since the Epoch,
// 1970-01-01 00:00:00 +0000 (UTC)".
let sec_since_epoch: i64 = this
.read_scalar(&timep)?
.to_int(this.libc_ty_layout("time_t").size)?
.try_into()
.unwrap();
let dt_utc: DateTime<Utc> =
DateTime::from_timestamp(sec_since_epoch, 0).expect("Invalid timestamp");
// Figure out what time zone is in use
let tz = this.get_env_var(OsStr::new("TZ"))?.unwrap_or_else(|| OsString::from("UTC"));
let tz = match tz.into_string() {
Ok(tz) => Tz::from_str(&tz).unwrap_or(Tz::UTC),
_ => Tz::UTC,
};
// Convert that to local time, then return the broken-down time value.
let dt: DateTime<Tz> = dt_utc.with_timezone(&tz);
// This value is always set to -1, because there is no way to know if dst is in effect with
// chrono crate yet.
// This may not be consistent with libc::localtime_r's result.
let tm_isdst = -1;
// tm_zone represents the timezone value in the form of: +0730, +08, -0730 or -08.
// This may not be consistent with libc::localtime_r's result.
let offset_in_seconds = dt.offset().fix().local_minus_utc();
let tm_gmtoff = offset_in_seconds;
let mut tm_zone = String::new();
if offset_in_seconds < 0 {
tm_zone.push('-');
} else {
tm_zone.push('+');
}
let offset_hour = offset_in_seconds.abs() / 3600;
write!(tm_zone, "{:02}", offset_hour).unwrap();
let offset_min = (offset_in_seconds.abs() % 3600) / 60;
if offset_min != 0 {
write!(tm_zone, "{:02}", offset_min).unwrap();
}
// FIXME: String de-duplication is needed so that we only allocate this string only once
// even when there are multiple calls to this function.
let tm_zone_ptr =
this.alloc_os_str_as_c_str(&OsString::from(tm_zone), MiriMemoryKind::Machine.into())?;
this.write_pointer(tm_zone_ptr, &this.project_field_named(&result, "tm_zone")?)?;
this.write_int_fields_named(
&[
("tm_sec", dt.second().into()),
("tm_min", dt.minute().into()),
("tm_hour", dt.hour().into()),
("tm_mday", dt.day().into()),
("tm_mon", dt.month0().into()),
("tm_year", dt.year().checked_sub(1900).unwrap().into()),
("tm_wday", dt.weekday().num_days_from_sunday().into()),
("tm_yday", dt.ordinal0().into()),
("tm_isdst", tm_isdst),
("tm_gmtoff", tm_gmtoff.into()),
],
&result,
)?;
Ok(result.ptr())
}
#[allow(non_snake_case, clippy::arithmetic_side_effects)]
fn GetSystemTimeAsFileTime(
&mut self,
shim_name: &str,
LPFILETIME_op: &OpTy<'tcx, Provenance>,
) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
this.assert_target_os("windows", shim_name);
this.check_no_isolation(shim_name)?;
let filetime = this.deref_pointer_as(LPFILETIME_op, this.windows_ty_layout("FILETIME"))?;
let NANOS_PER_SEC = this.eval_windows_u64("time", "NANOS_PER_SEC");
let INTERVALS_PER_SEC = this.eval_windows_u64("time", "INTERVALS_PER_SEC");
let INTERVALS_TO_UNIX_EPOCH = this.eval_windows_u64("time", "INTERVALS_TO_UNIX_EPOCH");
let NANOS_PER_INTERVAL = NANOS_PER_SEC / INTERVALS_PER_SEC;
let SECONDS_TO_UNIX_EPOCH = INTERVALS_TO_UNIX_EPOCH / INTERVALS_PER_SEC;
let duration = system_time_to_duration(&SystemTime::now())?
+ Duration::from_secs(SECONDS_TO_UNIX_EPOCH);
let duration_ticks = u64::try_from(duration.as_nanos() / u128::from(NANOS_PER_INTERVAL))
.map_err(|_| err_unsup_format!("programs running more than 2^64 Windows ticks after the Windows epoch are not supported"))?;
let dwLowDateTime = u32::try_from(duration_ticks & 0x00000000FFFFFFFF).unwrap();
let dwHighDateTime = u32::try_from((duration_ticks & 0xFFFFFFFF00000000) >> 32).unwrap();
this.write_int_fields(&[dwLowDateTime.into(), dwHighDateTime.into()], &filetime)?;
Ok(())
}
#[allow(non_snake_case)]
fn QueryPerformanceCounter(
&mut self,
lpPerformanceCount_op: &OpTy<'tcx, Provenance>,
) -> InterpResult<'tcx, Scalar<Provenance>> {
let this = self.eval_context_mut();
this.assert_target_os("windows", "QueryPerformanceCounter");
// QueryPerformanceCounter uses a hardware counter as its basis.
// Miri will emulate a counter with a resolution of 1 nanosecond.
let duration = this.machine.clock.now().duration_since(this.machine.clock.anchor());
let qpc = i64::try_from(duration.as_nanos()).map_err(|_| {
err_unsup_format!("programs running longer than 2^63 nanoseconds are not supported")
})?;
this.write_scalar(Scalar::from_i64(qpc), &this.deref_pointer(lpPerformanceCount_op)?)?;
Ok(Scalar::from_i32(-1)) // return non-zero on success
}
#[allow(non_snake_case)]
fn QueryPerformanceFrequency(
&mut self,
lpFrequency_op: &OpTy<'tcx, Provenance>,
) -> InterpResult<'tcx, Scalar<Provenance>> {
let this = self.eval_context_mut();
this.assert_target_os("windows", "QueryPerformanceFrequency");
// Retrieves the frequency of the hardware performance counter.
// The frequency of the performance counter is fixed at system boot and
// is consistent across all processors.
// Miri emulates a "hardware" performance counter with a resolution of 1ns,
// and thus 10^9 counts per second.
this.write_scalar(
Scalar::from_i64(1_000_000_000),
&this.deref_pointer_as(lpFrequency_op, this.machine.layouts.u64)?,
)?;
Ok(Scalar::from_i32(-1)) // Return non-zero on success
}
fn mach_absolute_time(&self) -> InterpResult<'tcx, Scalar<Provenance>> {
let this = self.eval_context_ref();
this.assert_target_os("macos", "mach_absolute_time");
// This returns a u64, with time units determined dynamically by `mach_timebase_info`.
// We return plain nanoseconds.
let duration = this.machine.clock.now().duration_since(this.machine.clock.anchor());
let res = u64::try_from(duration.as_nanos()).map_err(|_| {
err_unsup_format!("programs running longer than 2^64 nanoseconds are not supported")
})?;
Ok(Scalar::from_u64(res))
}
fn mach_timebase_info(
&mut self,
info_op: &OpTy<'tcx, Provenance>,
) -> InterpResult<'tcx, Scalar<Provenance>> {
let this = self.eval_context_mut();
this.assert_target_os("macos", "mach_timebase_info");
let info = this.deref_pointer_as(info_op, this.libc_ty_layout("mach_timebase_info"))?;
// Since our emulated ticks in `mach_absolute_time` *are* nanoseconds,
// no scaling needs to happen.
let (numer, denom) = (1, 1);
this.write_int_fields(&[numer.into(), denom.into()], &info)?;
Ok(Scalar::from_i32(0)) // KERN_SUCCESS
}
fn nanosleep(
&mut self,
req_op: &OpTy<'tcx, Provenance>,
_rem: &OpTy<'tcx, Provenance>, // Signal handlers are not supported, so rem will never be written to.
) -> InterpResult<'tcx, i32> {
let this = self.eval_context_mut();
this.assert_target_os_is_unix("nanosleep");
let req = this.deref_pointer_as(req_op, this.libc_ty_layout("timespec"))?;
let duration = match this.read_timespec(&req)? {
Some(duration) => duration,
None => {
let einval = this.eval_libc("EINVAL");
this.set_last_error(einval)?;
return Ok(-1);
}
};
// If adding the duration overflows, let's just sleep for an hour. Waking up early is always acceptable.
let now = this.machine.clock.now();
let timeout_time = now
.checked_add(duration)
.unwrap_or_else(|| now.checked_add(Duration::from_secs(3600)).unwrap());
let active_thread = this.get_active_thread();
this.block_thread(active_thread, BlockReason::Sleep);
this.register_timeout_callback(
active_thread,
CallbackTime::Monotonic(timeout_time),
Box::new(UnblockCallback { thread_to_unblock: active_thread }),
);
Ok(0)
}
#[allow(non_snake_case)]
fn Sleep(&mut self, timeout: &OpTy<'tcx, Provenance>) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
this.assert_target_os("windows", "Sleep");
let timeout_ms = this.read_scalar(timeout)?.to_u32()?;
let duration = Duration::from_millis(timeout_ms.into());
let timeout_time = this.machine.clock.now().checked_add(duration).unwrap();
let active_thread = this.get_active_thread();
this.block_thread(active_thread, BlockReason::Sleep);
this.register_timeout_callback(
active_thread,
CallbackTime::Monotonic(timeout_time),
Box::new(UnblockCallback { thread_to_unblock: active_thread }),
);
Ok(())
}
}
struct UnblockCallback {
thread_to_unblock: ThreadId,
}
impl VisitProvenance for UnblockCallback {
fn visit_provenance(&self, _visit: &mut VisitWith<'_>) {}
}
impl<'mir, 'tcx: 'mir> MachineCallback<'mir, 'tcx> for UnblockCallback {
fn call(&self, ecx: &mut MiriInterpCx<'mir, 'tcx>) -> InterpResult<'tcx> {
ecx.unblock_thread(self.thread_to_unblock, BlockReason::Sleep);
Ok(())
}
}