blob: 1bee159489dc7f4114c16269e95e3d80a770eda1 [file] [log] [blame]
use crate::stable_hasher::impl_stable_traits_for_trivial_type;
use crate::stable_hasher::{Hash64, StableHasher, StableHasherResult};
use rustc_serialize::{Decodable, Decoder, Encodable, Encoder};
use std::hash::{Hash, Hasher};
#[cfg(test)]
mod tests;
#[derive(Eq, PartialEq, Ord, PartialOrd, Debug, Clone, Copy)]
#[repr(C)]
pub struct Fingerprint(u64, u64);
pub trait FingerprintComponent {
fn as_u64(&self) -> u64;
}
impl FingerprintComponent for Hash64 {
#[inline]
fn as_u64(&self) -> u64 {
Hash64::as_u64(*self)
}
}
impl FingerprintComponent for u64 {
#[inline]
fn as_u64(&self) -> u64 {
*self
}
}
impl Fingerprint {
pub const ZERO: Fingerprint = Fingerprint(0, 0);
#[inline]
pub fn new<A, B>(_0: A, _1: B) -> Fingerprint
where
A: FingerprintComponent,
B: FingerprintComponent,
{
Fingerprint(_0.as_u64(), _1.as_u64())
}
#[inline]
pub fn to_smaller_hash(&self) -> Hash64 {
// Even though both halves of the fingerprint are expected to be good
// quality hash values, let's still combine the two values because the
// Fingerprints in DefPathHash have the StableCrateId portion which is
// the same for all DefPathHashes from the same crate. Combining the
// two halves makes sure we get a good quality hash in such cases too.
Hash64::new(self.0.wrapping_mul(3).wrapping_add(self.1))
}
#[inline]
pub fn split(&self) -> (Hash64, Hash64) {
(Hash64::new(self.0), Hash64::new(self.1))
}
#[inline]
pub fn combine(self, other: Fingerprint) -> Fingerprint {
// See https://stackoverflow.com/a/27952689 on why this function is
// implemented this way.
Fingerprint(
self.0.wrapping_mul(3).wrapping_add(other.0),
self.1.wrapping_mul(3).wrapping_add(other.1),
)
}
#[inline]
pub(crate) fn as_u128(self) -> u128 {
u128::from(self.1) << 64 | u128::from(self.0)
}
// Combines two hashes in an order independent way. Make sure this is what
// you want.
#[inline]
pub fn combine_commutative(self, other: Fingerprint) -> Fingerprint {
let a = u128::from(self.1) << 64 | u128::from(self.0);
let b = u128::from(other.1) << 64 | u128::from(other.0);
let c = a.wrapping_add(b);
Fingerprint(c as u64, (c >> 64) as u64)
}
pub fn to_hex(&self) -> String {
format!("{:x}{:x}", self.0, self.1)
}
#[inline]
pub fn to_le_bytes(&self) -> [u8; 16] {
// This seems to optimize to the same machine code as
// `unsafe { mem::transmute(*k) }`. Well done, LLVM! :)
let mut result = [0u8; 16];
let first_half: &mut [u8; 8] = (&mut result[0..8]).try_into().unwrap();
*first_half = self.0.to_le_bytes();
let second_half: &mut [u8; 8] = (&mut result[8..16]).try_into().unwrap();
*second_half = self.1.to_le_bytes();
result
}
#[inline]
pub fn from_le_bytes(bytes: [u8; 16]) -> Fingerprint {
Fingerprint(
u64::from_le_bytes(bytes[0..8].try_into().unwrap()),
u64::from_le_bytes(bytes[8..16].try_into().unwrap()),
)
}
}
impl std::fmt::Display for Fingerprint {
fn fmt(&self, formatter: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(formatter, "{:x}-{:x}", self.0, self.1)
}
}
impl Hash for Fingerprint {
#[inline]
fn hash<H: Hasher>(&self, state: &mut H) {
state.write_fingerprint(self);
}
}
trait FingerprintHasher {
fn write_fingerprint(&mut self, fingerprint: &Fingerprint);
}
impl<H: Hasher> FingerprintHasher for H {
#[inline]
default fn write_fingerprint(&mut self, fingerprint: &Fingerprint) {
self.write_u64(fingerprint.0);
self.write_u64(fingerprint.1);
}
}
impl FingerprintHasher for crate::unhash::Unhasher {
#[inline]
fn write_fingerprint(&mut self, fingerprint: &Fingerprint) {
// Even though both halves of the fingerprint are expected to be good
// quality hash values, let's still combine the two values because the
// Fingerprints in DefPathHash have the StableCrateId portion which is
// the same for all DefPathHashes from the same crate. Combining the
// two halves makes sure we get a good quality hash in such cases too.
//
// Since `Unhasher` is used only in the context of HashMaps, it is OK
// to combine the two components in an order-independent way (which is
// cheaper than the more robust Fingerprint::to_smaller_hash()). For
// HashMaps we don't really care if Fingerprint(x,y) and
// Fingerprint(y, x) result in the same hash value. Collision
// probability will still be much better than with FxHash.
self.write_u64(fingerprint.0.wrapping_add(fingerprint.1));
}
}
impl StableHasherResult for Fingerprint {
#[inline]
fn finish(hasher: StableHasher) -> Self {
let (_0, _1) = hasher.finalize();
Fingerprint(_0, _1)
}
}
impl_stable_traits_for_trivial_type!(Fingerprint);
impl<E: Encoder> Encodable<E> for Fingerprint {
#[inline]
fn encode(&self, s: &mut E) {
s.emit_raw_bytes(&self.to_le_bytes());
}
}
impl<D: Decoder> Decodable<D> for Fingerprint {
#[inline]
fn decode(d: &mut D) -> Self {
Fingerprint::from_le_bytes(d.read_raw_bytes(16).try_into().unwrap())
}
}
// `PackedFingerprint` wraps a `Fingerprint`. Its purpose is to, on certain
// architectures, behave like a `Fingerprint` without alignment requirements.
// This behavior is only enabled on x86 and x86_64, where the impact of
// unaligned accesses is tolerable in small doses.
//
// This may be preferable to use in large collections of structs containing
// fingerprints, as it can reduce memory consumption by preventing the padding
// that the more strictly-aligned `Fingerprint` can introduce. An application of
// this is in the query dependency graph, which contains a large collection of
// `DepNode`s. As of this writing, the size of a `DepNode` decreases by ~30%
// (from 24 bytes to 17) by using the packed representation here, which
// noticeably decreases total memory usage when compiling large crates.
//
// The wrapped `Fingerprint` is private to reduce the chance of a client
// invoking undefined behavior by taking a reference to the packed field.
#[cfg_attr(any(target_arch = "x86", target_arch = "x86_64"), repr(packed))]
#[derive(Eq, PartialEq, Ord, PartialOrd, Debug, Clone, Copy, Hash)]
pub struct PackedFingerprint(Fingerprint);
impl std::fmt::Display for PackedFingerprint {
#[inline]
fn fmt(&self, formatter: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
// Copy to avoid taking reference to packed field.
let copy = self.0;
copy.fmt(formatter)
}
}
impl<E: Encoder> Encodable<E> for PackedFingerprint {
#[inline]
fn encode(&self, s: &mut E) {
// Copy to avoid taking reference to packed field.
let copy = self.0;
copy.encode(s);
}
}
impl<D: Decoder> Decodable<D> for PackedFingerprint {
#[inline]
fn decode(d: &mut D) -> Self {
Self(Fingerprint::decode(d))
}
}
impl From<Fingerprint> for PackedFingerprint {
#[inline]
fn from(f: Fingerprint) -> PackedFingerprint {
PackedFingerprint(f)
}
}
impl From<PackedFingerprint> for Fingerprint {
#[inline]
fn from(f: PackedFingerprint) -> Fingerprint {
f.0
}
}