blob: 9f5dec4447fba73d6f4ca0b5052d2f40ae9e46e8 [file] [log] [blame]
//@ revisions: aarch64 x86-64
//@ [aarch64] compile-flags: -Ctarget-feature=+neon,+fp16,+fhm --target=aarch64-unknown-linux-gnu
//@ [aarch64] needs-llvm-components: aarch64
//@ [x86-64] compile-flags: -Ctarget-feature=+sse4.2,+rdrand --target=x86_64-unknown-linux-gnu
//@ [x86-64] needs-llvm-components: x86
//@ build-pass
#![no_core]
#![crate_type = "rlib"]
#![feature(intrinsics, rustc_attrs, no_core, lang_items, staged_api)]
#![stable(feature = "test", since = "1.0.0")]
// Supporting minimal rust core code
#[lang = "sized"]
trait Sized {}
#[lang = "copy"]
trait Copy {}
impl Copy for bool {}
extern "rust-intrinsic" {
#[rustc_const_stable(feature = "test", since = "1.0.0")]
fn unreachable() -> !;
}
#[rustc_builtin_macro]
macro_rules! cfg {
($($cfg:tt)*) => {};
}
// Test code
const fn do_or_die(cond: bool) {
if cond {
} else {
unsafe { unreachable() }
}
}
macro_rules! assert {
($x:expr $(,)?) => {
const _: () = do_or_die($x);
};
}
#[cfg(target_arch = "aarch64")]
fn check_aarch64() {
// These checks that the rustc feature name is used, not the LLVM feature.
assert!(cfg!(target_feature = "neon"));
// #[expect(unexpected_cfgs)] except that 32-bit arm actually use fp-armv8
{ assert!(cfg!(not(target_feature = "fp-armv8"))); }
assert!(cfg!(target_feature = "fhm"));
#[expect(unexpected_cfgs)]
{ assert!(cfg!(not(target_feature = "fp16fml"))); }
assert!(cfg!(target_feature = "fp16"));
#[expect(unexpected_cfgs)]
{ assert!(cfg!(not(target_feature = "fullfp16"))); }
}
#[cfg(target_arch = "x86_64")]
fn check_x86_64() {
// This checks that the rustc feature name is used, not the LLVM feature.
assert!(cfg!(target_feature = "rdrand"));
#[expect(unexpected_cfgs)]
{ assert!(cfg!(not(target_feature = "rdrnd"))); }
// Likewise: We enable LLVM's crc32 feature with SSE4.2, but Rust says it's just SSE4.2
assert!(cfg!(target_feature = "sse4.2"));
#[expect(unexpected_cfgs)]
{ assert!(cfg!(not(target_feature = "crc32"))); }
}