| use std::borrow::Borrow; |
| use std::collections::hash_map::Entry; |
| use std::fs::File; |
| use std::io::{Read, Seek, Write}; |
| use std::path::{Path, PathBuf}; |
| |
| use rustc_ast::Attribute; |
| use rustc_data_structures::fx::{FxIndexMap, FxIndexSet}; |
| use rustc_data_structures::memmap::{Mmap, MmapMut}; |
| use rustc_data_structures::sync::{join, par_for_each_in, Lrc}; |
| use rustc_data_structures::temp_dir::MaybeTempDir; |
| use rustc_hir as hir; |
| use rustc_hir::def_id::{LocalDefId, LocalDefIdSet, CRATE_DEF_ID, CRATE_DEF_INDEX, LOCAL_CRATE}; |
| use rustc_hir::definitions::DefPathData; |
| use rustc_hir_pretty::id_to_string; |
| use rustc_middle::middle::dependency_format::Linkage; |
| use rustc_middle::middle::exported_symbols::metadata_symbol_name; |
| use rustc_middle::mir::interpret; |
| use rustc_middle::query::Providers; |
| use rustc_middle::traits::specialization_graph; |
| use rustc_middle::ty::codec::TyEncoder; |
| use rustc_middle::ty::fast_reject::{self, TreatParams}; |
| use rustc_middle::ty::{AssocItemContainer, SymbolName}; |
| use rustc_middle::util::common::to_readable_str; |
| use rustc_middle::{bug, span_bug}; |
| use rustc_serialize::{opaque, Decodable, Decoder, Encodable, Encoder}; |
| use rustc_session::config::{CrateType, OptLevel}; |
| use rustc_span::hygiene::HygieneEncodeContext; |
| use rustc_span::symbol::sym; |
| use rustc_span::{ |
| ExternalSource, FileName, SourceFile, SpanData, SpanEncoder, StableSourceFileId, SyntaxContext, |
| }; |
| use tracing::{debug, instrument, trace}; |
| |
| use crate::errors::{FailCreateFileEncoder, FailWriteFile}; |
| use crate::rmeta::*; |
| |
| pub(super) struct EncodeContext<'a, 'tcx> { |
| opaque: opaque::FileEncoder, |
| tcx: TyCtxt<'tcx>, |
| feat: &'tcx rustc_feature::Features, |
| tables: TableBuilders, |
| |
| lazy_state: LazyState, |
| span_shorthands: FxHashMap<Span, usize>, |
| type_shorthands: FxHashMap<Ty<'tcx>, usize>, |
| predicate_shorthands: FxHashMap<ty::PredicateKind<'tcx>, usize>, |
| |
| interpret_allocs: FxIndexSet<interpret::AllocId>, |
| |
| // This is used to speed up Span encoding. |
| // The `usize` is an index into the `MonotonicVec` |
| // that stores the `SourceFile` |
| source_file_cache: (Lrc<SourceFile>, usize), |
| // The indices (into the `SourceMap`'s `MonotonicVec`) |
| // of all of the `SourceFiles` that we need to serialize. |
| // When we serialize a `Span`, we insert the index of its |
| // `SourceFile` into the `FxIndexSet`. |
| // The order inside the `FxIndexSet` is used as on-disk |
| // order of `SourceFiles`, and encoded inside `Span`s. |
| required_source_files: Option<FxIndexSet<usize>>, |
| is_proc_macro: bool, |
| hygiene_ctxt: &'a HygieneEncodeContext, |
| symbol_table: FxHashMap<Symbol, usize>, |
| } |
| |
| /// If the current crate is a proc-macro, returns early with `LazyArray::default()`. |
| /// This is useful for skipping the encoding of things that aren't needed |
| /// for proc-macro crates. |
| macro_rules! empty_proc_macro { |
| ($self:ident) => { |
| if $self.is_proc_macro { |
| return LazyArray::default(); |
| } |
| }; |
| } |
| |
| macro_rules! encoder_methods { |
| ($($name:ident($ty:ty);)*) => { |
| $(fn $name(&mut self, value: $ty) { |
| self.opaque.$name(value) |
| })* |
| } |
| } |
| |
| impl<'a, 'tcx> Encoder for EncodeContext<'a, 'tcx> { |
| encoder_methods! { |
| emit_usize(usize); |
| emit_u128(u128); |
| emit_u64(u64); |
| emit_u32(u32); |
| emit_u16(u16); |
| emit_u8(u8); |
| |
| emit_isize(isize); |
| emit_i128(i128); |
| emit_i64(i64); |
| emit_i32(i32); |
| emit_i16(i16); |
| |
| emit_raw_bytes(&[u8]); |
| } |
| } |
| |
| impl<'a, 'tcx, T> Encodable<EncodeContext<'a, 'tcx>> for LazyValue<T> { |
| fn encode(&self, e: &mut EncodeContext<'a, 'tcx>) { |
| e.emit_lazy_distance(self.position); |
| } |
| } |
| |
| impl<'a, 'tcx, T> Encodable<EncodeContext<'a, 'tcx>> for LazyArray<T> { |
| fn encode(&self, e: &mut EncodeContext<'a, 'tcx>) { |
| e.emit_usize(self.num_elems); |
| if self.num_elems > 0 { |
| e.emit_lazy_distance(self.position) |
| } |
| } |
| } |
| |
| impl<'a, 'tcx, I, T> Encodable<EncodeContext<'a, 'tcx>> for LazyTable<I, T> { |
| fn encode(&self, e: &mut EncodeContext<'a, 'tcx>) { |
| e.emit_usize(self.width); |
| e.emit_usize(self.len); |
| e.emit_lazy_distance(self.position); |
| } |
| } |
| |
| impl<'a, 'tcx> Encodable<EncodeContext<'a, 'tcx>> for ExpnIndex { |
| fn encode(&self, s: &mut EncodeContext<'a, 'tcx>) { |
| s.emit_u32(self.as_u32()); |
| } |
| } |
| |
| impl<'a, 'tcx> SpanEncoder for EncodeContext<'a, 'tcx> { |
| fn encode_crate_num(&mut self, crate_num: CrateNum) { |
| if crate_num != LOCAL_CRATE && self.is_proc_macro { |
| panic!("Attempted to encode non-local CrateNum {crate_num:?} for proc-macro crate"); |
| } |
| self.emit_u32(crate_num.as_u32()); |
| } |
| |
| fn encode_def_index(&mut self, def_index: DefIndex) { |
| self.emit_u32(def_index.as_u32()); |
| } |
| |
| fn encode_def_id(&mut self, def_id: DefId) { |
| def_id.krate.encode(self); |
| def_id.index.encode(self); |
| } |
| |
| fn encode_syntax_context(&mut self, syntax_context: SyntaxContext) { |
| rustc_span::hygiene::raw_encode_syntax_context(syntax_context, self.hygiene_ctxt, self); |
| } |
| |
| fn encode_expn_id(&mut self, expn_id: ExpnId) { |
| if expn_id.krate == LOCAL_CRATE { |
| // We will only write details for local expansions. Non-local expansions will fetch |
| // data from the corresponding crate's metadata. |
| // FIXME(#43047) FIXME(#74731) We may eventually want to avoid relying on external |
| // metadata from proc-macro crates. |
| self.hygiene_ctxt.schedule_expn_data_for_encoding(expn_id); |
| } |
| expn_id.krate.encode(self); |
| expn_id.local_id.encode(self); |
| } |
| |
| fn encode_span(&mut self, span: Span) { |
| match self.span_shorthands.entry(span) { |
| Entry::Occupied(o) => { |
| // If an offset is smaller than the absolute position, we encode with the offset. |
| // This saves space since smaller numbers encode in less bits. |
| let last_location = *o.get(); |
| // This cannot underflow. Metadata is written with increasing position(), so any |
| // previously saved offset must be smaller than the current position. |
| let offset = self.opaque.position() - last_location; |
| if offset < last_location { |
| let needed = bytes_needed(offset); |
| SpanTag::indirect(true, needed as u8).encode(self); |
| self.opaque.write_with(|dest| { |
| *dest = offset.to_le_bytes(); |
| needed |
| }); |
| } else { |
| let needed = bytes_needed(last_location); |
| SpanTag::indirect(false, needed as u8).encode(self); |
| self.opaque.write_with(|dest| { |
| *dest = last_location.to_le_bytes(); |
| needed |
| }); |
| } |
| } |
| Entry::Vacant(v) => { |
| let position = self.opaque.position(); |
| v.insert(position); |
| // Data is encoded with a SpanTag prefix (see below). |
| span.data().encode(self); |
| } |
| } |
| } |
| |
| fn encode_symbol(&mut self, symbol: Symbol) { |
| // if symbol preinterned, emit tag and symbol index |
| if symbol.is_preinterned() { |
| self.opaque.emit_u8(SYMBOL_PREINTERNED); |
| self.opaque.emit_u32(symbol.as_u32()); |
| } else { |
| // otherwise write it as string or as offset to it |
| match self.symbol_table.entry(symbol) { |
| Entry::Vacant(o) => { |
| self.opaque.emit_u8(SYMBOL_STR); |
| let pos = self.opaque.position(); |
| o.insert(pos); |
| self.emit_str(symbol.as_str()); |
| } |
| Entry::Occupied(o) => { |
| let x = *o.get(); |
| self.emit_u8(SYMBOL_OFFSET); |
| self.emit_usize(x); |
| } |
| } |
| } |
| } |
| } |
| |
| fn bytes_needed(n: usize) -> usize { |
| (usize::BITS - n.leading_zeros()).div_ceil(u8::BITS) as usize |
| } |
| |
| impl<'a, 'tcx> Encodable<EncodeContext<'a, 'tcx>> for SpanData { |
| fn encode(&self, s: &mut EncodeContext<'a, 'tcx>) { |
| // Don't serialize any `SyntaxContext`s from a proc-macro crate, |
| // since we don't load proc-macro dependencies during serialization. |
| // This means that any hygiene information from macros used *within* |
| // a proc-macro crate (e.g. invoking a macro that expands to a proc-macro |
| // definition) will be lost. |
| // |
| // This can show up in two ways: |
| // |
| // 1. Any hygiene information associated with identifier of |
| // a proc macro (e.g. `#[proc_macro] pub fn $name`) will be lost. |
| // Since proc-macros can only be invoked from a different crate, |
| // real code should never need to care about this. |
| // |
| // 2. Using `Span::def_site` or `Span::mixed_site` will not |
| // include any hygiene information associated with the definition |
| // site. This means that a proc-macro cannot emit a `$crate` |
| // identifier which resolves to one of its dependencies, |
| // which also should never come up in practice. |
| // |
| // Additionally, this affects `Span::parent`, and any other |
| // span inspection APIs that would otherwise allow traversing |
| // the `SyntaxContexts` associated with a span. |
| // |
| // None of these user-visible effects should result in any |
| // cross-crate inconsistencies (getting one behavior in the same |
| // crate, and a different behavior in another crate) due to the |
| // limited surface that proc-macros can expose. |
| // |
| // IMPORTANT: If this is ever changed, be sure to update |
| // `rustc_span::hygiene::raw_encode_expn_id` to handle |
| // encoding `ExpnData` for proc-macro crates. |
| let ctxt = if s.is_proc_macro { SyntaxContext::root() } else { self.ctxt }; |
| |
| if self.is_dummy() { |
| let tag = SpanTag::new(SpanKind::Partial, ctxt, 0); |
| tag.encode(s); |
| if tag.context().is_none() { |
| ctxt.encode(s); |
| } |
| return; |
| } |
| |
| // The Span infrastructure should make sure that this invariant holds: |
| debug_assert!(self.lo <= self.hi); |
| |
| if !s.source_file_cache.0.contains(self.lo) { |
| let source_map = s.tcx.sess.source_map(); |
| let source_file_index = source_map.lookup_source_file_idx(self.lo); |
| s.source_file_cache = |
| (source_map.files()[source_file_index].clone(), source_file_index); |
| } |
| let (ref source_file, source_file_index) = s.source_file_cache; |
| debug_assert!(source_file.contains(self.lo)); |
| |
| if !source_file.contains(self.hi) { |
| // Unfortunately, macro expansion still sometimes generates Spans |
| // that malformed in this way. |
| let tag = SpanTag::new(SpanKind::Partial, ctxt, 0); |
| tag.encode(s); |
| if tag.context().is_none() { |
| ctxt.encode(s); |
| } |
| return; |
| } |
| |
| // There are two possible cases here: |
| // 1. This span comes from a 'foreign' crate - e.g. some crate upstream of the |
| // crate we are writing metadata for. When the metadata for *this* crate gets |
| // deserialized, the deserializer will need to know which crate it originally came |
| // from. We use `TAG_VALID_SPAN_FOREIGN` to indicate that a `CrateNum` should |
| // be deserialized after the rest of the span data, which tells the deserializer |
| // which crate contains the source map information. |
| // 2. This span comes from our own crate. No special handling is needed - we just |
| // write `TAG_VALID_SPAN_LOCAL` to let the deserializer know that it should use |
| // our own source map information. |
| // |
| // If we're a proc-macro crate, we always treat this as a local `Span`. |
| // In `encode_source_map`, we serialize foreign `SourceFile`s into our metadata |
| // if we're a proc-macro crate. |
| // This allows us to avoid loading the dependencies of proc-macro crates: all of |
| // the information we need to decode `Span`s is stored in the proc-macro crate. |
| let (kind, metadata_index) = if source_file.is_imported() && !s.is_proc_macro { |
| // To simplify deserialization, we 'rebase' this span onto the crate it originally came |
| // from (the crate that 'owns' the file it references. These rebased 'lo' and 'hi' |
| // values are relative to the source map information for the 'foreign' crate whose |
| // CrateNum we write into the metadata. This allows `imported_source_files` to binary |
| // search through the 'foreign' crate's source map information, using the |
| // deserialized 'lo' and 'hi' values directly. |
| // |
| // All of this logic ensures that the final result of deserialization is a 'normal' |
| // Span that can be used without any additional trouble. |
| let metadata_index = { |
| // Introduce a new scope so that we drop the 'read()' temporary |
| match &*source_file.external_src.read() { |
| ExternalSource::Foreign { metadata_index, .. } => *metadata_index, |
| src => panic!("Unexpected external source {src:?}"), |
| } |
| }; |
| |
| (SpanKind::Foreign, metadata_index) |
| } else { |
| // Record the fact that we need to encode the data for this `SourceFile` |
| let source_files = |
| s.required_source_files.as_mut().expect("Already encoded SourceMap!"); |
| let (metadata_index, _) = source_files.insert_full(source_file_index); |
| let metadata_index: u32 = |
| metadata_index.try_into().expect("cannot export more than U32_MAX files"); |
| |
| (SpanKind::Local, metadata_index) |
| }; |
| |
| // Encode the start position relative to the file start, so we profit more from the |
| // variable-length integer encoding. |
| let lo = self.lo - source_file.start_pos; |
| |
| // Encode length which is usually less than span.hi and profits more |
| // from the variable-length integer encoding that we use. |
| let len = self.hi - self.lo; |
| |
| let tag = SpanTag::new(kind, ctxt, len.0 as usize); |
| tag.encode(s); |
| if tag.context().is_none() { |
| ctxt.encode(s); |
| } |
| lo.encode(s); |
| if tag.length().is_none() { |
| len.encode(s); |
| } |
| |
| // Encode the index of the `SourceFile` for the span, in order to make decoding faster. |
| metadata_index.encode(s); |
| |
| if kind == SpanKind::Foreign { |
| // This needs to be two lines to avoid holding the `s.source_file_cache` |
| // while calling `cnum.encode(s)` |
| let cnum = s.source_file_cache.0.cnum; |
| cnum.encode(s); |
| } |
| } |
| } |
| |
| impl<'a, 'tcx> Encodable<EncodeContext<'a, 'tcx>> for [u8] { |
| fn encode(&self, e: &mut EncodeContext<'a, 'tcx>) { |
| Encoder::emit_usize(e, self.len()); |
| e.emit_raw_bytes(self); |
| } |
| } |
| |
| impl<'a, 'tcx> TyEncoder for EncodeContext<'a, 'tcx> { |
| const CLEAR_CROSS_CRATE: bool = true; |
| |
| type I = TyCtxt<'tcx>; |
| |
| fn position(&self) -> usize { |
| self.opaque.position() |
| } |
| |
| fn type_shorthands(&mut self) -> &mut FxHashMap<Ty<'tcx>, usize> { |
| &mut self.type_shorthands |
| } |
| |
| fn predicate_shorthands(&mut self) -> &mut FxHashMap<ty::PredicateKind<'tcx>, usize> { |
| &mut self.predicate_shorthands |
| } |
| |
| fn encode_alloc_id(&mut self, alloc_id: &rustc_middle::mir::interpret::AllocId) { |
| let (index, _) = self.interpret_allocs.insert_full(*alloc_id); |
| |
| index.encode(self); |
| } |
| } |
| |
| // Shorthand for `$self.$tables.$table.set_some($def_id.index, $self.lazy($value))`, which would |
| // normally need extra variables to avoid errors about multiple mutable borrows. |
| macro_rules! record { |
| ($self:ident.$tables:ident.$table:ident[$def_id:expr] <- $value:expr) => {{ |
| { |
| let value = $value; |
| let lazy = $self.lazy(value); |
| $self.$tables.$table.set_some($def_id.index, lazy); |
| } |
| }}; |
| } |
| |
| // Shorthand for `$self.$tables.$table.set_some($def_id.index, $self.lazy_array($value))`, which would |
| // normally need extra variables to avoid errors about multiple mutable borrows. |
| macro_rules! record_array { |
| ($self:ident.$tables:ident.$table:ident[$def_id:expr] <- $value:expr) => {{ |
| { |
| let value = $value; |
| let lazy = $self.lazy_array(value); |
| $self.$tables.$table.set_some($def_id.index, lazy); |
| } |
| }}; |
| } |
| |
| macro_rules! record_defaulted_array { |
| ($self:ident.$tables:ident.$table:ident[$def_id:expr] <- $value:expr) => {{ |
| { |
| let value = $value; |
| let lazy = $self.lazy_array(value); |
| $self.$tables.$table.set($def_id.index, lazy); |
| } |
| }}; |
| } |
| |
| impl<'a, 'tcx> EncodeContext<'a, 'tcx> { |
| fn emit_lazy_distance(&mut self, position: NonZero<usize>) { |
| let pos = position.get(); |
| let distance = match self.lazy_state { |
| LazyState::NoNode => bug!("emit_lazy_distance: outside of a metadata node"), |
| LazyState::NodeStart(start) => { |
| let start = start.get(); |
| assert!(pos <= start); |
| start - pos |
| } |
| LazyState::Previous(last_pos) => { |
| assert!( |
| last_pos <= position, |
| "make sure that the calls to `lazy*` \ |
| are in the same order as the metadata fields", |
| ); |
| position.get() - last_pos.get() |
| } |
| }; |
| self.lazy_state = LazyState::Previous(NonZero::new(pos).unwrap()); |
| self.emit_usize(distance); |
| } |
| |
| fn lazy<T: ParameterizedOverTcx, B: Borrow<T::Value<'tcx>>>(&mut self, value: B) -> LazyValue<T> |
| where |
| T::Value<'tcx>: Encodable<EncodeContext<'a, 'tcx>>, |
| { |
| let pos = NonZero::new(self.position()).unwrap(); |
| |
| assert_eq!(self.lazy_state, LazyState::NoNode); |
| self.lazy_state = LazyState::NodeStart(pos); |
| value.borrow().encode(self); |
| self.lazy_state = LazyState::NoNode; |
| |
| assert!(pos.get() <= self.position()); |
| |
| LazyValue::from_position(pos) |
| } |
| |
| fn lazy_array<T: ParameterizedOverTcx, I: IntoIterator<Item = B>, B: Borrow<T::Value<'tcx>>>( |
| &mut self, |
| values: I, |
| ) -> LazyArray<T> |
| where |
| T::Value<'tcx>: Encodable<EncodeContext<'a, 'tcx>>, |
| { |
| let pos = NonZero::new(self.position()).unwrap(); |
| |
| assert_eq!(self.lazy_state, LazyState::NoNode); |
| self.lazy_state = LazyState::NodeStart(pos); |
| let len = values.into_iter().map(|value| value.borrow().encode(self)).count(); |
| self.lazy_state = LazyState::NoNode; |
| |
| assert!(pos.get() <= self.position()); |
| |
| LazyArray::from_position_and_num_elems(pos, len) |
| } |
| |
| fn encode_def_path_table(&mut self) { |
| let table = self.tcx.def_path_table(); |
| if self.is_proc_macro { |
| for def_index in std::iter::once(CRATE_DEF_INDEX) |
| .chain(self.tcx.resolutions(()).proc_macros.iter().map(|p| p.local_def_index)) |
| { |
| let def_key = self.lazy(table.def_key(def_index)); |
| let def_path_hash = table.def_path_hash(def_index); |
| self.tables.def_keys.set_some(def_index, def_key); |
| self.tables.def_path_hashes.set(def_index, def_path_hash.local_hash().as_u64()); |
| } |
| } else { |
| for (def_index, def_key, def_path_hash) in table.enumerated_keys_and_path_hashes() { |
| let def_key = self.lazy(def_key); |
| self.tables.def_keys.set_some(def_index, def_key); |
| self.tables.def_path_hashes.set(def_index, def_path_hash.local_hash().as_u64()); |
| } |
| } |
| } |
| |
| fn encode_def_path_hash_map(&mut self) -> LazyValue<DefPathHashMapRef<'static>> { |
| self.lazy(DefPathHashMapRef::BorrowedFromTcx(self.tcx.def_path_hash_to_def_index_map())) |
| } |
| |
| fn encode_source_map(&mut self) -> LazyTable<u32, Option<LazyValue<rustc_span::SourceFile>>> { |
| let source_map = self.tcx.sess.source_map(); |
| let all_source_files = source_map.files(); |
| |
| // By replacing the `Option` with `None`, we ensure that we can't |
| // accidentally serialize any more `Span`s after the source map encoding |
| // is done. |
| let required_source_files = self.required_source_files.take().unwrap(); |
| |
| let working_directory = &self.tcx.sess.opts.working_dir; |
| |
| let mut adapted = TableBuilder::default(); |
| |
| let local_crate_stable_id = self.tcx.stable_crate_id(LOCAL_CRATE); |
| |
| // Only serialize `SourceFile`s that were used during the encoding of a `Span`. |
| // |
| // The order in which we encode source files is important here: the on-disk format for |
| // `Span` contains the index of the corresponding `SourceFile`. |
| for (on_disk_index, &source_file_index) in required_source_files.iter().enumerate() { |
| let source_file = &all_source_files[source_file_index]; |
| // Don't serialize imported `SourceFile`s, unless we're in a proc-macro crate. |
| assert!(!source_file.is_imported() || self.is_proc_macro); |
| |
| // At export time we expand all source file paths to absolute paths because |
| // downstream compilation sessions can have a different compiler working |
| // directory, so relative paths from this or any other upstream crate |
| // won't be valid anymore. |
| // |
| // At this point we also erase the actual on-disk path and only keep |
| // the remapped version -- as is necessary for reproducible builds. |
| let mut adapted_source_file = (**source_file).clone(); |
| |
| match source_file.name { |
| FileName::Real(ref original_file_name) => { |
| // FIXME: This should probably to conditionally remapped under |
| // a RemapPathScopeComponents but which one? |
| let adapted_file_name = source_map |
| .path_mapping() |
| .to_embeddable_absolute_path(original_file_name.clone(), working_directory); |
| |
| adapted_source_file.name = FileName::Real(adapted_file_name); |
| } |
| _ => { |
| // expanded code, not from a file |
| } |
| }; |
| |
| // We're serializing this `SourceFile` into our crate metadata, |
| // so mark it as coming from this crate. |
| // This also ensures that we don't try to deserialize the |
| // `CrateNum` for a proc-macro dependency - since proc macro |
| // dependencies aren't loaded when we deserialize a proc-macro, |
| // trying to remap the `CrateNum` would fail. |
| if self.is_proc_macro { |
| adapted_source_file.cnum = LOCAL_CRATE; |
| } |
| |
| // Update the `StableSourceFileId` to make sure it incorporates the |
| // id of the current crate. This way it will be unique within the |
| // crate graph during downstream compilation sessions. |
| adapted_source_file.stable_id = StableSourceFileId::from_filename_for_export( |
| &adapted_source_file.name, |
| local_crate_stable_id, |
| ); |
| |
| let on_disk_index: u32 = |
| on_disk_index.try_into().expect("cannot export more than U32_MAX files"); |
| adapted.set_some(on_disk_index, self.lazy(adapted_source_file)); |
| } |
| |
| adapted.encode(&mut self.opaque) |
| } |
| |
| fn encode_crate_root(&mut self) -> LazyValue<CrateRoot> { |
| let tcx = self.tcx; |
| let mut stats: Vec<(&'static str, usize)> = Vec::with_capacity(32); |
| |
| macro_rules! stat { |
| ($label:literal, $f:expr) => {{ |
| let orig_pos = self.position(); |
| let res = $f(); |
| stats.push(($label, self.position() - orig_pos)); |
| res |
| }}; |
| } |
| |
| // We have already encoded some things. Get their combined size from the current position. |
| stats.push(("preamble", self.position())); |
| |
| let (crate_deps, dylib_dependency_formats) = |
| stat!("dep", || (self.encode_crate_deps(), self.encode_dylib_dependency_formats())); |
| |
| let lib_features = stat!("lib-features", || self.encode_lib_features()); |
| |
| let stability_implications = |
| stat!("stability-implications", || self.encode_stability_implications()); |
| |
| let (lang_items, lang_items_missing) = stat!("lang-items", || { |
| (self.encode_lang_items(), self.encode_lang_items_missing()) |
| }); |
| |
| let stripped_cfg_items = stat!("stripped-cfg-items", || self.encode_stripped_cfg_items()); |
| |
| let diagnostic_items = stat!("diagnostic-items", || self.encode_diagnostic_items()); |
| |
| let native_libraries = stat!("native-libs", || self.encode_native_libraries()); |
| |
| let foreign_modules = stat!("foreign-modules", || self.encode_foreign_modules()); |
| |
| _ = stat!("def-path-table", || self.encode_def_path_table()); |
| |
| // Encode the def IDs of traits, for rustdoc and diagnostics. |
| let traits = stat!("traits", || self.encode_traits()); |
| |
| // Encode the def IDs of impls, for coherence checking. |
| let impls = stat!("impls", || self.encode_impls()); |
| |
| let incoherent_impls = stat!("incoherent-impls", || self.encode_incoherent_impls()); |
| |
| _ = stat!("mir", || self.encode_mir()); |
| |
| _ = stat!("def-ids", || self.encode_def_ids()); |
| |
| let interpret_alloc_index = stat!("interpret-alloc-index", || { |
| let mut interpret_alloc_index = Vec::new(); |
| let mut n = 0; |
| trace!("beginning to encode alloc ids"); |
| loop { |
| let new_n = self.interpret_allocs.len(); |
| // if we have found new ids, serialize those, too |
| if n == new_n { |
| // otherwise, abort |
| break; |
| } |
| trace!("encoding {} further alloc ids", new_n - n); |
| for idx in n..new_n { |
| let id = self.interpret_allocs[idx]; |
| let pos = self.position() as u64; |
| interpret_alloc_index.push(pos); |
| interpret::specialized_encode_alloc_id(self, tcx, id); |
| } |
| n = new_n; |
| } |
| self.lazy_array(interpret_alloc_index) |
| }); |
| |
| // Encode the proc macro data. This affects `tables`, so we need to do this before we |
| // encode the tables. This overwrites def_keys, so it must happen after |
| // encode_def_path_table. |
| let proc_macro_data = stat!("proc-macro-data", || self.encode_proc_macros()); |
| |
| let tables = stat!("tables", || self.tables.encode(&mut self.opaque)); |
| |
| let debugger_visualizers = |
| stat!("debugger-visualizers", || self.encode_debugger_visualizers()); |
| |
| // Encode exported symbols info. This is prefetched in `encode_metadata`. |
| let exported_symbols = stat!("exported-symbols", || { |
| self.encode_exported_symbols(tcx.exported_symbols(LOCAL_CRATE)) |
| }); |
| |
| // Encode the hygiene data. |
| // IMPORTANT: this *must* be the last thing that we encode (other than `SourceMap`). The |
| // process of encoding other items (e.g. `optimized_mir`) may cause us to load data from |
| // the incremental cache. If this causes us to deserialize a `Span`, then we may load |
| // additional `SyntaxContext`s into the global `HygieneData`. Therefore, we need to encode |
| // the hygiene data last to ensure that we encode any `SyntaxContext`s that might be used. |
| let (syntax_contexts, expn_data, expn_hashes) = stat!("hygiene", || self.encode_hygiene()); |
| |
| let def_path_hash_map = stat!("def-path-hash-map", || self.encode_def_path_hash_map()); |
| |
| // Encode source_map. This needs to be done last, because encoding `Span`s tells us which |
| // `SourceFiles` we actually need to encode. |
| let source_map = stat!("source-map", || self.encode_source_map()); |
| |
| let root = stat!("final", || { |
| let attrs = tcx.hir().krate_attrs(); |
| self.lazy(CrateRoot { |
| header: CrateHeader { |
| name: tcx.crate_name(LOCAL_CRATE), |
| triple: tcx.sess.opts.target_triple.clone(), |
| hash: tcx.crate_hash(LOCAL_CRATE), |
| is_proc_macro_crate: proc_macro_data.is_some(), |
| }, |
| extra_filename: tcx.sess.opts.cg.extra_filename.clone(), |
| stable_crate_id: tcx.def_path_hash(LOCAL_CRATE.as_def_id()).stable_crate_id(), |
| required_panic_strategy: tcx.required_panic_strategy(LOCAL_CRATE), |
| panic_in_drop_strategy: tcx.sess.opts.unstable_opts.panic_in_drop, |
| edition: tcx.sess.edition(), |
| has_global_allocator: tcx.has_global_allocator(LOCAL_CRATE), |
| has_alloc_error_handler: tcx.has_alloc_error_handler(LOCAL_CRATE), |
| has_panic_handler: tcx.has_panic_handler(LOCAL_CRATE), |
| has_default_lib_allocator: attr::contains_name(attrs, sym::default_lib_allocator), |
| proc_macro_data, |
| debugger_visualizers, |
| compiler_builtins: attr::contains_name(attrs, sym::compiler_builtins), |
| needs_allocator: attr::contains_name(attrs, sym::needs_allocator), |
| needs_panic_runtime: attr::contains_name(attrs, sym::needs_panic_runtime), |
| no_builtins: attr::contains_name(attrs, sym::no_builtins), |
| panic_runtime: attr::contains_name(attrs, sym::panic_runtime), |
| profiler_runtime: attr::contains_name(attrs, sym::profiler_runtime), |
| symbol_mangling_version: tcx.sess.opts.get_symbol_mangling_version(), |
| |
| crate_deps, |
| dylib_dependency_formats, |
| lib_features, |
| stability_implications, |
| lang_items, |
| diagnostic_items, |
| lang_items_missing, |
| stripped_cfg_items, |
| native_libraries, |
| foreign_modules, |
| source_map, |
| traits, |
| impls, |
| incoherent_impls, |
| exported_symbols, |
| interpret_alloc_index, |
| tables, |
| syntax_contexts, |
| expn_data, |
| expn_hashes, |
| def_path_hash_map, |
| specialization_enabled_in: tcx.specialization_enabled_in(LOCAL_CRATE), |
| }) |
| }); |
| |
| let total_bytes = self.position(); |
| |
| let computed_total_bytes: usize = stats.iter().map(|(_, size)| size).sum(); |
| assert_eq!(total_bytes, computed_total_bytes); |
| |
| if tcx.sess.opts.unstable_opts.meta_stats { |
| self.opaque.flush(); |
| |
| // Rewind and re-read all the metadata to count the zero bytes we wrote. |
| let pos_before_rewind = self.opaque.file().stream_position().unwrap(); |
| let mut zero_bytes = 0; |
| self.opaque.file().rewind().unwrap(); |
| let file = std::io::BufReader::new(self.opaque.file()); |
| for e in file.bytes() { |
| if e.unwrap() == 0 { |
| zero_bytes += 1; |
| } |
| } |
| assert_eq!(self.opaque.file().stream_position().unwrap(), pos_before_rewind); |
| |
| stats.sort_by_key(|&(_, usize)| usize); |
| |
| let prefix = "meta-stats"; |
| let perc = |bytes| (bytes * 100) as f64 / total_bytes as f64; |
| |
| eprintln!("{prefix} METADATA STATS"); |
| eprintln!("{} {:<23}{:>10}", prefix, "Section", "Size"); |
| eprintln!("{prefix} ----------------------------------------------------------------"); |
| for (label, size) in stats { |
| eprintln!( |
| "{} {:<23}{:>10} ({:4.1}%)", |
| prefix, |
| label, |
| to_readable_str(size), |
| perc(size) |
| ); |
| } |
| eprintln!("{prefix} ----------------------------------------------------------------"); |
| eprintln!( |
| "{} {:<23}{:>10} (of which {:.1}% are zero bytes)", |
| prefix, |
| "Total", |
| to_readable_str(total_bytes), |
| perc(zero_bytes) |
| ); |
| eprintln!("{prefix}"); |
| } |
| |
| root |
| } |
| } |
| |
| struct AnalyzeAttrState { |
| is_exported: bool, |
| is_doc_hidden: bool, |
| } |
| |
| /// Returns whether an attribute needs to be recorded in metadata, that is, if it's usable and |
| /// useful in downstream crates. Local-only attributes are an obvious example, but some |
| /// rustdoc-specific attributes can equally be of use while documenting the current crate only. |
| /// |
| /// Removing these superfluous attributes speeds up compilation by making the metadata smaller. |
| /// |
| /// Note: the `is_exported` parameter is used to cache whether the given `DefId` has a public |
| /// visibility: this is a piece of data that can be computed once per defid, and not once per |
| /// attribute. Some attributes would only be usable downstream if they are public. |
| #[inline] |
| fn analyze_attr(attr: &Attribute, state: &mut AnalyzeAttrState) -> bool { |
| let mut should_encode = false; |
| if !rustc_feature::encode_cross_crate(attr.name_or_empty()) { |
| // Attributes not marked encode-cross-crate don't need to be encoded for downstream crates. |
| } else if attr.doc_str().is_some() { |
| // We keep all doc comments reachable to rustdoc because they might be "imported" into |
| // downstream crates if they use `#[doc(inline)]` to copy an item's documentation into |
| // their own. |
| if state.is_exported { |
| should_encode = true; |
| } |
| } else if attr.has_name(sym::doc) { |
| // If this is a `doc` attribute that doesn't have anything except maybe `inline` (as in |
| // `#[doc(inline)]`), then we can remove it. It won't be inlinable in downstream crates. |
| if let Some(item_list) = attr.meta_item_list() { |
| for item in item_list { |
| if !item.has_name(sym::inline) { |
| should_encode = true; |
| if item.has_name(sym::hidden) { |
| state.is_doc_hidden = true; |
| break; |
| } |
| } |
| } |
| } |
| } else { |
| should_encode = true; |
| } |
| should_encode |
| } |
| |
| fn should_encode_span(def_kind: DefKind) -> bool { |
| match def_kind { |
| DefKind::Mod |
| | DefKind::Struct |
| | DefKind::Union |
| | DefKind::Enum |
| | DefKind::Variant |
| | DefKind::Trait |
| | DefKind::TyAlias |
| | DefKind::ForeignTy |
| | DefKind::TraitAlias |
| | DefKind::AssocTy |
| | DefKind::TyParam |
| | DefKind::ConstParam |
| | DefKind::LifetimeParam |
| | DefKind::Fn |
| | DefKind::Const |
| | DefKind::Static { .. } |
| | DefKind::Ctor(..) |
| | DefKind::AssocFn |
| | DefKind::AssocConst |
| | DefKind::Macro(_) |
| | DefKind::ExternCrate |
| | DefKind::Use |
| | DefKind::AnonConst |
| | DefKind::InlineConst |
| | DefKind::OpaqueTy |
| | DefKind::Field |
| | DefKind::Impl { .. } |
| | DefKind::Closure |
| | DefKind::SyntheticCoroutineBody => true, |
| DefKind::ForeignMod | DefKind::GlobalAsm => false, |
| } |
| } |
| |
| fn should_encode_attrs(def_kind: DefKind) -> bool { |
| match def_kind { |
| DefKind::Mod |
| | DefKind::Struct |
| | DefKind::Union |
| | DefKind::Enum |
| | DefKind::Variant |
| | DefKind::Trait |
| | DefKind::TyAlias |
| | DefKind::ForeignTy |
| | DefKind::TraitAlias |
| | DefKind::AssocTy |
| | DefKind::Fn |
| | DefKind::Const |
| | DefKind::Static { nested: false, .. } |
| | DefKind::AssocFn |
| | DefKind::AssocConst |
| | DefKind::Macro(_) |
| | DefKind::Field |
| | DefKind::Impl { .. } => true, |
| // Tools may want to be able to detect their tool lints on |
| // closures from upstream crates, too. This is used by |
| // https://github.com/model-checking/kani and is not a performance |
| // or maintenance issue for us. |
| DefKind::Closure => true, |
| DefKind::SyntheticCoroutineBody => false, |
| DefKind::TyParam |
| | DefKind::ConstParam |
| | DefKind::Ctor(..) |
| | DefKind::ExternCrate |
| | DefKind::Use |
| | DefKind::ForeignMod |
| | DefKind::AnonConst |
| | DefKind::InlineConst |
| | DefKind::OpaqueTy |
| | DefKind::LifetimeParam |
| | DefKind::Static { nested: true, .. } |
| | DefKind::GlobalAsm => false, |
| } |
| } |
| |
| fn should_encode_expn_that_defined(def_kind: DefKind) -> bool { |
| match def_kind { |
| DefKind::Mod |
| | DefKind::Struct |
| | DefKind::Union |
| | DefKind::Enum |
| | DefKind::Variant |
| | DefKind::Trait |
| | DefKind::Impl { .. } => true, |
| DefKind::TyAlias |
| | DefKind::ForeignTy |
| | DefKind::TraitAlias |
| | DefKind::AssocTy |
| | DefKind::TyParam |
| | DefKind::Fn |
| | DefKind::Const |
| | DefKind::ConstParam |
| | DefKind::Static { .. } |
| | DefKind::Ctor(..) |
| | DefKind::AssocFn |
| | DefKind::AssocConst |
| | DefKind::Macro(_) |
| | DefKind::ExternCrate |
| | DefKind::Use |
| | DefKind::ForeignMod |
| | DefKind::AnonConst |
| | DefKind::InlineConst |
| | DefKind::OpaqueTy |
| | DefKind::Field |
| | DefKind::LifetimeParam |
| | DefKind::GlobalAsm |
| | DefKind::Closure |
| | DefKind::SyntheticCoroutineBody => false, |
| } |
| } |
| |
| fn should_encode_visibility(def_kind: DefKind) -> bool { |
| match def_kind { |
| DefKind::Mod |
| | DefKind::Struct |
| | DefKind::Union |
| | DefKind::Enum |
| | DefKind::Variant |
| | DefKind::Trait |
| | DefKind::TyAlias |
| | DefKind::ForeignTy |
| | DefKind::TraitAlias |
| | DefKind::AssocTy |
| | DefKind::Fn |
| | DefKind::Const |
| | DefKind::Static { nested: false, .. } |
| | DefKind::Ctor(..) |
| | DefKind::AssocFn |
| | DefKind::AssocConst |
| | DefKind::Macro(..) |
| | DefKind::Field => true, |
| DefKind::Use |
| | DefKind::ForeignMod |
| | DefKind::TyParam |
| | DefKind::ConstParam |
| | DefKind::LifetimeParam |
| | DefKind::AnonConst |
| | DefKind::InlineConst |
| | DefKind::Static { nested: true, .. } |
| | DefKind::OpaqueTy |
| | DefKind::GlobalAsm |
| | DefKind::Impl { .. } |
| | DefKind::Closure |
| | DefKind::ExternCrate |
| | DefKind::SyntheticCoroutineBody => false, |
| } |
| } |
| |
| fn should_encode_stability(def_kind: DefKind) -> bool { |
| match def_kind { |
| DefKind::Mod |
| | DefKind::Ctor(..) |
| | DefKind::Variant |
| | DefKind::Field |
| | DefKind::Struct |
| | DefKind::AssocTy |
| | DefKind::AssocFn |
| | DefKind::AssocConst |
| | DefKind::TyParam |
| | DefKind::ConstParam |
| | DefKind::Static { .. } |
| | DefKind::Const |
| | DefKind::Fn |
| | DefKind::ForeignMod |
| | DefKind::TyAlias |
| | DefKind::OpaqueTy |
| | DefKind::Enum |
| | DefKind::Union |
| | DefKind::Impl { .. } |
| | DefKind::Trait |
| | DefKind::TraitAlias |
| | DefKind::Macro(..) |
| | DefKind::ForeignTy => true, |
| DefKind::Use |
| | DefKind::LifetimeParam |
| | DefKind::AnonConst |
| | DefKind::InlineConst |
| | DefKind::GlobalAsm |
| | DefKind::Closure |
| | DefKind::ExternCrate |
| | DefKind::SyntheticCoroutineBody => false, |
| } |
| } |
| |
| /// Whether we should encode MIR. Return a pair, resp. for CTFE and for LLVM. |
| /// |
| /// Computing, optimizing and encoding the MIR is a relatively expensive operation. |
| /// We want to avoid this work when not required. Therefore: |
| /// - we only compute `mir_for_ctfe` on items with const-eval semantics; |
| /// - we skip `optimized_mir` for check runs. |
| /// - we only encode `optimized_mir` that could be generated in other crates, that is, a code that |
| /// is either generic or has inline hint, and is reachable from the other crates (contained |
| /// in reachable set). |
| /// |
| /// Note: Reachable set describes definitions that might be generated or referenced from other |
| /// crates and it can be used to limit optimized MIR that needs to be encoded. On the other hand, |
| /// the reachable set doesn't have much to say about which definitions might be evaluated at compile |
| /// time in other crates, so it cannot be used to omit CTFE MIR. For example, `f` below is |
| /// unreachable and yet it can be evaluated in other crates: |
| /// |
| /// ``` |
| /// const fn f() -> usize { 0 } |
| /// pub struct S { pub a: [usize; f()] } |
| /// ``` |
| fn should_encode_mir( |
| tcx: TyCtxt<'_>, |
| reachable_set: &LocalDefIdSet, |
| def_id: LocalDefId, |
| ) -> (bool, bool) { |
| match tcx.def_kind(def_id) { |
| // Constructors |
| DefKind::Ctor(_, _) => { |
| let mir_opt_base = tcx.sess.opts.output_types.should_codegen() |
| || tcx.sess.opts.unstable_opts.always_encode_mir; |
| (true, mir_opt_base) |
| } |
| // Constants |
| DefKind::AnonConst | DefKind::InlineConst | DefKind::AssocConst | DefKind::Const => { |
| (true, false) |
| } |
| // Coroutines require optimized MIR to compute layout. |
| DefKind::Closure if tcx.is_coroutine(def_id.to_def_id()) => (false, true), |
| DefKind::SyntheticCoroutineBody => (false, true), |
| // Full-fledged functions + closures |
| DefKind::AssocFn | DefKind::Fn | DefKind::Closure => { |
| let generics = tcx.generics_of(def_id); |
| let opt = tcx.sess.opts.unstable_opts.always_encode_mir |
| || (tcx.sess.opts.output_types.should_codegen() |
| && reachable_set.contains(&def_id) |
| && (generics.requires_monomorphization(tcx) |
| || tcx.cross_crate_inlinable(def_id))); |
| // The function has a `const` modifier or is in a `#[const_trait]`. |
| let is_const_fn = tcx.is_const_fn_raw(def_id.to_def_id()) |
| || tcx.is_const_default_method(def_id.to_def_id()); |
| (is_const_fn, opt) |
| } |
| // The others don't have MIR. |
| _ => (false, false), |
| } |
| } |
| |
| fn should_encode_variances<'tcx>(tcx: TyCtxt<'tcx>, def_id: DefId, def_kind: DefKind) -> bool { |
| match def_kind { |
| DefKind::Struct |
| | DefKind::Union |
| | DefKind::Enum |
| | DefKind::Variant |
| | DefKind::OpaqueTy |
| | DefKind::Fn |
| | DefKind::Ctor(..) |
| | DefKind::AssocFn => true, |
| DefKind::Mod |
| | DefKind::Field |
| | DefKind::AssocTy |
| | DefKind::AssocConst |
| | DefKind::TyParam |
| | DefKind::ConstParam |
| | DefKind::Static { .. } |
| | DefKind::Const |
| | DefKind::ForeignMod |
| | DefKind::Impl { .. } |
| | DefKind::Trait |
| | DefKind::TraitAlias |
| | DefKind::Macro(..) |
| | DefKind::ForeignTy |
| | DefKind::Use |
| | DefKind::LifetimeParam |
| | DefKind::AnonConst |
| | DefKind::InlineConst |
| | DefKind::GlobalAsm |
| | DefKind::Closure |
| | DefKind::ExternCrate |
| | DefKind::SyntheticCoroutineBody => false, |
| DefKind::TyAlias => tcx.type_alias_is_lazy(def_id), |
| } |
| } |
| |
| fn should_encode_generics(def_kind: DefKind) -> bool { |
| match def_kind { |
| DefKind::Struct |
| | DefKind::Union |
| | DefKind::Enum |
| | DefKind::Variant |
| | DefKind::Trait |
| | DefKind::TyAlias |
| | DefKind::ForeignTy |
| | DefKind::TraitAlias |
| | DefKind::AssocTy |
| | DefKind::Fn |
| | DefKind::Const |
| | DefKind::Static { .. } |
| | DefKind::Ctor(..) |
| | DefKind::AssocFn |
| | DefKind::AssocConst |
| | DefKind::AnonConst |
| | DefKind::InlineConst |
| | DefKind::OpaqueTy |
| | DefKind::Impl { .. } |
| | DefKind::Field |
| | DefKind::TyParam |
| | DefKind::Closure |
| | DefKind::SyntheticCoroutineBody => true, |
| DefKind::Mod |
| | DefKind::ForeignMod |
| | DefKind::ConstParam |
| | DefKind::Macro(..) |
| | DefKind::Use |
| | DefKind::LifetimeParam |
| | DefKind::GlobalAsm |
| | DefKind::ExternCrate => false, |
| } |
| } |
| |
| fn should_encode_type(tcx: TyCtxt<'_>, def_id: LocalDefId, def_kind: DefKind) -> bool { |
| match def_kind { |
| DefKind::Struct |
| | DefKind::Union |
| | DefKind::Enum |
| | DefKind::Variant |
| | DefKind::Ctor(..) |
| | DefKind::Field |
| | DefKind::Fn |
| | DefKind::Const |
| | DefKind::Static { nested: false, .. } |
| | DefKind::TyAlias |
| | DefKind::ForeignTy |
| | DefKind::Impl { .. } |
| | DefKind::AssocFn |
| | DefKind::AssocConst |
| | DefKind::Closure |
| | DefKind::ConstParam |
| | DefKind::AnonConst |
| | DefKind::InlineConst |
| | DefKind::SyntheticCoroutineBody => true, |
| |
| DefKind::OpaqueTy => { |
| let origin = tcx.opaque_type_origin(def_id); |
| if let hir::OpaqueTyOrigin::FnReturn(fn_def_id) |
| | hir::OpaqueTyOrigin::AsyncFn(fn_def_id) = origin |
| && let hir::Node::TraitItem(trait_item) = tcx.hir_node_by_def_id(fn_def_id) |
| && let (_, hir::TraitFn::Required(..)) = trait_item.expect_fn() |
| { |
| false |
| } else { |
| true |
| } |
| } |
| |
| DefKind::AssocTy => { |
| let assoc_item = tcx.associated_item(def_id); |
| match assoc_item.container { |
| ty::AssocItemContainer::ImplContainer => true, |
| ty::AssocItemContainer::TraitContainer => assoc_item.defaultness(tcx).has_value(), |
| } |
| } |
| DefKind::TyParam => { |
| let hir::Node::GenericParam(param) = tcx.hir_node_by_def_id(def_id) else { bug!() }; |
| let hir::GenericParamKind::Type { default, .. } = param.kind else { bug!() }; |
| default.is_some() |
| } |
| |
| DefKind::Trait |
| | DefKind::TraitAlias |
| | DefKind::Mod |
| | DefKind::ForeignMod |
| | DefKind::Macro(..) |
| | DefKind::Static { nested: true, .. } |
| | DefKind::Use |
| | DefKind::LifetimeParam |
| | DefKind::GlobalAsm |
| | DefKind::ExternCrate => false, |
| } |
| } |
| |
| fn should_encode_fn_sig(def_kind: DefKind) -> bool { |
| match def_kind { |
| DefKind::Fn | DefKind::AssocFn | DefKind::Ctor(_, CtorKind::Fn) => true, |
| |
| DefKind::Struct |
| | DefKind::Union |
| | DefKind::Enum |
| | DefKind::Variant |
| | DefKind::Field |
| | DefKind::Const |
| | DefKind::Static { .. } |
| | DefKind::Ctor(..) |
| | DefKind::TyAlias |
| | DefKind::OpaqueTy |
| | DefKind::ForeignTy |
| | DefKind::Impl { .. } |
| | DefKind::AssocConst |
| | DefKind::Closure |
| | DefKind::ConstParam |
| | DefKind::AnonConst |
| | DefKind::InlineConst |
| | DefKind::AssocTy |
| | DefKind::TyParam |
| | DefKind::Trait |
| | DefKind::TraitAlias |
| | DefKind::Mod |
| | DefKind::ForeignMod |
| | DefKind::Macro(..) |
| | DefKind::Use |
| | DefKind::LifetimeParam |
| | DefKind::GlobalAsm |
| | DefKind::ExternCrate |
| | DefKind::SyntheticCoroutineBody => false, |
| } |
| } |
| |
| fn should_encode_constness(def_kind: DefKind) -> bool { |
| match def_kind { |
| DefKind::Fn |
| | DefKind::AssocFn |
| | DefKind::Closure |
| | DefKind::Impl { of_trait: true } |
| | DefKind::Variant |
| | DefKind::Ctor(..) => true, |
| |
| DefKind::Struct |
| | DefKind::Union |
| | DefKind::Enum |
| | DefKind::Field |
| | DefKind::Const |
| | DefKind::AssocConst |
| | DefKind::AnonConst |
| | DefKind::Static { .. } |
| | DefKind::TyAlias |
| | DefKind::OpaqueTy |
| | DefKind::Impl { of_trait: false } |
| | DefKind::ForeignTy |
| | DefKind::ConstParam |
| | DefKind::InlineConst |
| | DefKind::AssocTy |
| | DefKind::TyParam |
| | DefKind::Trait |
| | DefKind::TraitAlias |
| | DefKind::Mod |
| | DefKind::ForeignMod |
| | DefKind::Macro(..) |
| | DefKind::Use |
| | DefKind::LifetimeParam |
| | DefKind::GlobalAsm |
| | DefKind::ExternCrate |
| | DefKind::SyntheticCoroutineBody => false, |
| } |
| } |
| |
| fn should_encode_const(def_kind: DefKind) -> bool { |
| match def_kind { |
| DefKind::Const | DefKind::AssocConst | DefKind::AnonConst | DefKind::InlineConst => true, |
| |
| DefKind::Struct |
| | DefKind::Union |
| | DefKind::Enum |
| | DefKind::Variant |
| | DefKind::Ctor(..) |
| | DefKind::Field |
| | DefKind::Fn |
| | DefKind::Static { .. } |
| | DefKind::TyAlias |
| | DefKind::OpaqueTy |
| | DefKind::ForeignTy |
| | DefKind::Impl { .. } |
| | DefKind::AssocFn |
| | DefKind::Closure |
| | DefKind::ConstParam |
| | DefKind::AssocTy |
| | DefKind::TyParam |
| | DefKind::Trait |
| | DefKind::TraitAlias |
| | DefKind::Mod |
| | DefKind::ForeignMod |
| | DefKind::Macro(..) |
| | DefKind::Use |
| | DefKind::LifetimeParam |
| | DefKind::GlobalAsm |
| | DefKind::ExternCrate |
| | DefKind::SyntheticCoroutineBody => false, |
| } |
| } |
| |
| fn should_encode_fn_impl_trait_in_trait<'tcx>(tcx: TyCtxt<'tcx>, def_id: DefId) -> bool { |
| if let Some(assoc_item) = tcx.opt_associated_item(def_id) |
| && assoc_item.container == ty::AssocItemContainer::TraitContainer |
| && assoc_item.kind == ty::AssocKind::Fn |
| { |
| true |
| } else { |
| false |
| } |
| } |
| |
| impl<'a, 'tcx> EncodeContext<'a, 'tcx> { |
| fn encode_attrs(&mut self, def_id: LocalDefId) { |
| let tcx = self.tcx; |
| let mut state = AnalyzeAttrState { |
| is_exported: tcx.effective_visibilities(()).is_exported(def_id), |
| is_doc_hidden: false, |
| }; |
| let attr_iter = tcx |
| .hir() |
| .attrs(tcx.local_def_id_to_hir_id(def_id)) |
| .iter() |
| .filter(|attr| analyze_attr(attr, &mut state)); |
| |
| record_array!(self.tables.attributes[def_id.to_def_id()] <- attr_iter); |
| |
| let mut attr_flags = AttrFlags::empty(); |
| if state.is_doc_hidden { |
| attr_flags |= AttrFlags::IS_DOC_HIDDEN; |
| } |
| self.tables.attr_flags.set(def_id.local_def_index, attr_flags); |
| } |
| |
| fn encode_def_ids(&mut self) { |
| self.encode_info_for_mod(CRATE_DEF_ID); |
| |
| // Proc-macro crates only export proc-macro items, which are looked |
| // up using `proc_macro_data` |
| if self.is_proc_macro { |
| return; |
| } |
| |
| let tcx = self.tcx; |
| |
| for local_id in tcx.iter_local_def_id() { |
| let def_id = local_id.to_def_id(); |
| let def_kind = tcx.def_kind(local_id); |
| self.tables.def_kind.set_some(def_id.index, def_kind); |
| if should_encode_span(def_kind) { |
| let def_span = tcx.def_span(local_id); |
| record!(self.tables.def_span[def_id] <- def_span); |
| } |
| if should_encode_attrs(def_kind) { |
| self.encode_attrs(local_id); |
| } |
| if should_encode_expn_that_defined(def_kind) { |
| record!(self.tables.expn_that_defined[def_id] <- self.tcx.expn_that_defined(def_id)); |
| } |
| if should_encode_span(def_kind) |
| && let Some(ident_span) = tcx.def_ident_span(def_id) |
| { |
| record!(self.tables.def_ident_span[def_id] <- ident_span); |
| } |
| if def_kind.has_codegen_attrs() { |
| record!(self.tables.codegen_fn_attrs[def_id] <- self.tcx.codegen_fn_attrs(def_id)); |
| } |
| if should_encode_visibility(def_kind) { |
| let vis = |
| self.tcx.local_visibility(local_id).map_id(|def_id| def_id.local_def_index); |
| record!(self.tables.visibility[def_id] <- vis); |
| } |
| if should_encode_stability(def_kind) { |
| self.encode_stability(def_id); |
| self.encode_const_stability(def_id); |
| self.encode_default_body_stability(def_id); |
| self.encode_deprecation(def_id); |
| } |
| if should_encode_variances(tcx, def_id, def_kind) { |
| let v = self.tcx.variances_of(def_id); |
| record_array!(self.tables.variances_of[def_id] <- v); |
| } |
| if should_encode_fn_sig(def_kind) { |
| record!(self.tables.fn_sig[def_id] <- tcx.fn_sig(def_id)); |
| } |
| if should_encode_generics(def_kind) { |
| let g = tcx.generics_of(def_id); |
| record!(self.tables.generics_of[def_id] <- g); |
| record!(self.tables.explicit_predicates_of[def_id] <- self.tcx.explicit_predicates_of(def_id)); |
| let inferred_outlives = self.tcx.inferred_outlives_of(def_id); |
| record_defaulted_array!(self.tables.inferred_outlives_of[def_id] <- inferred_outlives); |
| |
| for param in &g.own_params { |
| if let ty::GenericParamDefKind::Const { has_default: true, .. } = param.kind { |
| let default = self.tcx.const_param_default(param.def_id); |
| record!(self.tables.const_param_default[param.def_id] <- default); |
| } |
| } |
| } |
| if should_encode_type(tcx, local_id, def_kind) { |
| record!(self.tables.type_of[def_id] <- self.tcx.type_of(def_id)); |
| } |
| if should_encode_constness(def_kind) { |
| self.tables.constness.set_some(def_id.index, self.tcx.constness(def_id)); |
| } |
| if let DefKind::Fn | DefKind::AssocFn = def_kind { |
| self.tables.asyncness.set_some(def_id.index, tcx.asyncness(def_id)); |
| record_array!(self.tables.fn_arg_names[def_id] <- tcx.fn_arg_names(def_id)); |
| } |
| if let Some(name) = tcx.intrinsic(def_id) { |
| record!(self.tables.intrinsic[def_id] <- name); |
| } |
| if let DefKind::TyParam = def_kind { |
| let default = self.tcx.object_lifetime_default(def_id); |
| record!(self.tables.object_lifetime_default[def_id] <- default); |
| } |
| if let DefKind::Trait = def_kind { |
| record!(self.tables.trait_def[def_id] <- self.tcx.trait_def(def_id)); |
| record_defaulted_array!(self.tables.explicit_super_predicates_of[def_id] <- |
| self.tcx.explicit_super_predicates_of(def_id).skip_binder()); |
| record_defaulted_array!(self.tables.explicit_implied_predicates_of[def_id] <- |
| self.tcx.explicit_implied_predicates_of(def_id).skip_binder()); |
| |
| let module_children = self.tcx.module_children_local(local_id); |
| record_array!(self.tables.module_children_non_reexports[def_id] <- |
| module_children.iter().map(|child| child.res.def_id().index)); |
| } |
| if let DefKind::TraitAlias = def_kind { |
| record!(self.tables.trait_def[def_id] <- self.tcx.trait_def(def_id)); |
| record_defaulted_array!(self.tables.explicit_super_predicates_of[def_id] <- |
| self.tcx.explicit_super_predicates_of(def_id).skip_binder()); |
| record_defaulted_array!(self.tables.explicit_implied_predicates_of[def_id] <- |
| self.tcx.explicit_implied_predicates_of(def_id).skip_binder()); |
| } |
| if let DefKind::Trait | DefKind::Impl { .. } = def_kind { |
| let associated_item_def_ids = self.tcx.associated_item_def_ids(def_id); |
| record_array!(self.tables.associated_item_or_field_def_ids[def_id] <- |
| associated_item_def_ids.iter().map(|&def_id| { |
| assert!(def_id.is_local()); |
| def_id.index |
| }) |
| ); |
| for &def_id in associated_item_def_ids { |
| self.encode_info_for_assoc_item(def_id); |
| } |
| if let Some(assoc_def_id) = self.tcx.associated_type_for_effects(def_id) { |
| record!(self.tables.associated_type_for_effects[def_id] <- assoc_def_id); |
| } |
| } |
| if let DefKind::Closure | DefKind::SyntheticCoroutineBody = def_kind |
| && let Some(coroutine_kind) = self.tcx.coroutine_kind(def_id) |
| { |
| self.tables.coroutine_kind.set(def_id.index, Some(coroutine_kind)) |
| } |
| if def_kind == DefKind::Closure |
| && tcx.type_of(def_id).skip_binder().is_coroutine_closure() |
| { |
| self.tables |
| .coroutine_for_closure |
| .set_some(def_id.index, self.tcx.coroutine_for_closure(def_id).into()); |
| } |
| if let DefKind::Static { .. } = def_kind { |
| if !self.tcx.is_foreign_item(def_id) { |
| let data = self.tcx.eval_static_initializer(def_id).unwrap(); |
| record!(self.tables.eval_static_initializer[def_id] <- data); |
| } |
| } |
| if let DefKind::Enum | DefKind::Struct | DefKind::Union = def_kind { |
| self.encode_info_for_adt(local_id); |
| } |
| if let DefKind::Mod = def_kind { |
| self.encode_info_for_mod(local_id); |
| } |
| if let DefKind::Macro(_) = def_kind { |
| self.encode_info_for_macro(local_id); |
| } |
| if let DefKind::TyAlias = def_kind { |
| self.tables |
| .type_alias_is_lazy |
| .set(def_id.index, self.tcx.type_alias_is_lazy(def_id)); |
| } |
| if let DefKind::OpaqueTy = def_kind { |
| self.encode_explicit_item_bounds(def_id); |
| self.encode_explicit_item_super_predicates(def_id); |
| self.tables |
| .is_type_alias_impl_trait |
| .set(def_id.index, self.tcx.is_type_alias_impl_trait(def_id)); |
| self.encode_precise_capturing_args(def_id); |
| } |
| if tcx.impl_method_has_trait_impl_trait_tys(def_id) |
| && let Ok(table) = self.tcx.collect_return_position_impl_trait_in_trait_tys(def_id) |
| { |
| record!(self.tables.trait_impl_trait_tys[def_id] <- table); |
| } |
| if should_encode_fn_impl_trait_in_trait(tcx, def_id) { |
| let table = tcx.associated_types_for_impl_traits_in_associated_fn(def_id); |
| record_defaulted_array!(self.tables.associated_types_for_impl_traits_in_associated_fn[def_id] <- table); |
| } |
| } |
| |
| for (def_id, impls) in &tcx.crate_inherent_impls(()).unwrap().inherent_impls { |
| record_defaulted_array!(self.tables.inherent_impls[def_id.to_def_id()] <- impls.iter().map(|def_id| { |
| assert!(def_id.is_local()); |
| def_id.index |
| })); |
| } |
| |
| for (def_id, res_map) in &tcx.resolutions(()).doc_link_resolutions { |
| record!(self.tables.doc_link_resolutions[def_id.to_def_id()] <- res_map); |
| } |
| |
| for (def_id, traits) in &tcx.resolutions(()).doc_link_traits_in_scope { |
| record_array!(self.tables.doc_link_traits_in_scope[def_id.to_def_id()] <- traits); |
| } |
| } |
| |
| #[instrument(level = "trace", skip(self))] |
| fn encode_info_for_adt(&mut self, local_def_id: LocalDefId) { |
| let def_id = local_def_id.to_def_id(); |
| let tcx = self.tcx; |
| let adt_def = tcx.adt_def(def_id); |
| record!(self.tables.repr_options[def_id] <- adt_def.repr()); |
| |
| let params_in_repr = self.tcx.params_in_repr(def_id); |
| record!(self.tables.params_in_repr[def_id] <- params_in_repr); |
| |
| if adt_def.is_enum() { |
| let module_children = tcx.module_children_local(local_def_id); |
| record_array!(self.tables.module_children_non_reexports[def_id] <- |
| module_children.iter().map(|child| child.res.def_id().index)); |
| } else { |
| // For non-enum, there is only one variant, and its def_id is the adt's. |
| debug_assert_eq!(adt_def.variants().len(), 1); |
| debug_assert_eq!(adt_def.non_enum_variant().def_id, def_id); |
| // Therefore, the loop over variants will encode its fields as the adt's children. |
| } |
| |
| for (idx, variant) in adt_def.variants().iter_enumerated() { |
| let data = VariantData { |
| discr: variant.discr, |
| idx, |
| ctor: variant.ctor.map(|(kind, def_id)| (kind, def_id.index)), |
| is_non_exhaustive: variant.is_field_list_non_exhaustive(), |
| }; |
| record!(self.tables.variant_data[variant.def_id] <- data); |
| |
| record_array!(self.tables.associated_item_or_field_def_ids[variant.def_id] <- variant.fields.iter().map(|f| { |
| assert!(f.did.is_local()); |
| f.did.index |
| })); |
| |
| if let Some((CtorKind::Fn, ctor_def_id)) = variant.ctor { |
| let fn_sig = tcx.fn_sig(ctor_def_id); |
| // FIXME only encode signature for ctor_def_id |
| record!(self.tables.fn_sig[variant.def_id] <- fn_sig); |
| } |
| } |
| } |
| |
| #[instrument(level = "debug", skip(self))] |
| fn encode_info_for_mod(&mut self, local_def_id: LocalDefId) { |
| let tcx = self.tcx; |
| let def_id = local_def_id.to_def_id(); |
| |
| // If we are encoding a proc-macro crates, `encode_info_for_mod` will |
| // only ever get called for the crate root. We still want to encode |
| // the crate root for consistency with other crates (some of the resolver |
| // code uses it). However, we skip encoding anything relating to child |
| // items - we encode information about proc-macros later on. |
| if self.is_proc_macro { |
| // Encode this here because we don't do it in encode_def_ids. |
| record!(self.tables.expn_that_defined[def_id] <- tcx.expn_that_defined(local_def_id)); |
| } else { |
| let module_children = tcx.module_children_local(local_def_id); |
| |
| record_array!(self.tables.module_children_non_reexports[def_id] <- |
| module_children.iter().filter(|child| child.reexport_chain.is_empty()) |
| .map(|child| child.res.def_id().index)); |
| |
| record_defaulted_array!(self.tables.module_children_reexports[def_id] <- |
| module_children.iter().filter(|child| !child.reexport_chain.is_empty())); |
| } |
| } |
| |
| fn encode_explicit_item_bounds(&mut self, def_id: DefId) { |
| debug!("EncodeContext::encode_explicit_item_bounds({:?})", def_id); |
| let bounds = self.tcx.explicit_item_bounds(def_id).skip_binder(); |
| record_defaulted_array!(self.tables.explicit_item_bounds[def_id] <- bounds); |
| } |
| |
| fn encode_explicit_item_super_predicates(&mut self, def_id: DefId) { |
| debug!("EncodeContext::encode_explicit_item_super_predicates({:?})", def_id); |
| let bounds = self.tcx.explicit_item_super_predicates(def_id).skip_binder(); |
| record_defaulted_array!(self.tables.explicit_item_super_predicates[def_id] <- bounds); |
| } |
| |
| #[instrument(level = "debug", skip(self))] |
| fn encode_info_for_assoc_item(&mut self, def_id: DefId) { |
| let tcx = self.tcx; |
| let item = tcx.associated_item(def_id); |
| |
| self.tables.defaultness.set_some(def_id.index, item.defaultness(tcx)); |
| self.tables.assoc_container.set_some(def_id.index, item.container); |
| |
| match item.container { |
| AssocItemContainer::TraitContainer => { |
| if let ty::AssocKind::Type = item.kind { |
| self.encode_explicit_item_bounds(def_id); |
| self.encode_explicit_item_super_predicates(def_id); |
| } |
| } |
| AssocItemContainer::ImplContainer => { |
| if let Some(trait_item_def_id) = item.trait_item_def_id { |
| self.tables.trait_item_def_id.set_some(def_id.index, trait_item_def_id.into()); |
| } |
| } |
| } |
| if let Some(rpitit_info) = item.opt_rpitit_info { |
| record!(self.tables.opt_rpitit_info[def_id] <- rpitit_info); |
| if matches!(rpitit_info, ty::ImplTraitInTraitData::Trait { .. }) { |
| record_array!( |
| self.tables.assumed_wf_types_for_rpitit[def_id] |
| <- self.tcx.assumed_wf_types_for_rpitit(def_id) |
| ); |
| self.encode_precise_capturing_args(def_id); |
| } |
| } |
| if item.is_effects_desugaring { |
| self.tables.is_effects_desugaring.set(def_id.index, true); |
| } |
| } |
| |
| fn encode_precise_capturing_args(&mut self, def_id: DefId) { |
| let Some(precise_capturing_args) = self.tcx.rendered_precise_capturing_args(def_id) else { |
| return; |
| }; |
| |
| record_array!(self.tables.rendered_precise_capturing_args[def_id] <- precise_capturing_args); |
| } |
| |
| fn encode_mir(&mut self) { |
| if self.is_proc_macro { |
| return; |
| } |
| |
| let tcx = self.tcx; |
| let reachable_set = tcx.reachable_set(()); |
| |
| let keys_and_jobs = tcx.mir_keys(()).iter().filter_map(|&def_id| { |
| let (encode_const, encode_opt) = should_encode_mir(tcx, reachable_set, def_id); |
| if encode_const || encode_opt { Some((def_id, encode_const, encode_opt)) } else { None } |
| }); |
| for (def_id, encode_const, encode_opt) in keys_and_jobs { |
| debug_assert!(encode_const || encode_opt); |
| |
| debug!("EntryBuilder::encode_mir({:?})", def_id); |
| if encode_opt { |
| record!(self.tables.optimized_mir[def_id.to_def_id()] <- tcx.optimized_mir(def_id)); |
| self.tables |
| .cross_crate_inlinable |
| .set(def_id.to_def_id().index, self.tcx.cross_crate_inlinable(def_id)); |
| record!(self.tables.closure_saved_names_of_captured_variables[def_id.to_def_id()] |
| <- tcx.closure_saved_names_of_captured_variables(def_id)); |
| |
| if self.tcx.is_coroutine(def_id.to_def_id()) |
| && let Some(witnesses) = tcx.mir_coroutine_witnesses(def_id) |
| { |
| record!(self.tables.mir_coroutine_witnesses[def_id.to_def_id()] <- witnesses); |
| } |
| } |
| if encode_const { |
| record!(self.tables.mir_for_ctfe[def_id.to_def_id()] <- tcx.mir_for_ctfe(def_id)); |
| |
| // FIXME(generic_const_exprs): this feels wrong to have in `encode_mir` |
| let abstract_const = tcx.thir_abstract_const(def_id); |
| if let Ok(Some(abstract_const)) = abstract_const { |
| record!(self.tables.thir_abstract_const[def_id.to_def_id()] <- abstract_const); |
| } |
| |
| if should_encode_const(tcx.def_kind(def_id)) { |
| let qualifs = tcx.mir_const_qualif(def_id); |
| record!(self.tables.mir_const_qualif[def_id.to_def_id()] <- qualifs); |
| let body = tcx.hir().maybe_body_owned_by(def_id); |
| if let Some(body) = body { |
| let const_data = rendered_const(self.tcx, &body, def_id); |
| record!(self.tables.rendered_const[def_id.to_def_id()] <- const_data); |
| } |
| } |
| } |
| record!(self.tables.promoted_mir[def_id.to_def_id()] <- tcx.promoted_mir(def_id)); |
| |
| if self.tcx.is_coroutine(def_id.to_def_id()) |
| && let Some(witnesses) = tcx.mir_coroutine_witnesses(def_id) |
| { |
| record!(self.tables.mir_coroutine_witnesses[def_id.to_def_id()] <- witnesses); |
| } |
| |
| let instance = ty::InstanceKind::Item(def_id.to_def_id()); |
| let unused = tcx.unused_generic_params(instance); |
| self.tables.unused_generic_params.set(def_id.local_def_index, unused); |
| } |
| |
| // Encode all the deduced parameter attributes for everything that has MIR, even for items |
| // that can't be inlined. But don't if we aren't optimizing in non-incremental mode, to |
| // save the query traffic. |
| if tcx.sess.opts.output_types.should_codegen() |
| && tcx.sess.opts.optimize != OptLevel::No |
| && tcx.sess.opts.incremental.is_none() |
| { |
| for &local_def_id in tcx.mir_keys(()) { |
| if let DefKind::AssocFn | DefKind::Fn = tcx.def_kind(local_def_id) { |
| record_array!(self.tables.deduced_param_attrs[local_def_id.to_def_id()] <- |
| self.tcx.deduced_param_attrs(local_def_id.to_def_id())); |
| } |
| } |
| } |
| } |
| |
| #[instrument(level = "debug", skip(self))] |
| fn encode_stability(&mut self, def_id: DefId) { |
| // The query lookup can take a measurable amount of time in crates with many items. Check if |
| // the stability attributes are even enabled before using their queries. |
| if self.feat.staged_api || self.tcx.sess.opts.unstable_opts.force_unstable_if_unmarked { |
| if let Some(stab) = self.tcx.lookup_stability(def_id) { |
| record!(self.tables.lookup_stability[def_id] <- stab) |
| } |
| } |
| } |
| |
| #[instrument(level = "debug", skip(self))] |
| fn encode_const_stability(&mut self, def_id: DefId) { |
| // The query lookup can take a measurable amount of time in crates with many items. Check if |
| // the stability attributes are even enabled before using their queries. |
| if self.feat.staged_api || self.tcx.sess.opts.unstable_opts.force_unstable_if_unmarked { |
| if let Some(stab) = self.tcx.lookup_const_stability(def_id) { |
| record!(self.tables.lookup_const_stability[def_id] <- stab) |
| } |
| } |
| } |
| |
| #[instrument(level = "debug", skip(self))] |
| fn encode_default_body_stability(&mut self, def_id: DefId) { |
| // The query lookup can take a measurable amount of time in crates with many items. Check if |
| // the stability attributes are even enabled before using their queries. |
| if self.feat.staged_api || self.tcx.sess.opts.unstable_opts.force_unstable_if_unmarked { |
| if let Some(stab) = self.tcx.lookup_default_body_stability(def_id) { |
| record!(self.tables.lookup_default_body_stability[def_id] <- stab) |
| } |
| } |
| } |
| |
| #[instrument(level = "debug", skip(self))] |
| fn encode_deprecation(&mut self, def_id: DefId) { |
| if let Some(depr) = self.tcx.lookup_deprecation(def_id) { |
| record!(self.tables.lookup_deprecation_entry[def_id] <- depr); |
| } |
| } |
| |
| #[instrument(level = "debug", skip(self))] |
| fn encode_info_for_macro(&mut self, def_id: LocalDefId) { |
| let tcx = self.tcx; |
| |
| let hir::ItemKind::Macro(macro_def, _) = tcx.hir().expect_item(def_id).kind else { bug!() }; |
| self.tables.is_macro_rules.set(def_id.local_def_index, macro_def.macro_rules); |
| record!(self.tables.macro_definition[def_id.to_def_id()] <- &*macro_def.body); |
| } |
| |
| fn encode_native_libraries(&mut self) -> LazyArray<NativeLib> { |
| empty_proc_macro!(self); |
| let used_libraries = self.tcx.native_libraries(LOCAL_CRATE); |
| self.lazy_array(used_libraries.iter()) |
| } |
| |
| fn encode_foreign_modules(&mut self) -> LazyArray<ForeignModule> { |
| empty_proc_macro!(self); |
| let foreign_modules = self.tcx.foreign_modules(LOCAL_CRATE); |
| self.lazy_array(foreign_modules.iter().map(|(_, m)| m).cloned()) |
| } |
| |
| fn encode_hygiene(&mut self) -> (SyntaxContextTable, ExpnDataTable, ExpnHashTable) { |
| let mut syntax_contexts: TableBuilder<_, _> = Default::default(); |
| let mut expn_data_table: TableBuilder<_, _> = Default::default(); |
| let mut expn_hash_table: TableBuilder<_, _> = Default::default(); |
| |
| self.hygiene_ctxt.encode( |
| &mut (&mut *self, &mut syntax_contexts, &mut expn_data_table, &mut expn_hash_table), |
| |(this, syntax_contexts, _, _), index, ctxt_data| { |
| syntax_contexts.set_some(index, this.lazy(ctxt_data)); |
| }, |
| |(this, _, expn_data_table, expn_hash_table), index, expn_data, hash| { |
| if let Some(index) = index.as_local() { |
| expn_data_table.set_some(index.as_raw(), this.lazy(expn_data)); |
| expn_hash_table.set_some(index.as_raw(), this.lazy(hash)); |
| } |
| }, |
| ); |
| |
| ( |
| syntax_contexts.encode(&mut self.opaque), |
| expn_data_table.encode(&mut self.opaque), |
| expn_hash_table.encode(&mut self.opaque), |
| ) |
| } |
| |
| fn encode_proc_macros(&mut self) -> Option<ProcMacroData> { |
| let is_proc_macro = self.tcx.crate_types().contains(&CrateType::ProcMacro); |
| if is_proc_macro { |
| let tcx = self.tcx; |
| let hir = tcx.hir(); |
| |
| let proc_macro_decls_static = tcx.proc_macro_decls_static(()).unwrap().local_def_index; |
| let stability = tcx.lookup_stability(CRATE_DEF_ID); |
| let macros = |
| self.lazy_array(tcx.resolutions(()).proc_macros.iter().map(|p| p.local_def_index)); |
| for (i, span) in self.tcx.sess.psess.proc_macro_quoted_spans() { |
| let span = self.lazy(span); |
| self.tables.proc_macro_quoted_spans.set_some(i, span); |
| } |
| |
| self.tables.def_kind.set_some(LOCAL_CRATE.as_def_id().index, DefKind::Mod); |
| record!(self.tables.def_span[LOCAL_CRATE.as_def_id()] <- tcx.def_span(LOCAL_CRATE.as_def_id())); |
| self.encode_attrs(LOCAL_CRATE.as_def_id().expect_local()); |
| let vis = tcx.local_visibility(CRATE_DEF_ID).map_id(|def_id| def_id.local_def_index); |
| record!(self.tables.visibility[LOCAL_CRATE.as_def_id()] <- vis); |
| if let Some(stability) = stability { |
| record!(self.tables.lookup_stability[LOCAL_CRATE.as_def_id()] <- stability); |
| } |
| self.encode_deprecation(LOCAL_CRATE.as_def_id()); |
| if let Some(res_map) = tcx.resolutions(()).doc_link_resolutions.get(&CRATE_DEF_ID) { |
| record!(self.tables.doc_link_resolutions[LOCAL_CRATE.as_def_id()] <- res_map); |
| } |
| if let Some(traits) = tcx.resolutions(()).doc_link_traits_in_scope.get(&CRATE_DEF_ID) { |
| record_array!(self.tables.doc_link_traits_in_scope[LOCAL_CRATE.as_def_id()] <- traits); |
| } |
| |
| // Normally, this information is encoded when we walk the items |
| // defined in this crate. However, we skip doing that for proc-macro crates, |
| // so we manually encode just the information that we need |
| for &proc_macro in &tcx.resolutions(()).proc_macros { |
| let id = proc_macro; |
| let proc_macro = tcx.local_def_id_to_hir_id(proc_macro); |
| let mut name = hir.name(proc_macro); |
| let span = hir.span(proc_macro); |
| // Proc-macros may have attributes like `#[allow_internal_unstable]`, |
| // so downstream crates need access to them. |
| let attrs = hir.attrs(proc_macro); |
| let macro_kind = if attr::contains_name(attrs, sym::proc_macro) { |
| MacroKind::Bang |
| } else if attr::contains_name(attrs, sym::proc_macro_attribute) { |
| MacroKind::Attr |
| } else if let Some(attr) = attr::find_by_name(attrs, sym::proc_macro_derive) { |
| // This unwrap chain should have been checked by the proc-macro harness. |
| name = attr.meta_item_list().unwrap()[0] |
| .meta_item() |
| .unwrap() |
| .ident() |
| .unwrap() |
| .name; |
| MacroKind::Derive |
| } else { |
| bug!("Unknown proc-macro type for item {:?}", id); |
| }; |
| |
| let mut def_key = self.tcx.hir().def_key(id); |
| def_key.disambiguated_data.data = DefPathData::MacroNs(name); |
| |
| let def_id = id.to_def_id(); |
| self.tables.def_kind.set_some(def_id.index, DefKind::Macro(macro_kind)); |
| self.tables.proc_macro.set_some(def_id.index, macro_kind); |
| self.encode_attrs(id); |
| record!(self.tables.def_keys[def_id] <- def_key); |
| record!(self.tables.def_ident_span[def_id] <- span); |
| record!(self.tables.def_span[def_id] <- span); |
| record!(self.tables.visibility[def_id] <- ty::Visibility::Public); |
| if let Some(stability) = stability { |
| record!(self.tables.lookup_stability[def_id] <- stability); |
| } |
| } |
| |
| Some(ProcMacroData { proc_macro_decls_static, stability, macros }) |
| } else { |
| None |
| } |
| } |
| |
| fn encode_debugger_visualizers(&mut self) -> LazyArray<DebuggerVisualizerFile> { |
| empty_proc_macro!(self); |
| self.lazy_array( |
| self.tcx |
| .debugger_visualizers(LOCAL_CRATE) |
| .iter() |
| // Erase the path since it may contain privacy sensitive data |
| // that we don't want to end up in crate metadata. |
| // The path is only needed for the local crate because of |
| // `--emit dep-info`. |
| .map(DebuggerVisualizerFile::path_erased), |
| ) |
| } |
| |
| fn encode_crate_deps(&mut self) -> LazyArray<CrateDep> { |
| empty_proc_macro!(self); |
| |
| let deps = self |
| .tcx |
| .crates(()) |
| .iter() |
| .map(|&cnum| { |
| let dep = CrateDep { |
| name: self.tcx.crate_name(cnum), |
| hash: self.tcx.crate_hash(cnum), |
| host_hash: self.tcx.crate_host_hash(cnum), |
| kind: self.tcx.dep_kind(cnum), |
| extra_filename: self.tcx.extra_filename(cnum).clone(), |
| is_private: self.tcx.is_private_dep(cnum), |
| }; |
| (cnum, dep) |
| }) |
| .collect::<Vec<_>>(); |
| |
| { |
| // Sanity-check the crate numbers |
| let mut expected_cnum = 1; |
| for &(n, _) in &deps { |
| assert_eq!(n, CrateNum::new(expected_cnum)); |
| expected_cnum += 1; |
| } |
| } |
| |
| // We're just going to write a list of crate 'name-hash-version's, with |
| // the assumption that they are numbered 1 to n. |
| // FIXME (#2166): This is not nearly enough to support correct versioning |
| // but is enough to get transitive crate dependencies working. |
| self.lazy_array(deps.iter().map(|(_, dep)| dep)) |
| } |
| |
| fn encode_lib_features(&mut self) -> LazyArray<(Symbol, FeatureStability)> { |
| empty_proc_macro!(self); |
| let tcx = self.tcx; |
| let lib_features = tcx.lib_features(LOCAL_CRATE); |
| self.lazy_array(lib_features.to_sorted_vec()) |
| } |
| |
| fn encode_stability_implications(&mut self) -> LazyArray<(Symbol, Symbol)> { |
| empty_proc_macro!(self); |
| let tcx = self.tcx; |
| let implications = tcx.stability_implications(LOCAL_CRATE); |
| let sorted = implications.to_sorted_stable_ord(); |
| self.lazy_array(sorted.into_iter().map(|(k, v)| (*k, *v))) |
| } |
| |
| fn encode_diagnostic_items(&mut self) -> LazyArray<(Symbol, DefIndex)> { |
| empty_proc_macro!(self); |
| let tcx = self.tcx; |
| let diagnostic_items = &tcx.diagnostic_items(LOCAL_CRATE).name_to_id; |
| self.lazy_array(diagnostic_items.iter().map(|(&name, def_id)| (name, def_id.index))) |
| } |
| |
| fn encode_lang_items(&mut self) -> LazyArray<(DefIndex, LangItem)> { |
| empty_proc_macro!(self); |
| let lang_items = self.tcx.lang_items().iter(); |
| self.lazy_array(lang_items.filter_map(|(lang_item, def_id)| { |
| def_id.as_local().map(|id| (id.local_def_index, lang_item)) |
| })) |
| } |
| |
| fn encode_lang_items_missing(&mut self) -> LazyArray<LangItem> { |
| empty_proc_macro!(self); |
| let tcx = self.tcx; |
| self.lazy_array(&tcx.lang_items().missing) |
| } |
| |
| fn encode_stripped_cfg_items(&mut self) -> LazyArray<StrippedCfgItem<DefIndex>> { |
| self.lazy_array( |
| self.tcx |
| .stripped_cfg_items(LOCAL_CRATE) |
| .into_iter() |
| .map(|item| item.clone().map_mod_id(|def_id| def_id.index)), |
| ) |
| } |
| |
| fn encode_traits(&mut self) -> LazyArray<DefIndex> { |
| empty_proc_macro!(self); |
| self.lazy_array(self.tcx.traits(LOCAL_CRATE).iter().map(|def_id| def_id.index)) |
| } |
| |
| /// Encodes an index, mapping each trait to its (local) implementations. |
| #[instrument(level = "debug", skip(self))] |
| fn encode_impls(&mut self) -> LazyArray<TraitImpls> { |
| empty_proc_macro!(self); |
| let tcx = self.tcx; |
| let mut trait_impls: FxIndexMap<DefId, Vec<(DefIndex, Option<SimplifiedType>)>> = |
| FxIndexMap::default(); |
| |
| for id in tcx.hir().items() { |
| let DefKind::Impl { of_trait } = tcx.def_kind(id.owner_id) else { |
| continue; |
| }; |
| let def_id = id.owner_id.to_def_id(); |
| |
| self.tables.defaultness.set_some(def_id.index, tcx.defaultness(def_id)); |
| |
| if of_trait && let Some(header) = tcx.impl_trait_header(def_id) { |
| record!(self.tables.impl_trait_header[def_id] <- header); |
| |
| let trait_ref = header.trait_ref.instantiate_identity(); |
| let simplified_self_ty = fast_reject::simplify_type( |
| self.tcx, |
| trait_ref.self_ty(), |
| TreatParams::AsCandidateKey, |
| ); |
| trait_impls |
| .entry(trait_ref.def_id) |
| .or_default() |
| .push((id.owner_id.def_id.local_def_index, simplified_self_ty)); |
| |
| let trait_def = tcx.trait_def(trait_ref.def_id); |
| if let Ok(mut an) = trait_def.ancestors(tcx, def_id) { |
| if let Some(specialization_graph::Node::Impl(parent)) = an.nth(1) { |
| self.tables.impl_parent.set_some(def_id.index, parent.into()); |
| } |
| } |
| |
| // if this is an impl of `CoerceUnsized`, create its |
| // "unsized info", else just store None |
| if tcx.is_lang_item(trait_ref.def_id, LangItem::CoerceUnsized) { |
| let coerce_unsized_info = tcx.coerce_unsized_info(def_id).unwrap(); |
| record!(self.tables.coerce_unsized_info[def_id] <- coerce_unsized_info); |
| } |
| } |
| } |
| |
| let trait_impls: Vec<_> = trait_impls |
| .into_iter() |
| .map(|(trait_def_id, impls)| TraitImpls { |
| trait_id: (trait_def_id.krate.as_u32(), trait_def_id.index), |
| impls: self.lazy_array(&impls), |
| }) |
| .collect(); |
| |
| self.lazy_array(&trait_impls) |
| } |
| |
| #[instrument(level = "debug", skip(self))] |
| fn encode_incoherent_impls(&mut self) -> LazyArray<IncoherentImpls> { |
| empty_proc_macro!(self); |
| let tcx = self.tcx; |
| |
| let all_impls: Vec<_> = tcx |
| .crate_inherent_impls(()) |
| .unwrap() |
| .incoherent_impls |
| .iter() |
| .map(|(&simp, impls)| IncoherentImpls { |
| self_ty: simp, |
| impls: self.lazy_array(impls.iter().map(|def_id| def_id.local_def_index)), |
| }) |
| .collect(); |
| |
| self.lazy_array(&all_impls) |
| } |
| |
| // Encodes all symbols exported from this crate into the metadata. |
| // |
| // This pass is seeded off the reachability list calculated in the |
| // middle::reachable module but filters out items that either don't have a |
| // symbol associated with them (they weren't translated) or if they're an FFI |
| // definition (as that's not defined in this crate). |
| fn encode_exported_symbols( |
| &mut self, |
| exported_symbols: &[(ExportedSymbol<'tcx>, SymbolExportInfo)], |
| ) -> LazyArray<(ExportedSymbol<'static>, SymbolExportInfo)> { |
| empty_proc_macro!(self); |
| // The metadata symbol name is special. It should not show up in |
| // downstream crates. |
| let metadata_symbol_name = SymbolName::new(self.tcx, &metadata_symbol_name(self.tcx)); |
| |
| self.lazy_array( |
| exported_symbols |
| .iter() |
| .filter(|&(exported_symbol, _)| match *exported_symbol { |
| ExportedSymbol::NoDefId(symbol_name) => symbol_name != metadata_symbol_name, |
| _ => true, |
| }) |
| .cloned(), |
| ) |
| } |
| |
| fn encode_dylib_dependency_formats(&mut self) -> LazyArray<Option<LinkagePreference>> { |
| empty_proc_macro!(self); |
| let formats = self.tcx.dependency_formats(()); |
| for (ty, arr) in formats.iter() { |
| if *ty != CrateType::Dylib { |
| continue; |
| } |
| return self.lazy_array(arr.iter().map(|slot| match *slot { |
| Linkage::NotLinked | Linkage::IncludedFromDylib => None, |
| |
| Linkage::Dynamic => Some(LinkagePreference::RequireDynamic), |
| Linkage::Static => Some(LinkagePreference::RequireStatic), |
| })); |
| } |
| LazyArray::default() |
| } |
| } |
| |
| /// Used to prefetch queries which will be needed later by metadata encoding. |
| /// Only a subset of the queries are actually prefetched to keep this code smaller. |
| fn prefetch_mir(tcx: TyCtxt<'_>) { |
| if !tcx.sess.opts.output_types.should_codegen() { |
| // We won't emit MIR, so don't prefetch it. |
| return; |
| } |
| |
| let reachable_set = tcx.reachable_set(()); |
| par_for_each_in(tcx.mir_keys(()), |&def_id| { |
| let (encode_const, encode_opt) = should_encode_mir(tcx, reachable_set, def_id); |
| |
| if encode_const { |
| tcx.ensure_with_value().mir_for_ctfe(def_id); |
| } |
| if encode_opt { |
| tcx.ensure_with_value().optimized_mir(def_id); |
| } |
| if encode_opt || encode_const { |
| tcx.ensure_with_value().promoted_mir(def_id); |
| } |
| }) |
| } |
| |
| // NOTE(eddyb) The following comment was preserved for posterity, even |
| // though it's no longer relevant as EBML (which uses nested & tagged |
| // "documents") was replaced with a scheme that can't go out of bounds. |
| // |
| // And here we run into yet another obscure archive bug: in which metadata |
| // loaded from archives may have trailing garbage bytes. Awhile back one of |
| // our tests was failing sporadically on the macOS 64-bit builders (both nopt |
| // and opt) by having ebml generate an out-of-bounds panic when looking at |
| // metadata. |
| // |
| // Upon investigation it turned out that the metadata file inside of an rlib |
| // (and ar archive) was being corrupted. Some compilations would generate a |
| // metadata file which would end in a few extra bytes, while other |
| // compilations would not have these extra bytes appended to the end. These |
| // extra bytes were interpreted by ebml as an extra tag, so they ended up |
| // being interpreted causing the out-of-bounds. |
| // |
| // The root cause of why these extra bytes were appearing was never |
| // discovered, and in the meantime the solution we're employing is to insert |
| // the length of the metadata to the start of the metadata. Later on this |
| // will allow us to slice the metadata to the precise length that we just |
| // generated regardless of trailing bytes that end up in it. |
| |
| pub struct EncodedMetadata { |
| // The declaration order matters because `mmap` should be dropped before `_temp_dir`. |
| mmap: Option<Mmap>, |
| // We need to carry MaybeTempDir to avoid deleting the temporary |
| // directory while accessing the Mmap. |
| _temp_dir: Option<MaybeTempDir>, |
| } |
| |
| impl EncodedMetadata { |
| #[inline] |
| pub fn from_path(path: PathBuf, temp_dir: Option<MaybeTempDir>) -> std::io::Result<Self> { |
| let file = std::fs::File::open(&path)?; |
| let file_metadata = file.metadata()?; |
| if file_metadata.len() == 0 { |
| return Ok(Self { mmap: None, _temp_dir: None }); |
| } |
| let mmap = unsafe { Some(Mmap::map(file)?) }; |
| Ok(Self { mmap, _temp_dir: temp_dir }) |
| } |
| |
| #[inline] |
| pub fn raw_data(&self) -> &[u8] { |
| self.mmap.as_deref().unwrap_or_default() |
| } |
| } |
| |
| impl<S: Encoder> Encodable<S> for EncodedMetadata { |
| fn encode(&self, s: &mut S) { |
| let slice = self.raw_data(); |
| slice.encode(s) |
| } |
| } |
| |
| impl<D: Decoder> Decodable<D> for EncodedMetadata { |
| fn decode(d: &mut D) -> Self { |
| let len = d.read_usize(); |
| let mmap = if len > 0 { |
| let mut mmap = MmapMut::map_anon(len).unwrap(); |
| for _ in 0..len { |
| (&mut mmap[..]).write_all(&[d.read_u8()]).unwrap(); |
| } |
| mmap.flush().unwrap(); |
| Some(mmap.make_read_only().unwrap()) |
| } else { |
| None |
| }; |
| |
| Self { mmap, _temp_dir: None } |
| } |
| } |
| |
| pub fn encode_metadata(tcx: TyCtxt<'_>, path: &Path) { |
| let _prof_timer = tcx.prof.verbose_generic_activity("generate_crate_metadata"); |
| |
| // Since encoding metadata is not in a query, and nothing is cached, |
| // there's no need to do dep-graph tracking for any of it. |
| tcx.dep_graph.assert_ignored(); |
| |
| if tcx.sess.threads() != 1 { |
| // Prefetch some queries used by metadata encoding. |
| // This is not necessary for correctness, but is only done for performance reasons. |
| // It can be removed if it turns out to cause trouble or be detrimental to performance. |
| join(|| prefetch_mir(tcx), || tcx.exported_symbols(LOCAL_CRATE)); |
| } |
| |
| let mut encoder = opaque::FileEncoder::new(path) |
| .unwrap_or_else(|err| tcx.dcx().emit_fatal(FailCreateFileEncoder { err })); |
| encoder.emit_raw_bytes(METADATA_HEADER); |
| |
| // Will be filled with the root position after encoding everything. |
| encoder.emit_raw_bytes(&0u64.to_le_bytes()); |
| |
| let source_map_files = tcx.sess.source_map().files(); |
| let source_file_cache = (source_map_files[0].clone(), 0); |
| let required_source_files = Some(FxIndexSet::default()); |
| drop(source_map_files); |
| |
| let hygiene_ctxt = HygieneEncodeContext::default(); |
| |
| let mut ecx = EncodeContext { |
| opaque: encoder, |
| tcx, |
| feat: tcx.features(), |
| tables: Default::default(), |
| lazy_state: LazyState::NoNode, |
| span_shorthands: Default::default(), |
| type_shorthands: Default::default(), |
| predicate_shorthands: Default::default(), |
| source_file_cache, |
| interpret_allocs: Default::default(), |
| required_source_files, |
| is_proc_macro: tcx.crate_types().contains(&CrateType::ProcMacro), |
| hygiene_ctxt: &hygiene_ctxt, |
| symbol_table: Default::default(), |
| }; |
| |
| // Encode the rustc version string in a predictable location. |
| rustc_version(tcx.sess.cfg_version).encode(&mut ecx); |
| |
| // Encode all the entries and extra information in the crate, |
| // culminating in the `CrateRoot` which points to all of it. |
| let root = ecx.encode_crate_root(); |
| |
| // Make sure we report any errors from writing to the file. |
| // If we forget this, compilation can succeed with an incomplete rmeta file, |
| // causing an ICE when the rmeta file is read by another compilation. |
| if let Err((path, err)) = ecx.opaque.finish() { |
| tcx.dcx().emit_fatal(FailWriteFile { path: &path, err }); |
| } |
| |
| let file = ecx.opaque.file(); |
| if let Err(err) = encode_root_position(file, root.position.get()) { |
| tcx.dcx().emit_fatal(FailWriteFile { path: ecx.opaque.path(), err }); |
| } |
| |
| // Record metadata size for self-profiling |
| tcx.prof.artifact_size("crate_metadata", "crate_metadata", file.metadata().unwrap().len()); |
| } |
| |
| fn encode_root_position(mut file: &File, pos: usize) -> Result<(), std::io::Error> { |
| // We will return to this position after writing the root position. |
| let pos_before_seek = file.stream_position().unwrap(); |
| |
| // Encode the root position. |
| let header = METADATA_HEADER.len(); |
| file.seek(std::io::SeekFrom::Start(header as u64))?; |
| file.write_all(&pos.to_le_bytes())?; |
| |
| // Return to the position where we are before writing the root position. |
| file.seek(std::io::SeekFrom::Start(pos_before_seek))?; |
| Ok(()) |
| } |
| |
| pub(crate) fn provide(providers: &mut Providers) { |
| *providers = Providers { |
| doc_link_resolutions: |tcx, def_id| { |
| tcx.resolutions(()) |
| .doc_link_resolutions |
| .get(&def_id) |
| .unwrap_or_else(|| span_bug!(tcx.def_span(def_id), "no resolutions for a doc link")) |
| }, |
| doc_link_traits_in_scope: |tcx, def_id| { |
| tcx.resolutions(()).doc_link_traits_in_scope.get(&def_id).unwrap_or_else(|| { |
| span_bug!(tcx.def_span(def_id), "no traits in scope for a doc link") |
| }) |
| }, |
| |
| ..*providers |
| } |
| } |
| |
| /// Build a textual representation of an unevaluated constant expression. |
| /// |
| /// If the const expression is too complex, an underscore `_` is returned. |
| /// For const arguments, it's `{ _ }` to be precise. |
| /// This means that the output is not necessarily valid Rust code. |
| /// |
| /// Currently, only |
| /// |
| /// * literals (optionally with a leading `-`) |
| /// * unit `()` |
| /// * blocks (`{ … }`) around simple expressions and |
| /// * paths without arguments |
| /// |
| /// are considered simple enough. Simple blocks are included since they are |
| /// necessary to disambiguate unit from the unit type. |
| /// This list might get extended in the future. |
| /// |
| /// Without this censoring, in a lot of cases the output would get too large |
| /// and verbose. Consider `match` expressions, blocks and deeply nested ADTs. |
| /// Further, private and `doc(hidden)` fields of structs would get leaked |
| /// since HIR datatypes like the `body` parameter do not contain enough |
| /// semantic information for this function to be able to hide them – |
| /// at least not without significant performance overhead. |
| /// |
| /// Whenever possible, prefer to evaluate the constant first and try to |
| /// use a different method for pretty-printing. Ideally this function |
| /// should only ever be used as a fallback. |
| pub fn rendered_const<'tcx>(tcx: TyCtxt<'tcx>, body: &hir::Body<'_>, def_id: LocalDefId) -> String { |
| let hir = tcx.hir(); |
| let value = body.value; |
| |
| #[derive(PartialEq, Eq)] |
| enum Classification { |
| Literal, |
| Simple, |
| Complex, |
| } |
| |
| use Classification::*; |
| |
| fn classify(expr: &hir::Expr<'_>) -> Classification { |
| match &expr.kind { |
| hir::ExprKind::Unary(hir::UnOp::Neg, expr) => { |
| if matches!(expr.kind, hir::ExprKind::Lit(_)) { Literal } else { Complex } |
| } |
| hir::ExprKind::Lit(_) => Literal, |
| hir::ExprKind::Tup([]) => Simple, |
| hir::ExprKind::Block(hir::Block { stmts: [], expr: Some(expr), .. }, _) => { |
| if classify(expr) == Complex { Complex } else { Simple } |
| } |
| // Paths with a self-type or arguments are too “complex” following our measure since |
| // they may leak private fields of structs (with feature `adt_const_params`). |
| // Consider: `<Self as Trait<{ Struct { private: () } }>>::CONSTANT`. |
| // Paths without arguments are definitely harmless though. |
| hir::ExprKind::Path(hir::QPath::Resolved(_, hir::Path { segments, .. })) => { |
| if segments.iter().all(|segment| segment.args.is_none()) { Simple } else { Complex } |
| } |
| // FIXME: Claiming that those kinds of QPaths are simple is probably not true if the Ty |
| // contains const arguments. Is there a *concise* way to check for this? |
| hir::ExprKind::Path(hir::QPath::TypeRelative(..)) => Simple, |
| // FIXME: Can they contain const arguments and thus leak private struct fields? |
| hir::ExprKind::Path(hir::QPath::LangItem(..)) => Simple, |
| _ => Complex, |
| } |
| } |
| |
| match classify(value) { |
| // For non-macro literals, we avoid invoking the pretty-printer and use the source snippet |
| // instead to preserve certain stylistic choices the user likely made for the sake of |
| // legibility, like: |
| // |
| // * hexadecimal notation |
| // * underscores |
| // * character escapes |
| // |
| // FIXME: This passes through `-/*spacer*/0` verbatim. |
| Literal |
| if !value.span.from_expansion() |
| && let Ok(snippet) = tcx.sess.source_map().span_to_snippet(value.span) => |
| { |
| snippet |
| } |
| |
| // Otherwise we prefer pretty-printing to get rid of extraneous whitespace, comments and |
| // other formatting artifacts. |
| Literal | Simple => id_to_string(&hir, body.id().hir_id), |
| |
| // FIXME: Omit the curly braces if the enclosing expression is an array literal |
| // with a repeated element (an `ExprKind::Repeat`) as in such case it |
| // would not actually need any disambiguation. |
| Complex => { |
| if tcx.def_kind(def_id) == DefKind::AnonConst { |
| "{ _ }".to_owned() |
| } else { |
| "_".to_owned() |
| } |
| } |
| } |
| } |