blob: f2461f70161311767247034882ce47e7dad28720 [file] [log] [blame]
// Verifies that the types and values of const and static items
// are safe. The rules enforced by this module are:
//
// - For each *mutable* static item, it checks that its **type**:
// - doesn't have a destructor
// - doesn't own a box
//
// - For each *immutable* static item, it checks that its **value**:
// - doesn't own a box
// - doesn't contain a struct literal or a call to an enum variant / struct constructor where
// - the type of the struct/enum has a dtor
//
// Rules Enforced Elsewhere:
// - It's not possible to take the address of a static item with unsafe interior. This is enforced
// by borrowck::gather_loans
use rustc::ty::cast::CastTy;
use rustc::hir::def::{Res, DefKind, CtorKind};
use rustc::hir::def_id::DefId;
use rustc::middle::expr_use_visitor as euv;
use rustc::middle::mem_categorization as mc;
use rustc::middle::mem_categorization::Categorization;
use rustc::ty::{self, Ty, TyCtxt};
use rustc::ty::query::Providers;
use rustc::ty::subst::{InternalSubsts, SubstsRef};
use rustc::util::nodemap::{ItemLocalSet, HirIdSet};
use rustc::hir;
use syntax::symbol::sym;
use syntax_pos::{Span, DUMMY_SP};
use log::debug;
use Promotability::*;
use std::ops::{BitAnd, BitAndAssign, BitOr};
pub fn provide(providers: &mut Providers<'_>) {
*providers = Providers {
rvalue_promotable_map,
const_is_rvalue_promotable_to_static,
..*providers
};
}
fn const_is_rvalue_promotable_to_static(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
assert!(def_id.is_local());
let hir_id = tcx.hir().as_local_hir_id(def_id)
.expect("rvalue_promotable_map invoked with non-local def-id");
let body_id = tcx.hir().body_owned_by(hir_id);
tcx.rvalue_promotable_map(def_id).contains(&body_id.hir_id.local_id)
}
fn rvalue_promotable_map(tcx: TyCtxt<'_>, def_id: DefId) -> &ItemLocalSet {
let outer_def_id = tcx.closure_base_def_id(def_id);
if outer_def_id != def_id {
return tcx.rvalue_promotable_map(outer_def_id);
}
let mut visitor = CheckCrateVisitor {
tcx,
tables: &ty::TypeckTables::empty(None),
in_fn: false,
in_static: false,
mut_rvalue_borrows: Default::default(),
param_env: ty::ParamEnv::empty(),
identity_substs: InternalSubsts::empty(),
result: ItemLocalSet::default(),
};
// `def_id` should be a `Body` owner
let hir_id = tcx.hir().as_local_hir_id(def_id)
.expect("rvalue_promotable_map invoked with non-local def-id");
let body_id = tcx.hir().body_owned_by(hir_id);
let _ = visitor.check_nested_body(body_id);
tcx.arena.alloc(visitor.result)
}
struct CheckCrateVisitor<'a, 'tcx> {
tcx: TyCtxt<'tcx>,
in_fn: bool,
in_static: bool,
mut_rvalue_borrows: HirIdSet,
param_env: ty::ParamEnv<'tcx>,
identity_substs: SubstsRef<'tcx>,
tables: &'a ty::TypeckTables<'tcx>,
result: ItemLocalSet,
}
#[must_use]
#[derive(Debug, Clone, Copy, PartialEq)]
enum Promotability {
Promotable,
NotPromotable
}
impl BitAnd for Promotability {
type Output = Self;
fn bitand(self, rhs: Self) -> Self {
match (self, rhs) {
(Promotable, Promotable) => Promotable,
_ => NotPromotable,
}
}
}
impl BitAndAssign for Promotability {
fn bitand_assign(&mut self, rhs: Self) {
*self = *self & rhs
}
}
impl BitOr for Promotability {
type Output = Self;
fn bitor(self, rhs: Self) -> Self {
match (self, rhs) {
(NotPromotable, NotPromotable) => NotPromotable,
_ => Promotable,
}
}
}
impl<'a, 'tcx> CheckCrateVisitor<'a, 'tcx> {
// Returns true iff all the values of the type are promotable.
fn type_promotability(&mut self, ty: Ty<'tcx>) -> Promotability {
debug!("type_promotability({})", ty);
if ty.is_freeze(self.tcx, self.param_env, DUMMY_SP) &&
!ty.needs_drop(self.tcx, self.param_env) {
Promotable
} else {
NotPromotable
}
}
fn handle_const_fn_call(
&mut self,
def_id: DefId,
) -> Promotability {
if self.tcx.is_promotable_const_fn(def_id) {
Promotable
} else {
NotPromotable
}
}
/// While the `ExprUseVisitor` walks, we will identify which
/// expressions are borrowed, and insert their IDs into this
/// table. Actually, we insert the "borrow-id", which is normally
/// the ID of the expression being borrowed: but in the case of
/// `ref mut` borrows, the `id` of the pattern is
/// inserted. Therefore, later we remove that entry from the table
/// and transfer it over to the value being matched. This will
/// then prevent said value from being promoted.
fn remove_mut_rvalue_borrow(&mut self, pat: &hir::Pat) -> bool {
let mut any_removed = false;
pat.walk(|p| {
any_removed |= self.mut_rvalue_borrows.remove(&p.hir_id);
true
});
any_removed
}
}
impl<'a, 'tcx> CheckCrateVisitor<'a, 'tcx> {
fn check_nested_body(&mut self, body_id: hir::BodyId) -> Promotability {
let item_id = self.tcx.hir().body_owner(body_id);
let item_def_id = self.tcx.hir().local_def_id(item_id);
let outer_in_fn = self.in_fn;
let outer_tables = self.tables;
let outer_param_env = self.param_env;
let outer_identity_substs = self.identity_substs;
self.in_fn = false;
self.in_static = false;
match self.tcx.hir().body_owner_kind(item_id) {
hir::BodyOwnerKind::Closure |
hir::BodyOwnerKind::Fn => self.in_fn = true,
hir::BodyOwnerKind::Static(_) => self.in_static = true,
_ => {}
};
self.tables = self.tcx.typeck_tables_of(item_def_id);
self.param_env = self.tcx.param_env(item_def_id);
self.identity_substs = InternalSubsts::identity_for_item(self.tcx, item_def_id);
let body = self.tcx.hir().body(body_id);
let tcx = self.tcx;
let param_env = self.param_env;
let region_scope_tree = self.tcx.region_scope_tree(item_def_id);
let tables = self.tables;
euv::ExprUseVisitor::new(
self,
tcx,
item_def_id,
param_env,
&region_scope_tree,
tables,
None,
).consume_body(body);
let body_promotable = self.check_expr(&body.value);
self.in_fn = outer_in_fn;
self.tables = outer_tables;
self.param_env = outer_param_env;
self.identity_substs = outer_identity_substs;
body_promotable
}
fn check_stmt(&mut self, stmt: &'tcx hir::Stmt) -> Promotability {
match stmt.node {
hir::StmtKind::Local(ref local) => {
if self.remove_mut_rvalue_borrow(&local.pat) {
if let Some(init) = &local.init {
self.mut_rvalue_borrows.insert(init.hir_id);
}
}
if let Some(ref expr) = local.init {
let _ = self.check_expr(&expr);
}
NotPromotable
}
// Item statements are allowed
hir::StmtKind::Item(..) => Promotable,
hir::StmtKind::Expr(ref box_expr) |
hir::StmtKind::Semi(ref box_expr) => {
let _ = self.check_expr(box_expr);
NotPromotable
}
}
}
fn check_expr(&mut self, ex: &'tcx hir::Expr) -> Promotability {
let node_ty = self.tables.node_type(ex.hir_id);
let mut outer = check_expr_kind(self, ex, node_ty);
outer &= check_adjustments(self, ex);
// Handle borrows on (or inside the autorefs of) this expression.
if self.mut_rvalue_borrows.remove(&ex.hir_id) {
outer = NotPromotable
}
if outer == Promotable {
self.result.insert(ex.hir_id.local_id);
}
outer
}
fn check_block(&mut self, block: &'tcx hir::Block) -> Promotability {
let mut iter_result = Promotable;
for index in block.stmts.iter() {
iter_result &= self.check_stmt(index);
}
match block.expr {
Some(ref box_expr) => iter_result & self.check_expr(&*box_expr),
None => iter_result,
}
}
}
/// This function is used to enforce the constraints on
/// const/static items. It walks through the *value*
/// of the item walking down the expression and evaluating
/// every nested expression. If the expression is not part
/// of a const/static item, it is qualified for promotion
/// instead of producing errors.
fn check_expr_kind<'a, 'tcx>(
v: &mut CheckCrateVisitor<'a, 'tcx>,
e: &'tcx hir::Expr, node_ty: Ty<'tcx>) -> Promotability {
let ty_result = match node_ty.sty {
ty::Adt(def, _) if def.has_dtor(v.tcx) => {
NotPromotable
}
_ => Promotable
};
let node_result = match e.node {
hir::ExprKind::Box(ref expr) => {
let _ = v.check_expr(&expr);
NotPromotable
}
hir::ExprKind::Unary(op, ref expr) => {
let expr_promotability = v.check_expr(expr);
if v.tables.is_method_call(e) || op == hir::UnDeref {
return NotPromotable;
}
expr_promotability
}
hir::ExprKind::Binary(op, ref lhs, ref rhs) => {
let lefty = v.check_expr(lhs);
let righty = v.check_expr(rhs);
if v.tables.is_method_call(e) {
return NotPromotable;
}
match v.tables.node_type(lhs.hir_id).sty {
ty::RawPtr(_) | ty::FnPtr(..) => {
assert!(op.node == hir::BinOpKind::Eq || op.node == hir::BinOpKind::Ne ||
op.node == hir::BinOpKind::Le || op.node == hir::BinOpKind::Lt ||
op.node == hir::BinOpKind::Ge || op.node == hir::BinOpKind::Gt);
NotPromotable
}
_ => lefty & righty
}
}
hir::ExprKind::Cast(ref from, _) => {
let expr_promotability = v.check_expr(from);
debug!("checking const cast(id={})", from.hir_id);
let cast_in = CastTy::from_ty(v.tables.expr_ty(from));
let cast_out = CastTy::from_ty(v.tables.expr_ty(e));
match (cast_in, cast_out) {
(Some(CastTy::FnPtr), Some(CastTy::Int(_))) |
(Some(CastTy::Ptr(_)), Some(CastTy::Int(_))) => NotPromotable,
(_, _) => expr_promotability
}
}
hir::ExprKind::Path(ref qpath) => {
let res = v.tables.qpath_res(qpath, e.hir_id);
match res {
Res::Def(DefKind::Ctor(..), _)
| Res::Def(DefKind::Fn, _)
| Res::Def(DefKind::Method, _)
| Res::SelfCtor(..) =>
Promotable,
// References to a static that are themselves within a static
// are inherently promotable with the exception
// of "#[thread_local]" statics, which may not
// outlive the current function
Res::Def(DefKind::Static, did) => {
if v.in_static {
for attr in &v.tcx.get_attrs(did)[..] {
if attr.check_name(sym::thread_local) {
debug!("reference to `Static(id={:?})` is unpromotable \
due to a `#[thread_local]` attribute", did);
return NotPromotable;
}
}
Promotable
} else {
debug!("reference to `Static(id={:?})` is unpromotable as it is not \
referenced from a static", did);
NotPromotable
}
}
Res::Def(DefKind::Const, did) |
Res::Def(DefKind::AssocConst, did) => {
let promotable = if v.tcx.trait_of_item(did).is_some() {
// Don't peek inside trait associated constants.
NotPromotable
} else if v.tcx.at(e.span).const_is_rvalue_promotable_to_static(did) {
Promotable
} else {
NotPromotable
};
// Just in case the type is more specific than the definition,
// e.g., impl associated const with type parameters, check it.
// Also, trait associated consts are relaxed by this.
promotable | v.type_promotability(node_ty)
}
_ => NotPromotable
}
}
hir::ExprKind::Call(ref callee, ref hirvec) => {
let mut call_result = v.check_expr(callee);
for index in hirvec.iter() {
call_result &= v.check_expr(index);
}
let mut callee = &**callee;
loop {
callee = match callee.node {
hir::ExprKind::Block(ref block, _) => match block.expr {
Some(ref tail) => &tail,
None => break
},
_ => break
};
}
// The callee is an arbitrary expression, it doesn't necessarily have a definition.
let def = if let hir::ExprKind::Path(ref qpath) = callee.node {
v.tables.qpath_res(qpath, callee.hir_id)
} else {
Res::Err
};
let def_result = match def {
Res::Def(DefKind::Ctor(_, CtorKind::Fn), _) |
Res::SelfCtor(..) => Promotable,
Res::Def(DefKind::Fn, did) => v.handle_const_fn_call(did),
Res::Def(DefKind::Method, did) => {
match v.tcx.associated_item(did).container {
ty::ImplContainer(_) => v.handle_const_fn_call(did),
ty::TraitContainer(_) => NotPromotable,
}
}
_ => NotPromotable,
};
def_result & call_result
}
hir::ExprKind::MethodCall(ref _pathsegment, ref _span, ref hirvec) => {
let mut method_call_result = Promotable;
for index in hirvec.iter() {
method_call_result &= v.check_expr(index);
}
if let Some(def_id) = v.tables.type_dependent_def_id(e.hir_id) {
match v.tcx.associated_item(def_id).container {
ty::ImplContainer(_) => method_call_result & v.handle_const_fn_call(def_id),
ty::TraitContainer(_) => NotPromotable,
}
} else {
v.tcx.sess.delay_span_bug(e.span, "no type-dependent def for method call");
NotPromotable
}
}
hir::ExprKind::Struct(ref _qpath, ref hirvec, ref option_expr) => {
let mut struct_result = Promotable;
for index in hirvec.iter() {
struct_result &= v.check_expr(&index.expr);
}
if let Some(ref expr) = *option_expr {
struct_result &= v.check_expr(&expr);
}
if let ty::Adt(adt, ..) = v.tables.expr_ty(e).sty {
// unsafe_cell_type doesn't necessarily exist with no_core
if Some(adt.did) == v.tcx.lang_items().unsafe_cell_type() {
return NotPromotable;
}
}
struct_result
}
hir::ExprKind::Lit(_) |
hir::ExprKind::Err => Promotable,
hir::ExprKind::AddrOf(_, ref expr) |
hir::ExprKind::Repeat(ref expr, _) |
hir::ExprKind::Type(ref expr, _) |
hir::ExprKind::DropTemps(ref expr) => {
v.check_expr(&expr)
}
hir::ExprKind::Closure(_capture_clause, ref _box_fn_decl,
body_id, _span, _option_generator_movability) => {
let nested_body_promotable = v.check_nested_body(body_id);
// Paths in constant contexts cannot refer to local variables,
// as there are none, and thus closures can't have upvars there.
let closure_def_id = v.tcx.hir().local_def_id(e.hir_id);
if !v.tcx.upvars(closure_def_id).map_or(true, |v| v.is_empty()) {
NotPromotable
} else {
nested_body_promotable
}
}
hir::ExprKind::Field(ref expr, _ident) => {
let expr_promotability = v.check_expr(&expr);
if let Some(def) = v.tables.expr_ty(expr).ty_adt_def() {
if def.is_union() {
return NotPromotable;
}
}
expr_promotability
}
hir::ExprKind::Block(ref box_block, ref _option_label) => {
v.check_block(box_block)
}
hir::ExprKind::Index(ref lhs, ref rhs) => {
let lefty = v.check_expr(lhs);
let righty = v.check_expr(rhs);
if v.tables.is_method_call(e) {
return NotPromotable;
}
lefty & righty
}
hir::ExprKind::Array(ref hirvec) => {
let mut array_result = Promotable;
for index in hirvec.iter() {
array_result &= v.check_expr(index);
}
array_result
}
hir::ExprKind::Tup(ref hirvec) => {
let mut tup_result = Promotable;
for index in hirvec.iter() {
tup_result &= v.check_expr(index);
}
tup_result
}
// Conditional control flow (possible to implement).
hir::ExprKind::Match(ref expr, ref hirvec_arm, ref _match_source) => {
// Compute the most demanding borrow from all the arms'
// patterns and set that on the discriminator.
let mut mut_borrow = false;
for pat in hirvec_arm.iter().flat_map(|arm| &arm.pats) {
mut_borrow = v.remove_mut_rvalue_borrow(pat);
}
if mut_borrow {
v.mut_rvalue_borrows.insert(expr.hir_id);
}
let _ = v.check_expr(expr);
for index in hirvec_arm.iter() {
let _ = v.check_expr(&*index.body);
if let Some(hir::Guard::If(ref expr)) = index.guard {
let _ = v.check_expr(&expr);
}
}
NotPromotable
}
hir::ExprKind::Loop(ref box_block, ref _option_label, ref _loop_source) => {
let _ = v.check_block(box_block);
NotPromotable
}
// More control flow (also not very meaningful).
hir::ExprKind::Break(_, ref option_expr) | hir::ExprKind::Ret(ref option_expr) => {
if let Some(ref expr) = *option_expr {
let _ = v.check_expr(&expr);
}
NotPromotable
}
hir::ExprKind::Continue(_) => {
NotPromotable
}
// Generator expressions
hir::ExprKind::Yield(ref expr, _) => {
let _ = v.check_expr(&expr);
NotPromotable
}
// Expressions with side-effects.
hir::ExprKind::AssignOp(_, ref lhs, ref rhs) | hir::ExprKind::Assign(ref lhs, ref rhs) => {
let _ = v.check_expr(lhs);
let _ = v.check_expr(rhs);
NotPromotable
}
hir::ExprKind::InlineAsm(ref _inline_asm, ref hirvec_lhs, ref hirvec_rhs) => {
for index in hirvec_lhs.iter().chain(hirvec_rhs.iter()) {
let _ = v.check_expr(index);
}
NotPromotable
}
};
ty_result & node_result
}
/// Checks the adjustments of an expression.
fn check_adjustments<'a, 'tcx>(
v: &mut CheckCrateVisitor<'a, 'tcx>,
e: &hir::Expr) -> Promotability {
use rustc::ty::adjustment::*;
let mut adjustments = v.tables.expr_adjustments(e).iter().peekable();
while let Some(adjustment) = adjustments.next() {
match adjustment.kind {
Adjust::NeverToAny |
Adjust::Pointer(_) |
Adjust::Borrow(_) => {}
Adjust::Deref(_) => {
if let Some(next_adjustment) = adjustments.peek() {
if let Adjust::Borrow(_) = next_adjustment.kind {
continue;
}
}
return NotPromotable;
}
}
}
Promotable
}
impl<'a, 'tcx> euv::Delegate<'tcx> for CheckCrateVisitor<'a, 'tcx> {
fn consume(&mut self,
_consume_id: hir::HirId,
_consume_span: Span,
_cmt: &mc::cmt_<'_>,
_mode: euv::ConsumeMode) {}
fn borrow(&mut self,
borrow_id: hir::HirId,
_borrow_span: Span,
cmt: &mc::cmt_<'tcx>,
_loan_region: ty::Region<'tcx>,
bk: ty::BorrowKind,
loan_cause: euv::LoanCause) {
debug!(
"borrow(borrow_id={:?}, cmt={:?}, bk={:?}, loan_cause={:?})",
borrow_id,
cmt,
bk,
loan_cause,
);
// Kind of hacky, but we allow Unsafe coercions in constants.
// These occur when we convert a &T or *T to a *U, as well as
// when making a thin pointer (e.g., `*T`) into a fat pointer
// (e.g., `*Trait`).
if let euv::LoanCause::AutoUnsafe = loan_cause {
return;
}
let mut cur = cmt;
loop {
match cur.cat {
Categorization::ThreadLocal(..) |
Categorization::Rvalue(..) => {
if loan_cause == euv::MatchDiscriminant {
// Ignore the dummy immutable borrow created by EUV.
break;
}
if bk.to_mutbl_lossy() == hir::MutMutable {
self.mut_rvalue_borrows.insert(borrow_id);
}
break;
}
Categorization::StaticItem => {
break;
}
Categorization::Deref(ref cmt, _) |
Categorization::Downcast(ref cmt, _) |
Categorization::Interior(ref cmt, _) => {
cur = cmt;
}
Categorization::Upvar(..) |
Categorization::Local(..) => break,
}
}
}
fn decl_without_init(&mut self, _id: hir::HirId, _span: Span) {}
fn mutate(&mut self,
_assignment_id: hir::HirId,
_assignment_span: Span,
_assignee_cmt: &mc::cmt_<'_>,
_mode: euv::MutateMode) {
}
fn matched_pat(&mut self, _: &hir::Pat, _: &mc::cmt_<'_>, _: euv::MatchMode) {}
fn consume_pat(&mut self,
_consume_pat: &hir::Pat,
_cmt: &mc::cmt_<'_>,
_mode: euv::ConsumeMode) {}
}