blob: af07c790e2a8799a35e82878719ab7d1af97d0f4 [file] [log] [blame]
syntax::register_diagnostics! {
/*
E0014: r##"
Constants can only be initialized by a constant value or, in a future
version of Rust, a call to a const function. This error indicates the use
of a path (like a::b, or x) denoting something other than one of these
allowed items. Erroneous code xample:
```compile_fail
const FOO: i32 = { let x = 0; x }; // 'x' isn't a constant nor a function!
```
To avoid it, you have to replace the non-constant value:
```
const FOO: i32 = { const X : i32 = 0; X };
// or even:
const FOO2: i32 = { 0 }; // but brackets are useless here
```
"##,
*/
E0130: r##"
You declared a pattern as an argument in a foreign function declaration.
Erroneous code example:
```compile_fail
extern {
fn foo((a, b): (u32, u32)); // error: patterns aren't allowed in foreign
// function declarations
}
```
Please replace the pattern argument with a regular one. Example:
```
struct SomeStruct {
a: u32,
b: u32,
}
extern {
fn foo(s: SomeStruct); // ok!
}
```
Or:
```
extern {
fn foo(a: (u32, u32)); // ok!
}
```
"##,
E0197: r##"
Inherent implementations (one that do not implement a trait but provide
methods associated with a type) are always safe because they are not
implementing an unsafe trait. Removing the `unsafe` keyword from the inherent
implementation will resolve this error.
```compile_fail,E0197
struct Foo;
// this will cause this error
unsafe impl Foo { }
// converting it to this will fix it
impl Foo { }
```
"##,
E0198: r##"
A negative implementation is one that excludes a type from implementing a
particular trait. Not being able to use a trait is always a safe operation,
so negative implementations are always safe and never need to be marked as
unsafe.
```compile_fail
#![feature(optin_builtin_traits)]
struct Foo;
// unsafe is unnecessary
unsafe impl !Clone for Foo { }
```
This will compile:
```ignore (ignore auto_trait future compatibility warning)
#![feature(optin_builtin_traits)]
struct Foo;
auto trait Enterprise {}
impl !Enterprise for Foo { }
```
Please note that negative impls are only allowed for auto traits.
"##,
E0267: r##"
This error indicates the use of a loop keyword (`break` or `continue`) inside a
closure but outside of any loop. Erroneous code example:
```compile_fail,E0267
let w = || { break; }; // error: `break` inside of a closure
```
`break` and `continue` keywords can be used as normal inside closures as long as
they are also contained within a loop. To halt the execution of a closure you
should instead use a return statement. Example:
```
let w = || {
for _ in 0..10 {
break;
}
};
w();
```
"##,
E0268: r##"
This error indicates the use of a loop keyword (`break` or `continue`) outside
of a loop. Without a loop to break out of or continue in, no sensible action can
be taken. Erroneous code example:
```compile_fail,E0268
fn some_func() {
break; // error: `break` outside of a loop
}
```
Please verify that you are using `break` and `continue` only in loops. Example:
```
fn some_func() {
for _ in 0..10 {
break; // ok!
}
}
```
"##,
E0379: r##"
Trait methods cannot be declared `const` by design. For more information, see
[RFC 911].
[RFC 911]: https://github.com/rust-lang/rfcs/pull/911
"##,
E0380: r##"
Auto traits cannot have methods or associated items.
For more information see the [opt-in builtin traits RFC][RFC 19].
[RFC 19]: https://github.com/rust-lang/rfcs/blob/master/text/0019-opt-in-builtin-traits.md
"##,
E0449: r##"
A visibility qualifier was used when it was unnecessary. Erroneous code
examples:
```compile_fail,E0449
struct Bar;
trait Foo {
fn foo();
}
pub impl Bar {} // error: unnecessary visibility qualifier
pub impl Foo for Bar { // error: unnecessary visibility qualifier
pub fn foo() {} // error: unnecessary visibility qualifier
}
```
To fix this error, please remove the visibility qualifier when it is not
required. Example:
```
struct Bar;
trait Foo {
fn foo();
}
// Directly implemented methods share the visibility of the type itself,
// so `pub` is unnecessary here
impl Bar {}
// Trait methods share the visibility of the trait, so `pub` is
// unnecessary in either case
impl Foo for Bar {
fn foo() {}
}
```
"##,
E0590: r##"
`break` or `continue` must include a label when used in the condition of a
`while` loop.
Example of erroneous code:
```compile_fail
while break {}
```
To fix this, add a label specifying which loop is being broken out of:
```
'foo: while break 'foo {}
```
"##,
E0571: r##"
A `break` statement with an argument appeared in a non-`loop` loop.
Example of erroneous code:
```compile_fail,E0571
# let mut i = 1;
# fn satisfied(n: usize) -> bool { n % 23 == 0 }
let result = while true {
if satisfied(i) {
break 2*i; // error: `break` with value from a `while` loop
}
i += 1;
};
```
The `break` statement can take an argument (which will be the value of the loop
expression if the `break` statement is executed) in `loop` loops, but not
`for`, `while`, or `while let` loops.
Make sure `break value;` statements only occur in `loop` loops:
```
# let mut i = 1;
# fn satisfied(n: usize) -> bool { n % 23 == 0 }
let result = loop { // ok!
if satisfied(i) {
break 2*i;
}
i += 1;
};
```
"##,
E0642: r##"
Trait methods currently cannot take patterns as arguments.
Example of erroneous code:
```compile_fail,E0642
trait Foo {
fn foo((x, y): (i32, i32)); // error: patterns aren't allowed
// in trait methods
}
```
You can instead use a single name for the argument:
```
trait Foo {
fn foo(x_and_y: (i32, i32)); // ok!
}
```
"##,
E0695: r##"
A `break` statement without a label appeared inside a labeled block.
Example of erroneous code:
```compile_fail,E0695
# #![feature(label_break_value)]
loop {
'a: {
break;
}
}
```
Make sure to always label the `break`:
```
# #![feature(label_break_value)]
'l: loop {
'a: {
break 'l;
}
}
```
Or if you want to `break` the labeled block:
```
# #![feature(label_break_value)]
loop {
'a: {
break 'a;
}
break;
}
```
"##,
E0670: r##"
Rust 2015 does not permit the use of `async fn`.
Example of erroneous code:
```compile_fail,E0670
async fn foo() {}
```
Switch to the Rust 2018 edition to use `async fn`.
"##,
;
E0226, // only a single explicit lifetime bound is permitted
E0472, // asm! is unsupported on this target
E0561, // patterns aren't allowed in function pointer types
E0567, // auto traits can not have generic parameters
E0568, // auto traits can not have super traits
E0666, // nested `impl Trait` is illegal
E0667, // `impl Trait` in projections
E0696, // `continue` pointing to a labeled block
E0706, // `async fn` in trait
}