blob: 5b78727fdd5ad133fff2905eee7a35a299a63053 [file] [log] [blame]
// Validate AST before lowering it to HIR.
//
// This pass is supposed to catch things that fit into AST data structures,
// but not permitted by the language. It runs after expansion when AST is frozen,
// so it can check for erroneous constructions produced by syntax extensions.
// This pass is supposed to perform only simple checks not requiring name resolution
// or type checking or some other kind of complex analysis.
use std::mem;
use syntax::print::pprust;
use rustc::lint;
use rustc::lint::builtin::{BuiltinLintDiagnostics, NESTED_IMPL_TRAIT};
use rustc::session::Session;
use rustc_data_structures::fx::FxHashMap;
use syntax::ast::*;
use syntax::attr;
use syntax::ext::proc_macro::is_proc_macro_attr;
use syntax::feature_gate::is_builtin_attr;
use syntax::source_map::Spanned;
use syntax::symbol::{kw, sym};
use syntax::visit::{self, Visitor};
use syntax::{span_err, struct_span_err, walk_list};
use syntax_pos::{Span, MultiSpan};
use errors::{Applicability, FatalError};
#[derive(Copy, Clone, Debug)]
struct OuterImplTrait {
span: Span,
/// rust-lang/rust#57979: a bug in original implementation caused
/// us to fail sometimes to record an outer `impl Trait`.
/// Therefore, in order to reliably issue a warning (rather than
/// an error) in the *precise* places where we are newly injecting
/// the diagnostic, we have to distinguish between the places
/// where the outer `impl Trait` has always been recorded, versus
/// the places where it has only recently started being recorded.
only_recorded_since_pull_request_57730: bool,
}
impl OuterImplTrait {
/// This controls whether we should downgrade the nested impl
/// trait diagnostic to a warning rather than an error, based on
/// whether the outer impl trait had been improperly skipped in
/// earlier implementations of the analysis on the stable
/// compiler.
fn should_warn_instead_of_error(&self) -> bool {
self.only_recorded_since_pull_request_57730
}
}
struct AstValidator<'a> {
session: &'a Session,
has_proc_macro_decls: bool,
/// Used to ban nested `impl Trait`, e.g., `impl Into<impl Debug>`.
/// Nested `impl Trait` _is_ allowed in associated type position,
/// e.g., `impl Iterator<Item = impl Debug>`.
outer_impl_trait: Option<OuterImplTrait>,
/// Used to ban `impl Trait` in path projections like `<impl Iterator>::Item`
/// or `Foo::Bar<impl Trait>`
is_impl_trait_banned: bool,
/// Used to ban associated type bounds (i.e., `Type<AssocType: Bounds>`) in
/// certain positions.
is_assoc_ty_bound_banned: bool,
/// rust-lang/rust#57979: the ban of nested `impl Trait` was buggy
/// until PRs #57730 and #57981 landed: it would jump directly to
/// walk_ty rather than visit_ty (or skip recurring entirely for
/// impl trait in projections), and thus miss some cases. We track
/// whether we should downgrade to a warning for short-term via
/// these booleans.
warning_period_57979_didnt_record_next_impl_trait: bool,
warning_period_57979_impl_trait_in_proj: bool,
}
impl<'a> AstValidator<'a> {
fn with_impl_trait_in_proj_warning<T>(&mut self, v: bool, f: impl FnOnce(&mut Self) -> T) -> T {
let old = mem::replace(&mut self.warning_period_57979_impl_trait_in_proj, v);
let ret = f(self);
self.warning_period_57979_impl_trait_in_proj = old;
ret
}
fn with_banned_impl_trait(&mut self, f: impl FnOnce(&mut Self)) {
let old = mem::replace(&mut self.is_impl_trait_banned, true);
f(self);
self.is_impl_trait_banned = old;
}
fn with_banned_assoc_ty_bound(&mut self, f: impl FnOnce(&mut Self)) {
let old = mem::replace(&mut self.is_assoc_ty_bound_banned, true);
f(self);
self.is_assoc_ty_bound_banned = old;
}
fn with_impl_trait(&mut self, outer: Option<OuterImplTrait>, f: impl FnOnce(&mut Self)) {
let old = mem::replace(&mut self.outer_impl_trait, outer);
f(self);
self.outer_impl_trait = old;
}
fn visit_assoc_ty_constraint_from_generic_args(&mut self, constraint: &'a AssocTyConstraint) {
match constraint.kind {
AssocTyConstraintKind::Equality { ref ty } => {
// rust-lang/rust#57979: bug in old `visit_generic_args` called
// `walk_ty` rather than `visit_ty`, skipping outer `impl Trait`
// if it happened to occur at `ty`.
if let TyKind::ImplTrait(..) = ty.node {
self.warning_period_57979_didnt_record_next_impl_trait = true;
}
}
AssocTyConstraintKind::Bound { .. } => {
if self.is_assoc_ty_bound_banned {
self.err_handler().span_err(constraint.span,
"associated type bounds are not allowed within structs, enums, or unions"
);
}
}
}
self.visit_assoc_ty_constraint(constraint);
}
fn visit_ty_from_generic_args(&mut self, ty: &'a Ty) {
// rust-lang/rust#57979: bug in old `visit_generic_args` called
// `walk_ty` rather than `visit_ty`, skippping outer `impl Trait`
// if it happened to occur at `ty`.
if let TyKind::ImplTrait(..) = ty.node {
self.warning_period_57979_didnt_record_next_impl_trait = true;
}
self.visit_ty(ty);
}
fn outer_impl_trait(&mut self, span: Span) -> OuterImplTrait {
let only_recorded_since_pull_request_57730 =
self.warning_period_57979_didnt_record_next_impl_trait;
// (This flag is designed to be set to `true`, and then only
// reach the construction point for the outer impl trait once,
// so its safe and easiest to unconditionally reset it to
// false.)
self.warning_period_57979_didnt_record_next_impl_trait = false;
OuterImplTrait {
span, only_recorded_since_pull_request_57730,
}
}
// Mirrors `visit::walk_ty`, but tracks relevant state.
fn walk_ty(&mut self, t: &'a Ty) {
match t.node {
TyKind::ImplTrait(..) => {
let outer_impl_trait = self.outer_impl_trait(t.span);
self.with_impl_trait(Some(outer_impl_trait), |this| visit::walk_ty(this, t))
}
TyKind::Path(ref qself, ref path) => {
// We allow these:
// - `Option<impl Trait>`
// - `option::Option<impl Trait>`
// - `option::Option<T>::Foo<impl Trait>
//
// But not these:
// - `<impl Trait>::Foo`
// - `option::Option<impl Trait>::Foo`.
//
// To implement this, we disallow `impl Trait` from `qself`
// (for cases like `<impl Trait>::Foo>`)
// but we allow `impl Trait` in `GenericArgs`
// iff there are no more PathSegments.
if let Some(ref qself) = *qself {
// `impl Trait` in `qself` is always illegal
self.with_banned_impl_trait(|this| this.visit_ty(&qself.ty));
}
// Note that there should be a call to visit_path here,
// so if any logic is added to process `Path`s a call to it should be
// added both in visit_path and here. This code mirrors visit::walk_path.
for (i, segment) in path.segments.iter().enumerate() {
// Allow `impl Trait` iff we're on the final path segment
if i == path.segments.len() - 1 {
self.visit_path_segment(path.span, segment);
} else {
self.with_banned_impl_trait(|this| {
this.visit_path_segment(path.span, segment)
});
}
}
}
_ => visit::walk_ty(self, t),
}
}
fn err_handler(&self) -> &errors::Handler {
&self.session.diagnostic()
}
fn check_lifetime(&self, ident: Ident) {
let valid_names = [kw::UnderscoreLifetime,
kw::StaticLifetime,
kw::Invalid];
if !valid_names.contains(&ident.name) && ident.without_first_quote().is_reserved() {
self.err_handler().span_err(ident.span, "lifetimes cannot use keyword names");
}
}
fn check_label(&self, ident: Ident) {
if ident.without_first_quote().is_reserved() {
self.err_handler()
.span_err(ident.span, &format!("invalid label name `{}`", ident.name));
}
}
fn invalid_visibility(&self, vis: &Visibility, note: Option<&str>) {
if let VisibilityKind::Inherited = vis.node {
return
}
let mut err = struct_span_err!(self.session,
vis.span,
E0449,
"unnecessary visibility qualifier");
if vis.node.is_pub() {
err.span_label(vis.span, "`pub` not permitted here because it's implied");
}
if let Some(note) = note {
err.note(note);
}
err.emit();
}
fn check_decl_no_pat<ReportFn: Fn(Span, bool)>(&self, decl: &FnDecl, report_err: ReportFn) {
for arg in &decl.inputs {
match arg.pat.node {
PatKind::Ident(BindingMode::ByValue(Mutability::Immutable), _, None) |
PatKind::Wild => {}
PatKind::Ident(BindingMode::ByValue(Mutability::Mutable), _, None) =>
report_err(arg.pat.span, true),
_ => report_err(arg.pat.span, false),
}
}
}
fn check_trait_fn_not_async(&self, span: Span, asyncness: IsAsync) {
if asyncness.is_async() {
struct_span_err!(self.session, span, E0706,
"trait fns cannot be declared `async`").emit()
}
}
fn check_trait_fn_not_const(&self, constness: Spanned<Constness>) {
if constness.node == Constness::Const {
struct_span_err!(self.session, constness.span, E0379,
"trait fns cannot be declared const")
.span_label(constness.span, "trait fns cannot be const")
.emit();
}
}
fn no_questions_in_bounds(&self, bounds: &GenericBounds, where_: &str, is_trait: bool) {
for bound in bounds {
if let GenericBound::Trait(ref poly, TraitBoundModifier::Maybe) = *bound {
let mut err = self.err_handler().struct_span_err(poly.span,
&format!("`?Trait` is not permitted in {}", where_));
if is_trait {
err.note(&format!("traits are `?{}` by default", poly.trait_ref.path));
}
err.emit();
}
}
}
/// Matches `'-' lit | lit (cf. parser::Parser::parse_literal_maybe_minus)`,
/// or paths for ranges.
//
// FIXME: do we want to allow `expr -> pattern` conversion to create path expressions?
// That means making this work:
//
// ```rust,ignore (FIXME)
// struct S;
// macro_rules! m {
// ($a:expr) => {
// let $a = S;
// }
// }
// m!(S);
// ```
fn check_expr_within_pat(&self, expr: &Expr, allow_paths: bool) {
match expr.node {
ExprKind::Lit(..) | ExprKind::Err => {}
ExprKind::Path(..) if allow_paths => {}
ExprKind::Unary(UnOp::Neg, ref inner)
if match inner.node { ExprKind::Lit(_) => true, _ => false } => {}
_ => self.err_handler().span_err(expr.span, "arbitrary expressions aren't allowed \
in patterns")
}
}
fn check_late_bound_lifetime_defs(&self, params: &[GenericParam]) {
// Check only lifetime parameters are present and that the lifetime
// parameters that are present have no bounds.
let non_lt_param_spans: Vec<_> = params.iter().filter_map(|param| match param.kind {
GenericParamKind::Lifetime { .. } => {
if !param.bounds.is_empty() {
let spans: Vec<_> = param.bounds.iter().map(|b| b.span()).collect();
self.err_handler()
.span_err(spans, "lifetime bounds cannot be used in this context");
}
None
}
_ => Some(param.ident.span),
}).collect();
if !non_lt_param_spans.is_empty() {
self.err_handler().span_err(non_lt_param_spans,
"only lifetime parameters can be used in this context");
}
}
fn check_fn_decl(&self, fn_decl: &FnDecl) {
fn_decl
.inputs
.iter()
.flat_map(|i| i.attrs.as_ref())
.filter(|attr| {
let arr = [sym::allow, sym::cfg, sym::cfg_attr, sym::deny, sym::forbid, sym::warn];
!arr.contains(&attr.name_or_empty()) && is_builtin_attr(attr)
})
.for_each(|attr| if attr.is_sugared_doc {
let mut err = self.err_handler().struct_span_err(
attr.span,
"documentation comments cannot be applied to function parameters"
);
err.span_label(attr.span, "doc comments are not allowed here");
err.emit();
}
else {
self.err_handler().span_err(attr.span, "allow, cfg, cfg_attr, deny, \
forbid, and warn are the only allowed built-in attributes in function parameters")
});
}
}
enum GenericPosition {
Param,
Arg,
}
fn validate_generics_order<'a>(
sess: &Session,
handler: &errors::Handler,
generics: impl Iterator<
Item = (
ParamKindOrd,
Option<&'a [GenericBound]>,
Span,
Option<String>
),
>,
pos: GenericPosition,
span: Span,
) {
let mut max_param: Option<ParamKindOrd> = None;
let mut out_of_order = FxHashMap::default();
let mut param_idents = vec![];
let mut found_type = false;
let mut found_const = false;
for (kind, bounds, span, ident) in generics {
if let Some(ident) = ident {
param_idents.push((kind, bounds, param_idents.len(), ident));
}
let max_param = &mut max_param;
match max_param {
Some(max_param) if *max_param > kind => {
let entry = out_of_order.entry(kind).or_insert((*max_param, vec![]));
entry.1.push(span);
}
Some(_) | None => *max_param = Some(kind),
};
match kind {
ParamKindOrd::Type => found_type = true,
ParamKindOrd::Const => found_const = true,
_ => {}
}
}
let mut ordered_params = "<".to_string();
if !out_of_order.is_empty() {
param_idents.sort_by_key(|&(po, _, i, _)| (po, i));
let mut first = true;
for (_, bounds, _, ident) in param_idents {
if !first {
ordered_params += ", ";
}
ordered_params += &ident;
if let Some(bounds) = bounds {
if !bounds.is_empty() {
ordered_params += ": ";
ordered_params += &pprust::bounds_to_string(&bounds);
}
}
first = false;
}
}
ordered_params += ">";
let pos_str = match pos {
GenericPosition::Param => "parameter",
GenericPosition::Arg => "argument",
};
for (param_ord, (max_param, spans)) in &out_of_order {
let mut err = handler.struct_span_err(spans.clone(),
&format!(
"{} {pos}s must be declared prior to {} {pos}s",
param_ord,
max_param,
pos = pos_str,
));
if let GenericPosition::Param = pos {
err.span_suggestion(
span,
&format!(
"reorder the {}s: lifetimes, then types{}",
pos_str,
if sess.features_untracked().const_generics { ", then consts" } else { "" },
),
ordered_params.clone(),
Applicability::MachineApplicable,
);
}
err.emit();
}
// FIXME(const_generics): we shouldn't have to abort here at all, but we currently get ICEs
// if we don't. Const parameters and type parameters can currently conflict if they
// are out-of-order.
if !out_of_order.is_empty() && found_type && found_const {
FatalError.raise();
}
}
impl<'a> Visitor<'a> for AstValidator<'a> {
fn visit_expr(&mut self, expr: &'a Expr) {
match &expr.node {
ExprKind::Closure(_, _, _, fn_decl, _, _) => {
self.check_fn_decl(fn_decl);
}
ExprKind::InlineAsm(..) if !self.session.target.target.options.allow_asm => {
span_err!(self.session, expr.span, E0472, "asm! is unsupported on this target");
}
_ => {}
}
visit::walk_expr(self, expr);
}
fn visit_ty(&mut self, ty: &'a Ty) {
match ty.node {
TyKind::BareFn(ref bfty) => {
self.check_fn_decl(&bfty.decl);
self.check_decl_no_pat(&bfty.decl, |span, _| {
struct_span_err!(self.session, span, E0561,
"patterns aren't allowed in function pointer types").emit();
});
self.check_late_bound_lifetime_defs(&bfty.generic_params);
}
TyKind::TraitObject(ref bounds, ..) => {
let mut any_lifetime_bounds = false;
for bound in bounds {
if let GenericBound::Outlives(ref lifetime) = *bound {
if any_lifetime_bounds {
span_err!(self.session, lifetime.ident.span, E0226,
"only a single explicit lifetime bound is permitted");
break;
}
any_lifetime_bounds = true;
}
}
self.no_questions_in_bounds(bounds, "trait object types", false);
}
TyKind::ImplTrait(_, ref bounds) => {
if self.is_impl_trait_banned {
if self.warning_period_57979_impl_trait_in_proj {
self.session.buffer_lint(
NESTED_IMPL_TRAIT, ty.id, ty.span,
"`impl Trait` is not allowed in path parameters");
} else {
struct_span_err!(self.session, ty.span, E0667,
"`impl Trait` is not allowed in path parameters").emit();
}
}
if let Some(outer_impl_trait) = self.outer_impl_trait {
if outer_impl_trait.should_warn_instead_of_error() {
self.session.buffer_lint_with_diagnostic(
NESTED_IMPL_TRAIT, ty.id, ty.span,
"nested `impl Trait` is not allowed",
BuiltinLintDiagnostics::NestedImplTrait {
outer_impl_trait_span: outer_impl_trait.span,
inner_impl_trait_span: ty.span,
});
} else {
struct_span_err!(self.session, ty.span, E0666,
"nested `impl Trait` is not allowed")
.span_label(outer_impl_trait.span, "outer `impl Trait`")
.span_label(ty.span, "nested `impl Trait` here")
.emit();
}
}
if !bounds.iter()
.any(|b| if let GenericBound::Trait(..) = *b { true } else { false }) {
self.err_handler().span_err(ty.span, "at least one trait must be specified");
}
self.with_impl_trait_in_proj_warning(true, |this| this.walk_ty(ty));
return;
}
_ => {}
}
self.walk_ty(ty)
}
fn visit_label(&mut self, label: &'a Label) {
self.check_label(label.ident);
visit::walk_label(self, label);
}
fn visit_lifetime(&mut self, lifetime: &'a Lifetime) {
self.check_lifetime(lifetime.ident);
visit::walk_lifetime(self, lifetime);
}
fn visit_item(&mut self, item: &'a Item) {
if item.attrs.iter().any(|attr| is_proc_macro_attr(attr) ) {
self.has_proc_macro_decls = true;
}
match item.node {
ItemKind::Impl(unsafety, polarity, _, _, Some(..), ref ty, ref impl_items) => {
self.invalid_visibility(&item.vis, None);
if let TyKind::Err = ty.node {
self.err_handler()
.struct_span_err(item.span, "`impl Trait for .. {}` is an obsolete syntax")
.help("use `auto trait Trait {}` instead").emit();
}
if unsafety == Unsafety::Unsafe && polarity == ImplPolarity::Negative {
span_err!(self.session, item.span, E0198, "negative impls cannot be unsafe");
}
for impl_item in impl_items {
self.invalid_visibility(&impl_item.vis, None);
if let ImplItemKind::Method(ref sig, _) = impl_item.node {
self.check_trait_fn_not_const(sig.header.constness);
self.check_trait_fn_not_async(impl_item.span, sig.header.asyncness.node);
}
}
}
ItemKind::Impl(unsafety, polarity, defaultness, _, None, _, _) => {
self.invalid_visibility(&item.vis,
Some("place qualifiers on individual impl items instead"));
if unsafety == Unsafety::Unsafe {
span_err!(self.session, item.span, E0197, "inherent impls cannot be unsafe");
}
if polarity == ImplPolarity::Negative {
self.err_handler().span_err(item.span, "inherent impls cannot be negative");
}
if defaultness == Defaultness::Default {
self.err_handler()
.struct_span_err(item.span, "inherent impls cannot be default")
.note("only trait implementations may be annotated with default").emit();
}
}
ItemKind::Fn(ref decl, ref header, ref generics, _) => {
self.visit_fn_header(header);
self.check_fn_decl(decl);
// We currently do not permit const generics in `const fn`, as
// this is tantamount to allowing compile-time dependent typing.
if header.constness.node == Constness::Const {
// Look for const generics and error if we find any.
for param in &generics.params {
match param.kind {
GenericParamKind::Const { .. } => {
self.err_handler()
.struct_span_err(
item.span,
"const parameters are not permitted in `const fn`",
)
.emit();
}
_ => {}
}
}
}
}
ItemKind::ForeignMod(..) => {
self.invalid_visibility(
&item.vis,
Some("place qualifiers on individual foreign items instead"),
);
}
ItemKind::Enum(ref def, _) => {
for variant in &def.variants {
for field in variant.data.fields() {
self.invalid_visibility(&field.vis, None);
}
}
}
ItemKind::Trait(is_auto, _, ref generics, ref bounds, ref trait_items) => {
if is_auto == IsAuto::Yes {
// Auto traits cannot have generics, super traits nor contain items.
if !generics.params.is_empty() {
struct_span_err!(self.session, item.span, E0567,
"auto traits cannot have generic parameters"
).emit();
}
if !bounds.is_empty() {
struct_span_err!(self.session, item.span, E0568,
"auto traits cannot have super traits"
).emit();
}
if !trait_items.is_empty() {
struct_span_err!(self.session, item.span, E0380,
"auto traits cannot have methods or associated items"
).emit();
}
}
self.no_questions_in_bounds(bounds, "supertraits", true);
for trait_item in trait_items {
if let TraitItemKind::Method(ref sig, ref block) = trait_item.node {
self.check_fn_decl(&sig.decl);
self.check_trait_fn_not_async(trait_item.span, sig.header.asyncness.node);
self.check_trait_fn_not_const(sig.header.constness);
if block.is_none() {
self.check_decl_no_pat(&sig.decl, |span, mut_ident| {
if mut_ident {
self.session.buffer_lint(
lint::builtin::PATTERNS_IN_FNS_WITHOUT_BODY,
trait_item.id, span,
"patterns aren't allowed in methods without bodies");
} else {
struct_span_err!(self.session, span, E0642,
"patterns aren't allowed in methods without bodies").emit();
}
});
}
}
}
}
ItemKind::Mod(_) => {
// Ensure that `path` attributes on modules are recorded as used (cf. issue #35584).
attr::first_attr_value_str_by_name(&item.attrs, sym::path);
if attr::contains_name(&item.attrs, sym::warn_directory_ownership) {
let lint = lint::builtin::LEGACY_DIRECTORY_OWNERSHIP;
let msg = "cannot declare a new module at this location";
self.session.buffer_lint(lint, item.id, item.span, msg);
}
}
ItemKind::Union(ref vdata, _) => {
if let VariantData::Tuple(..) | VariantData::Unit(..) = vdata {
self.err_handler().span_err(item.span,
"tuple and unit unions are not permitted");
}
if vdata.fields().is_empty() {
self.err_handler().span_err(item.span,
"unions cannot have zero fields");
}
}
ItemKind::OpaqueTy(ref bounds, _) => {
if !bounds.iter()
.any(|b| if let GenericBound::Trait(..) = *b { true } else { false }) {
let msp = MultiSpan::from_spans(bounds.iter()
.map(|bound| bound.span()).collect());
self.err_handler().span_err(msp, "at least one trait must be specified");
}
}
_ => {}
}
visit::walk_item(self, item)
}
fn visit_foreign_item(&mut self, fi: &'a ForeignItem) {
match fi.node {
ForeignItemKind::Fn(ref decl, _) => {
self.check_fn_decl(decl);
self.check_decl_no_pat(decl, |span, _| {
struct_span_err!(self.session, span, E0130,
"patterns aren't allowed in foreign function declarations")
.span_label(span, "pattern not allowed in foreign function").emit();
});
}
ForeignItemKind::Static(..) | ForeignItemKind::Ty | ForeignItemKind::Macro(..) => {}
}
visit::walk_foreign_item(self, fi)
}
// Mirrors `visit::walk_generic_args`, but tracks relevant state.
fn visit_generic_args(&mut self, _: Span, generic_args: &'a GenericArgs) {
match *generic_args {
GenericArgs::AngleBracketed(ref data) => {
walk_list!(self, visit_generic_arg, &data.args);
validate_generics_order(
self.session,
self.err_handler(),
data.args.iter().map(|arg| {
(match arg {
GenericArg::Lifetime(..) => ParamKindOrd::Lifetime,
GenericArg::Type(..) => ParamKindOrd::Type,
GenericArg::Const(..) => ParamKindOrd::Const,
}, None, arg.span(), None)
}),
GenericPosition::Arg,
generic_args.span(),
);
// Type bindings such as `Item = impl Debug` in `Iterator<Item = Debug>`
// are allowed to contain nested `impl Trait`.
self.with_impl_trait(None, |this| {
walk_list!(this, visit_assoc_ty_constraint_from_generic_args,
&data.constraints);
});
}
GenericArgs::Parenthesized(ref data) => {
walk_list!(self, visit_ty, &data.inputs);
if let Some(ref type_) = data.output {
// `-> Foo` syntax is essentially an associated type binding,
// so it is also allowed to contain nested `impl Trait`.
self.with_impl_trait(None, |this| this.visit_ty_from_generic_args(type_));
}
}
}
}
fn visit_generics(&mut self, generics: &'a Generics) {
let mut prev_ty_default = None;
for param in &generics.params {
if let GenericParamKind::Type { ref default, .. } = param.kind {
if default.is_some() {
prev_ty_default = Some(param.ident.span);
} else if let Some(span) = prev_ty_default {
self.err_handler()
.span_err(span, "type parameters with a default must be trailing");
break;
}
}
}
validate_generics_order(
self.session,
self.err_handler(),
generics.params.iter().map(|param| {
let ident = Some(param.ident.to_string());
let (kind, ident) = match &param.kind {
GenericParamKind::Lifetime { .. } => (ParamKindOrd::Lifetime, ident),
GenericParamKind::Type { .. } => (ParamKindOrd::Type, ident),
GenericParamKind::Const { ref ty } => {
let ty = pprust::ty_to_string(ty);
(ParamKindOrd::Const, Some(format!("const {}: {}", param.ident, ty)))
}
};
(kind, Some(&*param.bounds), param.ident.span, ident)
}),
GenericPosition::Param,
generics.span,
);
for predicate in &generics.where_clause.predicates {
if let WherePredicate::EqPredicate(ref predicate) = *predicate {
self.err_handler()
.span_err(predicate.span, "equality constraints are not yet \
supported in where clauses (see #20041)");
}
}
visit::walk_generics(self, generics)
}
fn visit_generic_param(&mut self, param: &'a GenericParam) {
if let GenericParamKind::Lifetime { .. } = param.kind {
self.check_lifetime(param.ident);
}
visit::walk_generic_param(self, param);
}
fn visit_pat(&mut self, pat: &'a Pat) {
match pat.node {
PatKind::Lit(ref expr) => {
self.check_expr_within_pat(expr, false);
}
PatKind::Range(ref start, ref end, _) => {
self.check_expr_within_pat(start, true);
self.check_expr_within_pat(end, true);
}
_ => {}
}
visit::walk_pat(self, pat)
}
fn visit_where_predicate(&mut self, p: &'a WherePredicate) {
if let &WherePredicate::BoundPredicate(ref bound_predicate) = p {
// A type binding, eg `for<'c> Foo: Send+Clone+'c`
self.check_late_bound_lifetime_defs(&bound_predicate.bound_generic_params);
}
visit::walk_where_predicate(self, p);
}
fn visit_poly_trait_ref(&mut self, t: &'a PolyTraitRef, m: &'a TraitBoundModifier) {
self.check_late_bound_lifetime_defs(&t.bound_generic_params);
visit::walk_poly_trait_ref(self, t, m);
}
fn visit_variant_data(&mut self, s: &'a VariantData) {
self.with_banned_assoc_ty_bound(|this| visit::walk_struct_def(this, s))
}
fn visit_enum_def(&mut self, enum_definition: &'a EnumDef,
generics: &'a Generics, item_id: NodeId, _: Span) {
self.with_banned_assoc_ty_bound(
|this| visit::walk_enum_def(this, enum_definition, generics, item_id))
}
fn visit_mac(&mut self, mac: &Mac) {
// when a new macro kind is added but the author forgets to set it up for expansion
// because that's the only part that won't cause a compiler error
self.session.diagnostic()
.span_bug(mac.span, "macro invocation missed in expansion; did you forget to override \
the relevant `fold_*()` method in `PlaceholderExpander`?");
}
fn visit_impl_item(&mut self, ii: &'a ImplItem) {
match ii.node {
ImplItemKind::Method(ref sig, _) => {
self.check_fn_decl(&sig.decl);
}
_ => {}
}
visit::walk_impl_item(self, ii);
}
}
pub fn check_crate(session: &Session, krate: &Crate) -> bool {
let mut validator = AstValidator {
session,
has_proc_macro_decls: false,
outer_impl_trait: None,
is_impl_trait_banned: false,
is_assoc_ty_bound_banned: false,
warning_period_57979_didnt_record_next_impl_trait: false,
warning_period_57979_impl_trait_in_proj: false,
};
visit::walk_crate(&mut validator, krate);
validator.has_proc_macro_decls
}