blob: 31ec62ba70a956478917afc6d7ad410e66eb0562 [file] [log] [blame]
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Give useful errors and suggestions to users when an item can't be
//! found or is otherwise invalid.
use check::FnCtxt;
use rustc::hir::map as hir_map;
use rustc_data_structures::sync::Lrc;
use rustc::ty::{self, Ty, TyCtxt, ToPolyTraitRef, ToPredicate, TypeFoldable};
use hir::def::Def;
use hir::def_id::{CRATE_DEF_INDEX, DefId};
use middle::lang_items::FnOnceTraitLangItem;
use namespace::Namespace;
use rustc::traits::Obligation;
use util::nodemap::FxHashSet;
use syntax::ast;
use syntax::util::lev_distance::find_best_match_for_name;
use errors::DiagnosticBuilder;
use syntax_pos::{Span, FileName};
use rustc::hir::def_id::LOCAL_CRATE;
use rustc::hir;
use rustc::hir::print;
use rustc::infer::type_variable::TypeVariableOrigin;
use rustc::ty::TyAdt;
use std::cmp::Ordering;
use super::{MethodError, NoMatchData, CandidateSource};
use super::probe::Mode;
impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
fn is_fn_ty(&self, ty: &Ty<'tcx>, span: Span) -> bool {
let tcx = self.tcx;
match ty.sty {
// Not all of these (e.g. unsafe fns) implement FnOnce
// so we look for these beforehand
ty::TyClosure(..) |
ty::TyFnDef(..) |
ty::TyFnPtr(_) => true,
// If it's not a simple function, look for things which implement FnOnce
_ => {
let fn_once = match tcx.lang_items().require(FnOnceTraitLangItem) {
Ok(fn_once) => fn_once,
Err(..) => return false,
};
self.autoderef(span, ty).any(|(ty, _)| {
self.probe(|_| {
let fn_once_substs = tcx.mk_substs_trait(ty, &[
self.next_ty_var(TypeVariableOrigin::MiscVariable(span)).into()
]);
let trait_ref = ty::TraitRef::new(fn_once, fn_once_substs);
let poly_trait_ref = trait_ref.to_poly_trait_ref();
let obligation =
Obligation::misc(span,
self.body_id,
self.param_env,
poly_trait_ref.to_predicate());
self.predicate_may_hold(&obligation)
})
})
}
}
}
pub fn report_method_error(&self,
span: Span,
rcvr_ty: Ty<'tcx>,
item_name: ast::Ident,
rcvr_expr: Option<&hir::Expr>,
error: MethodError<'tcx>,
args: Option<&'gcx [hir::Expr]>) {
// avoid suggestions when we don't know what's going on.
if rcvr_ty.references_error() {
return;
}
let report_candidates = |err: &mut DiagnosticBuilder, mut sources: Vec<CandidateSource>| {
sources.sort();
sources.dedup();
// Dynamic limit to avoid hiding just one candidate, which is silly.
let limit = if sources.len() == 5 { 5 } else { 4 };
for (idx, source) in sources.iter().take(limit).enumerate() {
match *source {
CandidateSource::ImplSource(impl_did) => {
// Provide the best span we can. Use the item, if local to crate, else
// the impl, if local to crate (item may be defaulted), else nothing.
let item = self.associated_item(impl_did, item_name, Namespace::Value)
.or_else(|| {
self.associated_item(
self.tcx.impl_trait_ref(impl_did).unwrap().def_id,
item_name,
Namespace::Value,
)
}).unwrap();
let note_span = self.tcx.hir.span_if_local(item.def_id).or_else(|| {
self.tcx.hir.span_if_local(impl_did)
});
let impl_ty = self.impl_self_ty(span, impl_did).ty;
let insertion = match self.tcx.impl_trait_ref(impl_did) {
None => String::new(),
Some(trait_ref) => {
format!(" of the trait `{}`",
self.tcx.item_path_str(trait_ref.def_id))
}
};
let note_str = if sources.len() > 1 {
format!("candidate #{} is defined in an impl{} for the type `{}`",
idx + 1,
insertion,
impl_ty)
} else {
format!("the candidate is defined in an impl{} for the type `{}`",
insertion,
impl_ty)
};
if let Some(note_span) = note_span {
// We have a span pointing to the method. Show note with snippet.
err.span_note(self.tcx.sess.source_map().def_span(note_span),
&note_str);
} else {
err.note(&note_str);
}
}
CandidateSource::TraitSource(trait_did) => {
let item = self
.associated_item(trait_did, item_name, Namespace::Value)
.unwrap();
let item_span = self.tcx.sess.source_map()
.def_span(self.tcx.def_span(item.def_id));
if sources.len() > 1 {
span_note!(err,
item_span,
"candidate #{} is defined in the trait `{}`",
idx + 1,
self.tcx.item_path_str(trait_did));
} else {
span_note!(err,
item_span,
"the candidate is defined in the trait `{}`",
self.tcx.item_path_str(trait_did));
}
err.help(&format!("to disambiguate the method call, write `{}::{}({}{})` \
instead",
self.tcx.item_path_str(trait_did),
item_name,
if rcvr_ty.is_region_ptr() && args.is_some() {
if rcvr_ty.is_mutable_pointer() {
"&mut "
} else {
"&"
}
} else {
""
},
args.map(|arg| arg.iter()
.map(|arg| print::to_string(print::NO_ANN,
|s| s.print_expr(arg)))
.collect::<Vec<_>>()
.join(", ")).unwrap_or("...".to_owned())));
}
}
}
if sources.len() > limit {
err.note(&format!("and {} others", sources.len() - limit));
}
};
match error {
MethodError::NoMatch(NoMatchData {
static_candidates: static_sources,
unsatisfied_predicates,
out_of_scope_traits,
lev_candidate,
mode,
}) => {
let tcx = self.tcx;
let actual = self.resolve_type_vars_if_possible(&rcvr_ty);
let ty_string = self.ty_to_string(actual);
let is_method = mode == Mode::MethodCall;
let mut suggestion = None;
let item_kind = if is_method {
"method"
} else if actual.is_enum() {
if let TyAdt(ref adt_def, _) = actual.sty {
let names = adt_def.variants.iter().map(|s| &s.name);
suggestion = find_best_match_for_name(names,
&item_name.as_str(),
None);
}
"variant"
} else {
match (item_name.as_str().chars().next(), actual.is_fresh_ty()) {
(Some(name), false) if name.is_lowercase() => {
"function or associated item"
}
(Some(_), false) => "associated item",
(Some(_), true) | (None, false) => {
"variant or associated item"
}
(None, true) => "variant",
}
};
let mut err = if !actual.references_error() {
// Suggest clamping down the type if the method that is being attempted to
// be used exists at all, and the type is an ambiuous numeric type
// ({integer}/{float}).
let mut candidates = all_traits(self.tcx)
.into_iter()
.filter(|info| {
self.associated_item(info.def_id, item_name, Namespace::Value).is_some()
});
if let (true, false, Some(expr), Some(_)) = (actual.is_numeric(),
actual.has_concrete_skeleton(),
rcvr_expr,
candidates.next()) {
let mut err = struct_span_err!(
tcx.sess,
span,
E0689,
"can't call {} `{}` on ambiguous numeric type `{}`",
item_kind,
item_name,
ty_string
);
let concrete_type = if actual.is_integral() {
"i32"
} else {
"f32"
};
match expr.node {
hir::ExprKind::Lit(ref lit) => { // numeric literal
let snippet = tcx.sess.source_map().span_to_snippet(lit.span)
.unwrap_or("<numeric literal>".to_string());
err.span_suggestion(lit.span,
&format!("you must specify a concrete type for \
this numeric value, like `{}`",
concrete_type),
format!("{}_{}",
snippet,
concrete_type));
}
hir::ExprKind::Path(ref qpath) => { // local binding
if let &hir::QPath::Resolved(_, ref path) = &qpath {
if let hir::def::Def::Local(node_id) = path.def {
let span = tcx.hir.span(node_id);
let snippet = tcx.sess.source_map().span_to_snippet(span)
.unwrap();
let filename = tcx.sess.source_map().span_to_filename(span);
let parent_node = self.tcx.hir.get(
self.tcx.hir.get_parent_node(node_id),
);
let msg = format!(
"you must specify a type for this binding, like `{}`",
concrete_type,
);
match (filename, parent_node) {
(FileName::Real(_), hir_map::NodeLocal(hir::Local {
source: hir::LocalSource::Normal,
ty,
..
})) => {
err.span_suggestion(
// account for `let x: _ = 42;`
// ^^^^
span.to(ty.as_ref().map(|ty| ty.span)
.unwrap_or(span)),
&msg,
format!("{}: {}", snippet, concrete_type),
);
}
_ => {
err.span_label(span, msg);
}
}
}
}
}
_ => {}
}
err.emit();
return;
} else {
let mut err = struct_span_err!(
tcx.sess,
span,
E0599,
"no {} named `{}` found for type `{}` in the current scope",
item_kind,
item_name,
ty_string
);
if let Some(suggestion) = suggestion {
err.note(&format!("did you mean `{}::{}`?", ty_string, suggestion));
}
err
}
} else {
tcx.sess.diagnostic().struct_dummy()
};
if let Some(def) = actual.ty_adt_def() {
if let Some(full_sp) = tcx.hir.span_if_local(def.did) {
let def_sp = tcx.sess.source_map().def_span(full_sp);
err.span_label(def_sp, format!("{} `{}` not found {}",
item_kind,
item_name,
if def.is_enum() && !is_method {
"here"
} else {
"for this"
}));
}
}
// If the method name is the name of a field with a function or closure type,
// give a helping note that it has to be called as (x.f)(...).
if let Some(expr) = rcvr_expr {
for (ty, _) in self.autoderef(span, rcvr_ty) {
match ty.sty {
ty::TyAdt(def, substs) if !def.is_enum() => {
let variant = &def.non_enum_variant();
if let Some(index) = self.tcx.find_field_index(item_name, variant) {
let field = &variant.fields[index];
let snippet = tcx.sess.source_map().span_to_snippet(expr.span);
let expr_string = match snippet {
Ok(expr_string) => expr_string,
_ => "s".into(), // Default to a generic placeholder for the
// expression when we can't generate a
// string snippet
};
let field_ty = field.ty(tcx, substs);
let scope = self.tcx.hir.get_module_parent(self.body_id);
if field.vis.is_accessible_from(scope, self.tcx) {
if self.is_fn_ty(&field_ty, span) {
err.help(&format!("use `({0}.{1})(...)` if you \
meant to call the function \
stored in the `{1}` field",
expr_string,
item_name));
} else {
err.help(&format!("did you mean to write `{0}.{1}` \
instead of `{0}.{1}(...)`?",
expr_string,
item_name));
}
err.span_label(span, "field, not a method");
} else {
err.span_label(span, "private field, not a method");
}
break;
}
}
_ => {}
}
}
} else {
err.span_label(span, format!("{} not found in `{}`", item_kind, ty_string));
}
if self.is_fn_ty(&rcvr_ty, span) {
macro_rules! report_function {
($span:expr, $name:expr) => {
err.note(&format!("{} is a function, perhaps you wish to call it",
$name));
}
}
if let Some(expr) = rcvr_expr {
if let Ok(expr_string) = tcx.sess.source_map().span_to_snippet(expr.span) {
report_function!(expr.span, expr_string);
} else if let hir::ExprKind::Path(hir::QPath::Resolved(_, ref path)) =
expr.node
{
if let Some(segment) = path.segments.last() {
report_function!(expr.span, segment.ident);
}
}
}
}
if !static_sources.is_empty() {
err.note("found the following associated functions; to be used as methods, \
functions must have a `self` parameter");
err.span_label(span, "this is an associated function, not a method");
}
if static_sources.len() == 1 {
if let Some(expr) = rcvr_expr {
err.span_suggestion(expr.span.to(span),
"use associated function syntax instead",
format!("{}::{}",
self.ty_to_string(actual),
item_name));
} else {
err.help(&format!("try with `{}::{}`",
self.ty_to_string(actual), item_name));
}
report_candidates(&mut err, static_sources);
} else if static_sources.len() > 1 {
report_candidates(&mut err, static_sources);
}
if !unsatisfied_predicates.is_empty() {
let bound_list = unsatisfied_predicates.iter()
.map(|p| format!("`{} : {}`", p.self_ty(), p))
.collect::<Vec<_>>()
.join("\n");
err.note(&format!("the method `{}` exists but the following trait bounds \
were not satisfied:\n{}",
item_name,
bound_list));
}
if actual.is_numeric() && actual.is_fresh() {
} else {
self.suggest_traits_to_import(&mut err,
span,
rcvr_ty,
item_name,
rcvr_expr,
out_of_scope_traits);
}
if let Some(lev_candidate) = lev_candidate {
err.help(&format!("did you mean `{}`?", lev_candidate.ident));
}
err.emit();
}
MethodError::Ambiguity(sources) => {
let mut err = struct_span_err!(self.sess(),
span,
E0034,
"multiple applicable items in scope");
err.span_label(span, format!("multiple `{}` found", item_name));
report_candidates(&mut err, sources);
err.emit();
}
MethodError::PrivateMatch(def, out_of_scope_traits) => {
let mut err = struct_span_err!(self.tcx.sess, span, E0624,
"{} `{}` is private", def.kind_name(), item_name);
self.suggest_valid_traits(&mut err, out_of_scope_traits);
err.emit();
}
MethodError::IllegalSizedBound(candidates) => {
let msg = format!("the `{}` method cannot be invoked on a trait object", item_name);
let mut err = self.sess().struct_span_err(span, &msg);
if !candidates.is_empty() {
let help = format!("{an}other candidate{s} {were} found in the following \
trait{s}, perhaps add a `use` for {one_of_them}:",
an = if candidates.len() == 1 {"an" } else { "" },
s = if candidates.len() == 1 { "" } else { "s" },
were = if candidates.len() == 1 { "was" } else { "were" },
one_of_them = if candidates.len() == 1 {
"it"
} else {
"one_of_them"
});
self.suggest_use_candidates(&mut err, help, candidates);
}
err.emit();
}
MethodError::BadReturnType => {
bug!("no return type expectations but got BadReturnType")
}
}
}
fn suggest_use_candidates(&self,
err: &mut DiagnosticBuilder,
mut msg: String,
candidates: Vec<DefId>) {
let module_did = self.tcx.hir.get_module_parent(self.body_id);
let module_id = self.tcx.hir.as_local_node_id(module_did).unwrap();
let krate = self.tcx.hir.krate();
let (span, found_use) = UsePlacementFinder::check(self.tcx, krate, module_id);
if let Some(span) = span {
let path_strings = candidates.iter().map(|did| {
// produce an additional newline to separate the new use statement
// from the directly following item.
let additional_newline = if found_use {
""
} else {
"\n"
};
format!("use {};\n{}", self.tcx.item_path_str(*did), additional_newline)
}).collect();
err.span_suggestions(span, &msg, path_strings);
} else {
let limit = if candidates.len() == 5 { 5 } else { 4 };
for (i, trait_did) in candidates.iter().take(limit).enumerate() {
if candidates.len() > 1 {
msg.push_str(&format!("\ncandidate #{}: `use {};`",
i + 1,
self.tcx.item_path_str(*trait_did)));
} else {
msg.push_str(&format!("\n`use {};`",
self.tcx.item_path_str(*trait_did)));
}
}
if candidates.len() > limit {
msg.push_str(&format!("\nand {} others", candidates.len() - limit));
}
err.note(&msg[..]);
}
}
fn suggest_valid_traits(&self,
err: &mut DiagnosticBuilder,
valid_out_of_scope_traits: Vec<DefId>) -> bool {
if !valid_out_of_scope_traits.is_empty() {
let mut candidates = valid_out_of_scope_traits;
candidates.sort();
candidates.dedup();
err.help("items from traits can only be used if the trait is in scope");
let msg = format!("the following {traits_are} implemented but not in scope, \
perhaps add a `use` for {one_of_them}:",
traits_are = if candidates.len() == 1 {
"trait is"
} else {
"traits are"
},
one_of_them = if candidates.len() == 1 {
"it"
} else {
"one of them"
});
self.suggest_use_candidates(err, msg, candidates);
true
} else {
false
}
}
fn suggest_traits_to_import(&self,
err: &mut DiagnosticBuilder,
span: Span,
rcvr_ty: Ty<'tcx>,
item_name: ast::Ident,
rcvr_expr: Option<&hir::Expr>,
valid_out_of_scope_traits: Vec<DefId>) {
if self.suggest_valid_traits(err, valid_out_of_scope_traits) {
return;
}
let type_is_local = self.type_derefs_to_local(span, rcvr_ty, rcvr_expr);
// there's no implemented traits, so lets suggest some traits to
// implement, by finding ones that have the item name, and are
// legal to implement.
let mut candidates = all_traits(self.tcx)
.into_iter()
.filter(|info| {
// we approximate the coherence rules to only suggest
// traits that are legal to implement by requiring that
// either the type or trait is local. Multidispatch means
// this isn't perfect (that is, there are cases when
// implementing a trait would be legal but is rejected
// here).
(type_is_local || info.def_id.is_local()) &&
self.associated_item(info.def_id, item_name, Namespace::Value)
.filter(|item| {
// We only want to suggest public or local traits (#45781).
item.vis == ty::Visibility::Public || info.def_id.is_local()
})
.is_some()
})
.collect::<Vec<_>>();
if !candidates.is_empty() {
// sort from most relevant to least relevant
candidates.sort_by(|a, b| a.cmp(b).reverse());
candidates.dedup();
// FIXME #21673 this help message could be tuned to the case
// of a type parameter: suggest adding a trait bound rather
// than implementing.
err.help("items from traits can only be used if the trait is implemented and in scope");
let mut msg = format!("the following {traits_define} an item `{name}`, \
perhaps you need to implement {one_of_them}:",
traits_define = if candidates.len() == 1 {
"trait defines"
} else {
"traits define"
},
one_of_them = if candidates.len() == 1 {
"it"
} else {
"one of them"
},
name = item_name);
for (i, trait_info) in candidates.iter().enumerate() {
msg.push_str(&format!("\ncandidate #{}: `{}`",
i + 1,
self.tcx.item_path_str(trait_info.def_id)));
}
err.note(&msg[..]);
}
}
/// Checks whether there is a local type somewhere in the chain of
/// autoderefs of `rcvr_ty`.
fn type_derefs_to_local(&self,
span: Span,
rcvr_ty: Ty<'tcx>,
rcvr_expr: Option<&hir::Expr>)
-> bool {
fn is_local(ty: Ty) -> bool {
match ty.sty {
ty::TyAdt(def, _) => def.did.is_local(),
ty::TyForeign(did) => did.is_local(),
ty::TyDynamic(ref tr, ..) => tr.principal()
.map_or(false, |p| p.def_id().is_local()),
ty::TyParam(_) => true,
// everything else (primitive types etc.) is effectively
// non-local (there are "edge" cases, e.g. (LocalType,), but
// the noise from these sort of types is usually just really
// annoying, rather than any sort of help).
_ => false,
}
}
// This occurs for UFCS desugaring of `T::method`, where there is no
// receiver expression for the method call, and thus no autoderef.
if rcvr_expr.is_none() {
return is_local(self.resolve_type_vars_with_obligations(rcvr_ty));
}
self.autoderef(span, rcvr_ty).any(|(ty, _)| is_local(ty))
}
}
#[derive(Copy, Clone)]
pub struct TraitInfo {
pub def_id: DefId,
}
impl PartialEq for TraitInfo {
fn eq(&self, other: &TraitInfo) -> bool {
self.cmp(other) == Ordering::Equal
}
}
impl Eq for TraitInfo {}
impl PartialOrd for TraitInfo {
fn partial_cmp(&self, other: &TraitInfo) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Ord for TraitInfo {
fn cmp(&self, other: &TraitInfo) -> Ordering {
// local crates are more important than remote ones (local:
// cnum == 0), and otherwise we throw in the defid for totality
let lhs = (other.def_id.krate, other.def_id);
let rhs = (self.def_id.krate, self.def_id);
lhs.cmp(&rhs)
}
}
/// Retrieve all traits in this crate and any dependent crates.
pub fn all_traits<'a, 'gcx, 'tcx>(tcx: TyCtxt<'a, 'gcx, 'tcx>) -> Vec<TraitInfo> {
tcx.all_traits(LOCAL_CRATE).iter().map(|&def_id| TraitInfo { def_id }).collect()
}
/// Compute all traits in this crate and any dependent crates.
fn compute_all_traits<'a, 'gcx, 'tcx>(tcx: TyCtxt<'a, 'gcx, 'tcx>) -> Vec<DefId> {
use rustc::hir::itemlikevisit;
let mut traits = vec![];
// Crate-local:
//
// meh.
struct Visitor<'a, 'tcx: 'a> {
map: &'a hir_map::Map<'tcx>,
traits: &'a mut Vec<DefId>,
}
impl<'v, 'a, 'tcx> itemlikevisit::ItemLikeVisitor<'v> for Visitor<'a, 'tcx> {
fn visit_item(&mut self, i: &'v hir::Item) {
match i.node {
hir::ItemKind::Trait(..) => {
let def_id = self.map.local_def_id(i.id);
self.traits.push(def_id);
}
_ => {}
}
}
fn visit_trait_item(&mut self, _trait_item: &hir::TraitItem) {
}
fn visit_impl_item(&mut self, _impl_item: &hir::ImplItem) {
}
}
tcx.hir.krate().visit_all_item_likes(&mut Visitor {
map: &tcx.hir,
traits: &mut traits,
});
// Cross-crate:
let mut external_mods = FxHashSet();
fn handle_external_def(tcx: TyCtxt,
traits: &mut Vec<DefId>,
external_mods: &mut FxHashSet<DefId>,
def: Def) {
let def_id = def.def_id();
match def {
Def::Trait(..) => {
traits.push(def_id);
}
Def::Mod(..) => {
if !external_mods.insert(def_id) {
return;
}
for child in tcx.item_children(def_id).iter() {
handle_external_def(tcx, traits, external_mods, child.def)
}
}
_ => {}
}
}
for &cnum in tcx.crates().iter() {
let def_id = DefId {
krate: cnum,
index: CRATE_DEF_INDEX,
};
handle_external_def(tcx, &mut traits, &mut external_mods, Def::Mod(def_id));
}
traits
}
pub fn provide(providers: &mut ty::query::Providers) {
providers.all_traits = |tcx, cnum| {
assert_eq!(cnum, LOCAL_CRATE);
Lrc::new(compute_all_traits(tcx))
}
}
struct UsePlacementFinder<'a, 'tcx: 'a, 'gcx: 'tcx> {
target_module: ast::NodeId,
span: Option<Span>,
found_use: bool,
tcx: TyCtxt<'a, 'gcx, 'tcx>
}
impl<'a, 'tcx, 'gcx> UsePlacementFinder<'a, 'tcx, 'gcx> {
fn check(
tcx: TyCtxt<'a, 'gcx, 'tcx>,
krate: &'tcx hir::Crate,
target_module: ast::NodeId,
) -> (Option<Span>, bool) {
let mut finder = UsePlacementFinder {
target_module,
span: None,
found_use: false,
tcx,
};
hir::intravisit::walk_crate(&mut finder, krate);
(finder.span, finder.found_use)
}
}
impl<'a, 'tcx, 'gcx> hir::intravisit::Visitor<'tcx> for UsePlacementFinder<'a, 'tcx, 'gcx> {
fn visit_mod(
&mut self,
module: &'tcx hir::Mod,
_: Span,
node_id: ast::NodeId,
) {
if self.span.is_some() {
return;
}
if node_id != self.target_module {
hir::intravisit::walk_mod(self, module, node_id);
return;
}
// find a use statement
for item_id in &module.item_ids {
let item = self.tcx.hir.expect_item(item_id.id);
match item.node {
hir::ItemKind::Use(..) => {
// don't suggest placing a use before the prelude
// import or other generated ones
if item.span.ctxt().outer().expn_info().is_none() {
self.span = Some(item.span.shrink_to_lo());
self.found_use = true;
return;
}
},
// don't place use before extern crate
hir::ItemKind::ExternCrate(_) => {}
// but place them before the first other item
_ => if self.span.map_or(true, |span| item.span < span ) {
if item.span.ctxt().outer().expn_info().is_none() {
// don't insert between attributes and an item
if item.attrs.is_empty() {
self.span = Some(item.span.shrink_to_lo());
} else {
// find the first attribute on the item
for attr in &item.attrs {
if self.span.map_or(true, |span| attr.span < span) {
self.span = Some(attr.span.shrink_to_lo());
}
}
}
}
},
}
}
}
fn nested_visit_map<'this>(
&'this mut self
) -> hir::intravisit::NestedVisitorMap<'this, 'tcx> {
hir::intravisit::NestedVisitorMap::None
}
}