blob: 0936f28a8fb1e991f4496dfb94d797adfd0df213 [file] [log] [blame]
// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Lints in the Rust compiler.
//!
//! This contains lints which can feasibly be implemented as their own
//! AST visitor. Also see `rustc::lint::builtin`, which contains the
//! definitions of lints that are emitted directly inside the main
//! compiler.
//!
//! To add a new lint to rustc, declare it here using `declare_lint!()`.
//! Then add code to emit the new lint in the appropriate circumstances.
//! You can do that in an existing `LintPass` if it makes sense, or in a
//! new `LintPass`, or using `Session::add_lint` elsewhere in the
//! compiler. Only do the latter if the check can't be written cleanly as a
//! `LintPass` (also, note that such lints will need to be defined in
//! `rustc::lint::builtin`, not here).
//!
//! If you define a new `LintPass`, you will also need to add it to the
//! `add_builtin!` or `add_builtin_with_new!` invocation in `lib.rs`.
//! Use the former for unit-like structs and the latter for structs with
//! a `pub fn new()`.
use rustc::hir::def::Def;
use rustc::hir::def_id::DefId;
use rustc::cfg;
use rustc::ty::subst::Substs;
use rustc::ty::{self, Ty};
use rustc::traits;
use rustc::hir::map as hir_map;
use util::nodemap::NodeSet;
use lint::{LateContext, LintContext, LintArray};
use lint::{LintPass, LateLintPass, EarlyLintPass, EarlyContext};
use std::collections::HashSet;
use rustc::util::nodemap::FxHashSet;
use syntax::tokenstream::{TokenTree, TokenStream};
use syntax::ast;
use syntax::attr;
use syntax::source_map::Spanned;
use syntax::edition::Edition;
use syntax::feature_gate::{AttributeGate, AttributeType, Stability, deprecated_attributes};
use syntax_pos::{BytePos, Span, SyntaxContext};
use syntax::symbol::keywords;
use syntax::errors::{Applicability, DiagnosticBuilder};
use rustc::hir::{self, GenericParamKind, PatKind};
use rustc::hir::intravisit::FnKind;
use bad_style::{MethodLateContext, method_context};
// hardwired lints from librustc
pub use lint::builtin::*;
declare_lint! {
WHILE_TRUE,
Warn,
"suggest using `loop { }` instead of `while true { }`"
}
#[derive(Copy, Clone)]
pub struct WhileTrue;
impl LintPass for WhileTrue {
fn get_lints(&self) -> LintArray {
lint_array!(WHILE_TRUE)
}
}
impl<'a, 'tcx> LateLintPass<'a, 'tcx> for WhileTrue {
fn check_expr(&mut self, cx: &LateContext, e: &hir::Expr) {
if let hir::ExprKind::While(ref cond, ..) = e.node {
if let hir::ExprKind::Lit(ref lit) = cond.node {
if let ast::LitKind::Bool(true) = lit.node {
if lit.span.ctxt() == SyntaxContext::empty() {
let msg = "denote infinite loops with `loop { ... }`";
let condition_span = cx.tcx.sess.source_map().def_span(e.span);
let mut err = cx.struct_span_lint(WHILE_TRUE, condition_span, msg);
err.span_suggestion_short_with_applicability(
condition_span,
"use `loop`",
"loop".to_owned(),
Applicability::MachineApplicable
);
err.emit();
}
}
}
}
}
}
declare_lint! {
BOX_POINTERS,
Allow,
"use of owned (Box type) heap memory"
}
#[derive(Copy, Clone)]
pub struct BoxPointers;
impl BoxPointers {
fn check_heap_type<'a, 'tcx>(&self, cx: &LateContext, span: Span, ty: Ty) {
for leaf_ty in ty.walk() {
if leaf_ty.is_box() {
let m = format!("type uses owned (Box type) pointers: {}", ty);
cx.span_lint(BOX_POINTERS, span, &m);
}
}
}
}
impl LintPass for BoxPointers {
fn get_lints(&self) -> LintArray {
lint_array!(BOX_POINTERS)
}
}
impl<'a, 'tcx> LateLintPass<'a, 'tcx> for BoxPointers {
fn check_item(&mut self, cx: &LateContext, it: &hir::Item) {
match it.node {
hir::ItemKind::Fn(..) |
hir::ItemKind::Ty(..) |
hir::ItemKind::Enum(..) |
hir::ItemKind::Struct(..) |
hir::ItemKind::Union(..) => {
let def_id = cx.tcx.hir.local_def_id(it.id);
self.check_heap_type(cx, it.span, cx.tcx.type_of(def_id))
}
_ => ()
}
// If it's a struct, we also have to check the fields' types
match it.node {
hir::ItemKind::Struct(ref struct_def, _) |
hir::ItemKind::Union(ref struct_def, _) => {
for struct_field in struct_def.fields() {
let def_id = cx.tcx.hir.local_def_id(struct_field.id);
self.check_heap_type(cx, struct_field.span,
cx.tcx.type_of(def_id));
}
}
_ => (),
}
}
fn check_expr(&mut self, cx: &LateContext, e: &hir::Expr) {
let ty = cx.tables.node_id_to_type(e.hir_id);
self.check_heap_type(cx, e.span, ty);
}
}
declare_lint! {
NON_SHORTHAND_FIELD_PATTERNS,
Warn,
"using `Struct { x: x }` instead of `Struct { x }` in a pattern"
}
#[derive(Copy, Clone)]
pub struct NonShorthandFieldPatterns;
impl LintPass for NonShorthandFieldPatterns {
fn get_lints(&self) -> LintArray {
lint_array!(NON_SHORTHAND_FIELD_PATTERNS)
}
}
impl<'a, 'tcx> LateLintPass<'a, 'tcx> for NonShorthandFieldPatterns {
fn check_pat(&mut self, cx: &LateContext, pat: &hir::Pat) {
if let PatKind::Struct(ref qpath, ref field_pats, _) = pat.node {
let variant = cx.tables.pat_ty(pat).ty_adt_def()
.expect("struct pattern type is not an ADT")
.variant_of_def(cx.tables.qpath_def(qpath, pat.hir_id));
for fieldpat in field_pats {
if fieldpat.node.is_shorthand {
continue;
}
if fieldpat.span.ctxt().outer().expn_info().is_some() {
// Don't lint if this is a macro expansion: macro authors
// shouldn't have to worry about this kind of style issue
// (Issue #49588)
continue;
}
if let PatKind::Binding(_, _, ident, None) = fieldpat.node.pat.node {
if cx.tcx.find_field_index(ident, &variant) ==
Some(cx.tcx.field_index(fieldpat.node.id, cx.tables)) {
let mut err = cx.struct_span_lint(NON_SHORTHAND_FIELD_PATTERNS,
fieldpat.span,
&format!("the `{}:` in this pattern is redundant", ident));
let subspan = cx.tcx.sess.source_map().span_through_char(fieldpat.span,
':');
err.span_suggestion_short_with_applicability(
subspan,
"remove this",
ident.to_string(),
Applicability::MachineApplicable
);
err.emit();
}
}
}
}
}
}
declare_lint! {
UNSAFE_CODE,
Allow,
"usage of `unsafe` code"
}
#[derive(Copy, Clone)]
pub struct UnsafeCode;
impl LintPass for UnsafeCode {
fn get_lints(&self) -> LintArray {
lint_array!(UNSAFE_CODE)
}
}
impl UnsafeCode {
fn report_unsafe(&self, cx: &LateContext, span: Span, desc: &'static str) {
// This comes from a macro that has #[allow_internal_unsafe].
if span.allows_unsafe() {
return;
}
cx.span_lint(UNSAFE_CODE, span, desc);
}
}
impl<'a, 'tcx> LateLintPass<'a, 'tcx> for UnsafeCode {
fn check_expr(&mut self, cx: &LateContext, e: &hir::Expr) {
if let hir::ExprKind::Block(ref blk, _) = e.node {
// Don't warn about generated blocks, that'll just pollute the output.
if blk.rules == hir::UnsafeBlock(hir::UserProvided) {
self.report_unsafe(cx, blk.span, "usage of an `unsafe` block");
}
}
}
fn check_item(&mut self, cx: &LateContext, it: &hir::Item) {
match it.node {
hir::ItemKind::Trait(_, hir::Unsafety::Unsafe, ..) => {
self.report_unsafe(cx, it.span, "declaration of an `unsafe` trait")
}
hir::ItemKind::Impl(hir::Unsafety::Unsafe, ..) => {
self.report_unsafe(cx, it.span, "implementation of an `unsafe` trait")
}
_ => return,
}
}
fn check_fn(&mut self,
cx: &LateContext,
fk: FnKind<'tcx>,
_: &hir::FnDecl,
_: &hir::Body,
span: Span,
_: ast::NodeId) {
match fk {
FnKind::ItemFn(_, _, hir::FnHeader { unsafety: hir::Unsafety::Unsafe, .. }, ..) => {
self.report_unsafe(cx, span, "declaration of an `unsafe` function")
}
FnKind::Method(_, sig, ..) => {
if sig.header.unsafety == hir::Unsafety::Unsafe {
self.report_unsafe(cx, span, "implementation of an `unsafe` method")
}
}
_ => (),
}
}
fn check_trait_item(&mut self, cx: &LateContext, item: &hir::TraitItem) {
if let hir::TraitItemKind::Method(ref sig, hir::TraitMethod::Required(_)) = item.node {
if sig.header.unsafety == hir::Unsafety::Unsafe {
self.report_unsafe(cx, item.span, "declaration of an `unsafe` method")
}
}
}
}
declare_lint! {
pub MISSING_DOCS,
Allow,
"detects missing documentation for public members"
}
pub struct MissingDoc {
/// Stack of whether #[doc(hidden)] is set
/// at each level which has lint attributes.
doc_hidden_stack: Vec<bool>,
/// Private traits or trait items that leaked through. Don't check their methods.
private_traits: HashSet<ast::NodeId>,
}
impl MissingDoc {
pub fn new() -> MissingDoc {
MissingDoc {
doc_hidden_stack: vec![false],
private_traits: HashSet::new(),
}
}
fn doc_hidden(&self) -> bool {
*self.doc_hidden_stack.last().expect("empty doc_hidden_stack")
}
fn check_missing_docs_attrs(&self,
cx: &LateContext,
id: Option<ast::NodeId>,
attrs: &[ast::Attribute],
sp: Span,
desc: &'static str) {
// If we're building a test harness, then warning about
// documentation is probably not really relevant right now.
if cx.sess().opts.test {
return;
}
// `#[doc(hidden)]` disables missing_docs check.
if self.doc_hidden() {
return;
}
// Only check publicly-visible items, using the result from the privacy pass.
// It's an option so the crate root can also use this function (it doesn't
// have a NodeId).
if let Some(id) = id {
if !cx.access_levels.is_exported(id) {
return;
}
}
fn has_doc(attr: &ast::Attribute) -> bool {
if !attr.check_name("doc") {
return false;
}
if attr.is_value_str() {
return true;
}
if let Some(list) = attr.meta_item_list() {
for meta in list {
if meta.check_name("include") {
return true;
}
}
}
false
}
let has_doc = attrs.iter().any(|a| has_doc(a));
if !has_doc {
cx.span_lint(MISSING_DOCS,
cx.tcx.sess.source_map().def_span(sp),
&format!("missing documentation for {}", desc));
}
}
}
impl LintPass for MissingDoc {
fn get_lints(&self) -> LintArray {
lint_array!(MISSING_DOCS)
}
}
impl<'a, 'tcx> LateLintPass<'a, 'tcx> for MissingDoc {
fn enter_lint_attrs(&mut self, _: &LateContext, attrs: &[ast::Attribute]) {
let doc_hidden = self.doc_hidden() ||
attrs.iter().any(|attr| {
attr.check_name("doc") &&
match attr.meta_item_list() {
None => false,
Some(l) => attr::list_contains_name(&l, "hidden"),
}
});
self.doc_hidden_stack.push(doc_hidden);
}
fn exit_lint_attrs(&mut self, _: &LateContext, _attrs: &[ast::Attribute]) {
self.doc_hidden_stack.pop().expect("empty doc_hidden_stack");
}
fn check_crate(&mut self, cx: &LateContext, krate: &hir::Crate) {
self.check_missing_docs_attrs(cx, None, &krate.attrs, krate.span, "crate");
}
fn check_item(&mut self, cx: &LateContext, it: &hir::Item) {
let desc = match it.node {
hir::ItemKind::Fn(..) => "a function",
hir::ItemKind::Mod(..) => "a module",
hir::ItemKind::Enum(..) => "an enum",
hir::ItemKind::Struct(..) => "a struct",
hir::ItemKind::Union(..) => "a union",
hir::ItemKind::Trait(.., ref trait_item_refs) => {
// Issue #11592, traits are always considered exported, even when private.
if let hir::VisibilityKind::Inherited = it.vis.node {
self.private_traits.insert(it.id);
for trait_item_ref in trait_item_refs {
self.private_traits.insert(trait_item_ref.id.node_id);
}
return;
}
"a trait"
}
hir::ItemKind::Ty(..) => "a type alias",
hir::ItemKind::Impl(.., Some(ref trait_ref), _, ref impl_item_refs) => {
// If the trait is private, add the impl items to private_traits so they don't get
// reported for missing docs.
let real_trait = trait_ref.path.def.def_id();
if let Some(node_id) = cx.tcx.hir.as_local_node_id(real_trait) {
match cx.tcx.hir.find(node_id) {
Some(hir_map::NodeItem(item)) => {
if let hir::VisibilityKind::Inherited = item.vis.node {
for impl_item_ref in impl_item_refs {
self.private_traits.insert(impl_item_ref.id.node_id);
}
}
}
_ => {}
}
}
return;
}
hir::ItemKind::Const(..) => "a constant",
hir::ItemKind::Static(..) => "a static",
_ => return,
};
self.check_missing_docs_attrs(cx, Some(it.id), &it.attrs, it.span, desc);
}
fn check_trait_item(&mut self, cx: &LateContext, trait_item: &hir::TraitItem) {
if self.private_traits.contains(&trait_item.id) {
return;
}
let desc = match trait_item.node {
hir::TraitItemKind::Const(..) => "an associated constant",
hir::TraitItemKind::Method(..) => "a trait method",
hir::TraitItemKind::Type(..) => "an associated type",
};
self.check_missing_docs_attrs(cx,
Some(trait_item.id),
&trait_item.attrs,
trait_item.span,
desc);
}
fn check_impl_item(&mut self, cx: &LateContext, impl_item: &hir::ImplItem) {
// If the method is an impl for a trait, don't doc.
if method_context(cx, impl_item.id) == MethodLateContext::TraitImpl {
return;
}
let desc = match impl_item.node {
hir::ImplItemKind::Const(..) => "an associated constant",
hir::ImplItemKind::Method(..) => "a method",
hir::ImplItemKind::Type(_) => "an associated type",
hir::ImplItemKind::Existential(_) => "an associated existential type",
};
self.check_missing_docs_attrs(cx,
Some(impl_item.id),
&impl_item.attrs,
impl_item.span,
desc);
}
fn check_struct_field(&mut self, cx: &LateContext, sf: &hir::StructField) {
if !sf.is_positional() {
self.check_missing_docs_attrs(cx,
Some(sf.id),
&sf.attrs,
sf.span,
"a struct field")
}
}
fn check_variant(&mut self, cx: &LateContext, v: &hir::Variant, _: &hir::Generics) {
self.check_missing_docs_attrs(cx,
Some(v.node.data.id()),
&v.node.attrs,
v.span,
"a variant");
}
}
declare_lint! {
pub MISSING_COPY_IMPLEMENTATIONS,
Allow,
"detects potentially-forgotten implementations of `Copy`"
}
#[derive(Copy, Clone)]
pub struct MissingCopyImplementations;
impl LintPass for MissingCopyImplementations {
fn get_lints(&self) -> LintArray {
lint_array!(MISSING_COPY_IMPLEMENTATIONS)
}
}
impl<'a, 'tcx> LateLintPass<'a, 'tcx> for MissingCopyImplementations {
fn check_item(&mut self, cx: &LateContext, item: &hir::Item) {
if !cx.access_levels.is_reachable(item.id) {
return;
}
let (def, ty) = match item.node {
hir::ItemKind::Struct(_, ref ast_generics) => {
if !ast_generics.params.is_empty() {
return;
}
let def = cx.tcx.adt_def(cx.tcx.hir.local_def_id(item.id));
(def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[])))
}
hir::ItemKind::Union(_, ref ast_generics) => {
if !ast_generics.params.is_empty() {
return;
}
let def = cx.tcx.adt_def(cx.tcx.hir.local_def_id(item.id));
(def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[])))
}
hir::ItemKind::Enum(_, ref ast_generics) => {
if !ast_generics.params.is_empty() {
return;
}
let def = cx.tcx.adt_def(cx.tcx.hir.local_def_id(item.id));
(def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[])))
}
_ => return,
};
if def.has_dtor(cx.tcx) {
return;
}
let param_env = ty::ParamEnv::empty();
if !ty.moves_by_default(cx.tcx, param_env, item.span) {
return;
}
if param_env.can_type_implement_copy(cx.tcx, ty).is_ok() {
cx.span_lint(MISSING_COPY_IMPLEMENTATIONS,
item.span,
"type could implement `Copy`; consider adding `impl \
Copy`")
}
}
}
declare_lint! {
MISSING_DEBUG_IMPLEMENTATIONS,
Allow,
"detects missing implementations of fmt::Debug"
}
pub struct MissingDebugImplementations {
impling_types: Option<NodeSet>,
}
impl MissingDebugImplementations {
pub fn new() -> MissingDebugImplementations {
MissingDebugImplementations { impling_types: None }
}
}
impl LintPass for MissingDebugImplementations {
fn get_lints(&self) -> LintArray {
lint_array!(MISSING_DEBUG_IMPLEMENTATIONS)
}
}
impl<'a, 'tcx> LateLintPass<'a, 'tcx> for MissingDebugImplementations {
fn check_item(&mut self, cx: &LateContext, item: &hir::Item) {
if !cx.access_levels.is_reachable(item.id) {
return;
}
match item.node {
hir::ItemKind::Struct(..) |
hir::ItemKind::Union(..) |
hir::ItemKind::Enum(..) => {}
_ => return,
}
let debug = match cx.tcx.lang_items().debug_trait() {
Some(debug) => debug,
None => return,
};
if self.impling_types.is_none() {
let mut impls = NodeSet();
cx.tcx.for_each_impl(debug, |d| {
if let Some(ty_def) = cx.tcx.type_of(d).ty_adt_def() {
if let Some(node_id) = cx.tcx.hir.as_local_node_id(ty_def.did) {
impls.insert(node_id);
}
}
});
self.impling_types = Some(impls);
debug!("{:?}", self.impling_types);
}
if !self.impling_types.as_ref().unwrap().contains(&item.id) {
cx.span_lint(MISSING_DEBUG_IMPLEMENTATIONS,
item.span,
"type does not implement `fmt::Debug`; consider adding #[derive(Debug)] \
or a manual implementation")
}
}
}
declare_lint! {
pub ANONYMOUS_PARAMETERS,
Allow,
"detects anonymous parameters",
Edition::Edition2018 => Warn
}
/// Checks for use of anonymous parameters (RFC 1685)
#[derive(Clone)]
pub struct AnonymousParameters;
impl LintPass for AnonymousParameters {
fn get_lints(&self) -> LintArray {
lint_array!(ANONYMOUS_PARAMETERS)
}
}
impl EarlyLintPass for AnonymousParameters {
fn check_trait_item(&mut self, cx: &EarlyContext, it: &ast::TraitItem) {
match it.node {
ast::TraitItemKind::Method(ref sig, _) => {
for arg in sig.decl.inputs.iter() {
match arg.pat.node {
ast::PatKind::Ident(_, ident, None) => {
if ident.name == keywords::Invalid.name() {
let ty_snip = cx
.sess
.source_map()
.span_to_snippet(arg.ty.span);
let (ty_snip, appl) = if let Ok(snip) = ty_snip {
(snip, Applicability::MachineApplicable)
} else {
("<type>".to_owned(), Applicability::HasPlaceholders)
};
cx.struct_span_lint(
ANONYMOUS_PARAMETERS,
arg.pat.span,
"anonymous parameters are deprecated and will be \
removed in the next edition."
).span_suggestion_with_applicability(
arg.pat.span,
"Try naming the parameter or explicitly \
ignoring it",
format!("_: {}", ty_snip),
appl
).emit();
}
}
_ => (),
}
}
},
_ => (),
}
}
}
/// Checks for incorrect use use of `repr` attributes.
#[derive(Clone)]
pub struct BadRepr;
impl LintPass for BadRepr {
fn get_lints(&self) -> LintArray {
lint_array!()
}
}
impl EarlyLintPass for BadRepr {
fn check_attribute(&mut self, cx: &EarlyContext, attr: &ast::Attribute) {
if attr.name() == "repr" {
let list = attr.meta_item_list();
let repr_str = |lit: &str| { format!("#[repr({})]", lit) };
// Emit warnings with `repr` either has a literal assignment (`#[repr = "C"]`) or
// no hints (``#[repr]`)
let has_hints = list.as_ref().map(|ref list| !list.is_empty()).unwrap_or(false);
if !has_hints {
let mut suggested = false;
let mut warn = if let Some(ref lit) = attr.value_str() {
// avoid warning about empty `repr` on `#[repr = "foo"]`
let mut warn = cx.struct_span_lint(
BAD_REPR,
attr.span,
"`repr` attribute isn't configurable with a literal",
);
match lit.to_string().as_ref() {
| "C" | "packed" | "rust" | "transparent"
| "u8" | "u16" | "u32" | "u64" | "u128" | "usize"
| "i8" | "i16" | "i32" | "i64" | "i128" | "isize" => {
// if the literal could have been a valid `repr` arg,
// suggest the correct syntax
warn.span_suggestion_with_applicability(
attr.span,
"give `repr` a hint",
repr_str(&lit.as_str()),
Applicability::MachineApplicable
);
suggested = true;
}
_ => { // the literal wasn't a valid `repr` arg
warn.span_label(attr.span, "needs a hint");
}
};
warn
} else {
let mut warn = cx.struct_span_lint(
BAD_REPR,
attr.span,
"`repr` attribute must have a hint",
);
warn.span_label(attr.span, "needs a hint");
warn
};
if !suggested {
warn.help(&format!(
"valid hints include `{}`, `{}`, `{}` and `{}`",
repr_str("C"),
repr_str("packed"),
repr_str("rust"),
repr_str("transparent"),
));
warn.note("for more information, visit \
<https://doc.rust-lang.org/reference/type-layout.html>");
}
warn.emit();
}
}
}
}
/// Checks for use of attributes which have been deprecated.
#[derive(Clone)]
pub struct DeprecatedAttr {
// This is not free to compute, so we want to keep it around, rather than
// compute it for every attribute.
depr_attrs: Vec<&'static (&'static str, AttributeType, AttributeGate)>,
}
impl DeprecatedAttr {
pub fn new() -> DeprecatedAttr {
DeprecatedAttr {
depr_attrs: deprecated_attributes(),
}
}
}
impl LintPass for DeprecatedAttr {
fn get_lints(&self) -> LintArray {
lint_array!()
}
}
impl EarlyLintPass for DeprecatedAttr {
fn check_attribute(&mut self, cx: &EarlyContext, attr: &ast::Attribute) {
for &&(n, _, ref g) in &self.depr_attrs {
if attr.name() == n {
if let &AttributeGate::Gated(Stability::Deprecated(link),
ref name,
ref reason,
_) = g {
let msg = format!("use of deprecated attribute `{}`: {}. See {}",
name, reason, link);
let mut err = cx.struct_span_lint(DEPRECATED, attr.span, &msg);
err.span_suggestion_short_with_applicability(
attr.span,
"remove this attribute",
"".to_owned(),
Applicability::MachineApplicable
);
err.emit();
}
return;
}
}
}
}
declare_lint! {
pub UNUSED_DOC_COMMENTS,
Warn,
"detects doc comments that aren't used by rustdoc"
}
#[derive(Copy, Clone)]
pub struct UnusedDocComment;
impl LintPass for UnusedDocComment {
fn get_lints(&self) -> LintArray {
lint_array![UNUSED_DOC_COMMENTS]
}
}
impl UnusedDocComment {
fn warn_if_doc<'a, 'tcx,
I: Iterator<Item=&'a ast::Attribute>,
C: LintContext<'tcx>>(&self, mut attrs: I, cx: &C) {
if let Some(attr) = attrs.find(|a| a.is_value_str() && a.check_name("doc")) {
cx.struct_span_lint(UNUSED_DOC_COMMENTS, attr.span, "doc comment not used by rustdoc")
.emit();
}
}
}
impl EarlyLintPass for UnusedDocComment {
fn check_local(&mut self, cx: &EarlyContext, decl: &ast::Local) {
self.warn_if_doc(decl.attrs.iter(), cx);
}
fn check_arm(&mut self, cx: &EarlyContext, arm: &ast::Arm) {
self.warn_if_doc(arm.attrs.iter(), cx);
}
fn check_expr(&mut self, cx: &EarlyContext, expr: &ast::Expr) {
self.warn_if_doc(expr.attrs.iter(), cx);
}
}
declare_lint! {
pub UNCONDITIONAL_RECURSION,
Warn,
"functions that cannot return without calling themselves"
}
#[derive(Copy, Clone)]
pub struct UnconditionalRecursion;
impl LintPass for UnconditionalRecursion {
fn get_lints(&self) -> LintArray {
lint_array![UNCONDITIONAL_RECURSION]
}
}
impl<'a, 'tcx> LateLintPass<'a, 'tcx> for UnconditionalRecursion {
fn check_fn(&mut self,
cx: &LateContext,
fn_kind: FnKind,
_: &hir::FnDecl,
body: &hir::Body,
sp: Span,
id: ast::NodeId) {
let method = match fn_kind {
FnKind::ItemFn(..) => None,
FnKind::Method(..) => {
Some(cx.tcx.associated_item(cx.tcx.hir.local_def_id(id)))
}
// closures can't recur, so they don't matter.
FnKind::Closure(_) => return,
};
// Walk through this function (say `f`) looking to see if
// every possible path references itself, i.e. the function is
// called recursively unconditionally. This is done by trying
// to find a path from the entry node to the exit node that
// *doesn't* call `f` by traversing from the entry while
// pretending that calls of `f` are sinks (i.e. ignoring any
// exit edges from them).
//
// NB. this has an edge case with non-returning statements,
// like `loop {}` or `panic!()`: control flow never reaches
// the exit node through these, so one can have a function
// that never actually calls itselfs but is still picked up by
// this lint:
//
// fn f(cond: bool) {
// if !cond { panic!() } // could come from `assert!(cond)`
// f(false)
// }
//
// In general, functions of that form may be able to call
// itself a finite number of times and then diverge. The lint
// considers this to be an error for two reasons, (a) it is
// easier to implement, and (b) it seems rare to actually want
// to have behaviour like the above, rather than
// e.g. accidentally recurring after an assert.
let cfg = cfg::CFG::new(cx.tcx, &body);
let mut work_queue = vec![cfg.entry];
let mut reached_exit_without_self_call = false;
let mut self_call_spans = vec![];
let mut visited = HashSet::new();
while let Some(idx) = work_queue.pop() {
if idx == cfg.exit {
// found a path!
reached_exit_without_self_call = true;
break;
}
let cfg_id = idx.node_id();
if visited.contains(&cfg_id) {
// already done
continue;
}
visited.insert(cfg_id);
// is this a recursive call?
let local_id = cfg.graph.node_data(idx).id();
if local_id != hir::DUMMY_ITEM_LOCAL_ID {
let node_id = cx.tcx.hir.hir_to_node_id(hir::HirId {
owner: body.value.hir_id.owner,
local_id
});
let self_recursive = match method {
Some(ref method) => expr_refers_to_this_method(cx, method, node_id),
None => expr_refers_to_this_fn(cx, id, node_id),
};
if self_recursive {
self_call_spans.push(cx.tcx.hir.span(node_id));
// this is a self call, so we shouldn't explore past
// this node in the CFG.
continue;
}
}
// add the successors of this node to explore the graph further.
for (_, edge) in cfg.graph.outgoing_edges(idx) {
let target_idx = edge.target();
let target_cfg_id = target_idx.node_id();
if !visited.contains(&target_cfg_id) {
work_queue.push(target_idx)
}
}
}
// Check the number of self calls because a function that
// doesn't return (e.g. calls a `-> !` function or `loop { /*
// no break */ }`) shouldn't be linted unless it actually
// recurs.
if !reached_exit_without_self_call && !self_call_spans.is_empty() {
let sp = cx.tcx.sess.source_map().def_span(sp);
let mut db = cx.struct_span_lint(UNCONDITIONAL_RECURSION,
sp,
"function cannot return without recurring");
db.span_label(sp, "cannot return without recurring");
// offer some help to the programmer.
for call in &self_call_spans {
db.span_label(*call, "recursive call site");
}
db.help("a `loop` may express intention better if this is on purpose");
db.emit();
}
// all done
return;
// Functions for identifying if the given Expr NodeId `id`
// represents a call to the function `fn_id`/method `method`.
fn expr_refers_to_this_fn(cx: &LateContext, fn_id: ast::NodeId, id: ast::NodeId) -> bool {
match cx.tcx.hir.get(id) {
hir_map::NodeExpr(&hir::Expr { node: hir::ExprKind::Call(ref callee, _), .. }) => {
let def = if let hir::ExprKind::Path(ref qpath) = callee.node {
cx.tables.qpath_def(qpath, callee.hir_id)
} else {
return false;
};
match def {
Def::Local(..) | Def::Upvar(..) => false,
_ => def.def_id() == cx.tcx.hir.local_def_id(fn_id)
}
}
_ => false,
}
}
// Check if the expression `id` performs a call to `method`.
fn expr_refers_to_this_method(cx: &LateContext,
method: &ty::AssociatedItem,
id: ast::NodeId)
-> bool {
use rustc::ty::adjustment::*;
// Ignore non-expressions.
let expr = if let hir_map::NodeExpr(e) = cx.tcx.hir.get(id) {
e
} else {
return false;
};
// Check for overloaded autoderef method calls.
let mut source = cx.tables.expr_ty(expr);
for adjustment in cx.tables.expr_adjustments(expr) {
if let Adjust::Deref(Some(deref)) = adjustment.kind {
let (def_id, substs) = deref.method_call(cx.tcx, source);
if method_call_refers_to_method(cx, method, def_id, substs, id) {
return true;
}
}
source = adjustment.target;
}
// Check for method calls and overloaded operators.
if cx.tables.is_method_call(expr) {
let hir_id = cx.tcx.hir.definitions().node_to_hir_id(id);
if let Some(def) = cx.tables.type_dependent_defs().get(hir_id) {
let def_id = def.def_id();
let substs = cx.tables.node_substs(hir_id);
if method_call_refers_to_method(cx, method, def_id, substs, id) {
return true;
}
} else {
cx.tcx.sess.delay_span_bug(expr.span,
"no type-dependent def for method call");
}
}
// Check for calls to methods via explicit paths (e.g. `T::method()`).
match expr.node {
hir::ExprKind::Call(ref callee, _) => {
let def = if let hir::ExprKind::Path(ref qpath) = callee.node {
cx.tables.qpath_def(qpath, callee.hir_id)
} else {
return false;
};
match def {
Def::Method(def_id) => {
let substs = cx.tables.node_substs(callee.hir_id);
method_call_refers_to_method(cx, method, def_id, substs, id)
}
_ => false,
}
}
_ => false,
}
}
// Check if the method call to the method with the ID `callee_id`
// and instantiated with `callee_substs` refers to method `method`.
fn method_call_refers_to_method<'a, 'tcx>(cx: &LateContext<'a, 'tcx>,
method: &ty::AssociatedItem,
callee_id: DefId,
callee_substs: &Substs<'tcx>,
expr_id: ast::NodeId)
-> bool {
let tcx = cx.tcx;
let callee_item = tcx.associated_item(callee_id);
match callee_item.container {
// This is an inherent method, so the `def_id` refers
// directly to the method definition.
ty::ImplContainer(_) => callee_id == method.def_id,
// A trait method, from any number of possible sources.
// Attempt to select a concrete impl before checking.
ty::TraitContainer(trait_def_id) => {
let trait_ref = ty::TraitRef::from_method(tcx, trait_def_id, callee_substs);
let trait_ref = ty::Binder::bind(trait_ref);
let span = tcx.hir.span(expr_id);
let obligation =
traits::Obligation::new(traits::ObligationCause::misc(span, expr_id),
cx.param_env,
trait_ref.to_poly_trait_predicate());
tcx.infer_ctxt().enter(|infcx| {
let mut selcx = traits::SelectionContext::new(&infcx);
match selcx.select(&obligation) {
// The method comes from a `T: Trait` bound.
// If `T` is `Self`, then this call is inside
// a default method definition.
Ok(Some(traits::VtableParam(_))) => {
let on_self = trait_ref.self_ty().is_self();
// We can only be recurring in a default
// method if we're being called literally
// on the `Self` type.
on_self && callee_id == method.def_id
}
// The `impl` is known, so we check that with a
// special case:
Ok(Some(traits::VtableImpl(vtable_impl))) => {
let container = ty::ImplContainer(vtable_impl.impl_def_id);
// It matches if it comes from the same impl,
// and has the same method name.
container == method.container &&
callee_item.ident.name == method.ident.name
}
// There's no way to know if this call is
// recursive, so we assume it's not.
_ => false,
}
})
}
}
}
}
}
declare_lint! {
PLUGIN_AS_LIBRARY,
Warn,
"compiler plugin used as ordinary library in non-plugin crate"
}
#[derive(Copy, Clone)]
pub struct PluginAsLibrary;
impl LintPass for PluginAsLibrary {
fn get_lints(&self) -> LintArray {
lint_array![PLUGIN_AS_LIBRARY]
}
}
impl<'a, 'tcx> LateLintPass<'a, 'tcx> for PluginAsLibrary {
fn check_item(&mut self, cx: &LateContext, it: &hir::Item) {
if cx.sess().plugin_registrar_fn.get().is_some() {
// We're compiling a plugin; it's fine to link other plugins.
return;
}
match it.node {
hir::ItemKind::ExternCrate(..) => (),
_ => return,
};
let def_id = cx.tcx.hir.local_def_id(it.id);
let prfn = match cx.tcx.extern_mod_stmt_cnum(def_id) {
Some(cnum) => cx.tcx.plugin_registrar_fn(cnum),
None => {
// Probably means we aren't linking the crate for some reason.
//
// Not sure if / when this could happen.
return;
}
};
if prfn.is_some() {
cx.span_lint(PLUGIN_AS_LIBRARY,
it.span,
"compiler plugin used as an ordinary library");
}
}
}
declare_lint! {
PRIVATE_NO_MANGLE_FNS,
Warn,
"functions marked #[no_mangle] should be exported"
}
declare_lint! {
PRIVATE_NO_MANGLE_STATICS,
Warn,
"statics marked #[no_mangle] should be exported"
}
declare_lint! {
NO_MANGLE_CONST_ITEMS,
Deny,
"const items will not have their symbols exported"
}
declare_lint! {
NO_MANGLE_GENERIC_ITEMS,
Warn,
"generic items must be mangled"
}
#[derive(Copy, Clone)]
pub struct InvalidNoMangleItems;
impl LintPass for InvalidNoMangleItems {
fn get_lints(&self) -> LintArray {
lint_array!(PRIVATE_NO_MANGLE_FNS,
PRIVATE_NO_MANGLE_STATICS,
NO_MANGLE_CONST_ITEMS,
NO_MANGLE_GENERIC_ITEMS)
}
}
impl<'a, 'tcx> LateLintPass<'a, 'tcx> for InvalidNoMangleItems {
fn check_item(&mut self, cx: &LateContext, it: &hir::Item) {
let suggest_export = |vis: &hir::Visibility, err: &mut DiagnosticBuilder| {
let suggestion = match vis.node {
hir::VisibilityKind::Inherited => {
// inherited visibility is empty span at item start; need an extra space
Some("pub ".to_owned())
},
hir::VisibilityKind::Restricted { .. } |
hir::VisibilityKind::Crate(_) => {
Some("pub".to_owned())
},
hir::VisibilityKind::Public => {
err.help("try exporting the item with a `pub use` statement");
None
}
};
if let Some(replacement) = suggestion {
err.span_suggestion_with_applicability(
vis.span,
"try making it public",
replacement,
Applicability::MachineApplicable
);
}
};
match it.node {
hir::ItemKind::Fn(.., ref generics, _) => {
if let Some(no_mangle_attr) = attr::find_by_name(&it.attrs, "no_mangle") {
if attr::contains_name(&it.attrs, "linkage") {
return;
}
if !cx.access_levels.is_reachable(it.id) {
let msg = "function is marked #[no_mangle], but not exported";
let mut err = cx.struct_span_lint(PRIVATE_NO_MANGLE_FNS, it.span, msg);
suggest_export(&it.vis, &mut err);
err.emit();
}
for param in &generics.params {
match param.kind {
GenericParamKind::Lifetime { .. } => {}
GenericParamKind::Type { .. } => {
let mut err = cx.struct_span_lint(NO_MANGLE_GENERIC_ITEMS,
it.span,
"functions generic over \
types must be mangled");
err.span_suggestion_short_with_applicability(
no_mangle_attr.span,
"remove this attribute",
"".to_owned(),
// Use of `#[no_mangle]` suggests FFI intent; correct
// fix may be to monomorphize source by hand
Applicability::MaybeIncorrect
);
err.emit();
break;
}
}
}
}
}
hir::ItemKind::Static(..) => {
if attr::contains_name(&it.attrs, "no_mangle") &&
!cx.access_levels.is_reachable(it.id) {
let msg = "static is marked #[no_mangle], but not exported";
let mut err = cx.struct_span_lint(PRIVATE_NO_MANGLE_STATICS, it.span, msg);
suggest_export(&it.vis, &mut err);
err.emit();
}
}
hir::ItemKind::Const(..) => {
if attr::contains_name(&it.attrs, "no_mangle") {
// Const items do not refer to a particular location in memory, and therefore
// don't have anything to attach a symbol to
let msg = "const items should never be #[no_mangle]";
let mut err = cx.struct_span_lint(NO_MANGLE_CONST_ITEMS, it.span, msg);
// account for "pub const" (#45562)
let start = cx.tcx.sess.source_map().span_to_snippet(it.span)
.map(|snippet| snippet.find("const").unwrap_or(0))
.unwrap_or(0) as u32;
// `const` is 5 chars
let const_span = it.span.with_hi(BytePos(it.span.lo().0 + start + 5));
err.span_suggestion_with_applicability(
const_span,
"try a static value",
"pub static".to_owned(),
Applicability::MachineApplicable
);
err.emit();
}
}
_ => {}
}
}
}
#[derive(Clone, Copy)]
pub struct MutableTransmutes;
declare_lint! {
MUTABLE_TRANSMUTES,
Deny,
"mutating transmuted &mut T from &T may cause undefined behavior"
}
impl LintPass for MutableTransmutes {
fn get_lints(&self) -> LintArray {
lint_array!(MUTABLE_TRANSMUTES)
}
}
impl<'a, 'tcx> LateLintPass<'a, 'tcx> for MutableTransmutes {
fn check_expr(&mut self, cx: &LateContext, expr: &hir::Expr) {
use rustc_target::spec::abi::Abi::RustIntrinsic;
let msg = "mutating transmuted &mut T from &T may cause undefined behavior, \
consider instead using an UnsafeCell";
match get_transmute_from_to(cx, expr) {
Some((&ty::TyRef(_, _, from_mt), &ty::TyRef(_, _, to_mt))) => {
if to_mt == hir::Mutability::MutMutable &&
from_mt == hir::Mutability::MutImmutable {
cx.span_lint(MUTABLE_TRANSMUTES, expr.span, msg);
}
}
_ => (),
}
fn get_transmute_from_to<'a, 'tcx>
(cx: &LateContext<'a, 'tcx>,
expr: &hir::Expr)
-> Option<(&'tcx ty::TypeVariants<'tcx>, &'tcx ty::TypeVariants<'tcx>)> {
let def = if let hir::ExprKind::Path(ref qpath) = expr.node {
cx.tables.qpath_def(qpath, expr.hir_id)
} else {
return None;
};
if let Def::Fn(did) = def {
if !def_id_is_transmute(cx, did) {
return None;
}
let sig = cx.tables.node_id_to_type(expr.hir_id).fn_sig(cx.tcx);
let from = sig.inputs().skip_binder()[0];
let to = *sig.output().skip_binder();
return Some((&from.sty, &to.sty));
}
None
}
fn def_id_is_transmute(cx: &LateContext, def_id: DefId) -> bool {
cx.tcx.fn_sig(def_id).abi() == RustIntrinsic &&
cx.tcx.item_name(def_id) == "transmute"
}
}
}
/// Forbids using the `#[feature(...)]` attribute
#[derive(Copy, Clone)]
pub struct UnstableFeatures;
declare_lint! {
UNSTABLE_FEATURES,
Allow,
"enabling unstable features (deprecated. do not use)"
}
impl LintPass for UnstableFeatures {
fn get_lints(&self) -> LintArray {
lint_array!(UNSTABLE_FEATURES)
}
}
impl<'a, 'tcx> LateLintPass<'a, 'tcx> for UnstableFeatures {
fn check_attribute(&mut self, ctx: &LateContext, attr: &ast::Attribute) {
if attr.check_name("feature") {
if let Some(items) = attr.meta_item_list() {
for item in items {
ctx.span_lint(UNSTABLE_FEATURES, item.span(), "unstable feature");
}
}
}
}
}
/// Lint for unions that contain fields with possibly non-trivial destructors.
pub struct UnionsWithDropFields;
declare_lint! {
UNIONS_WITH_DROP_FIELDS,
Warn,
"use of unions that contain fields with possibly non-trivial drop code"
}
impl LintPass for UnionsWithDropFields {
fn get_lints(&self) -> LintArray {
lint_array!(UNIONS_WITH_DROP_FIELDS)
}
}
impl<'a, 'tcx> LateLintPass<'a, 'tcx> for UnionsWithDropFields {
fn check_item(&mut self, ctx: &LateContext, item: &hir::Item) {
if let hir::ItemKind::Union(ref vdata, _) = item.node {
for field in vdata.fields() {
let field_ty = ctx.tcx.type_of(ctx.tcx.hir.local_def_id(field.id));
if field_ty.needs_drop(ctx.tcx, ctx.param_env) {
ctx.span_lint(UNIONS_WITH_DROP_FIELDS,
field.span,
"union contains a field with possibly non-trivial drop code, \
drop code of union fields is ignored when dropping the union");
return;
}
}
}
}
}
/// Lint for items marked `pub` that aren't reachable from other crates
pub struct UnreachablePub;
declare_lint! {
pub UNREACHABLE_PUB,
Allow,
"`pub` items not reachable from crate root"
}
impl LintPass for UnreachablePub {
fn get_lints(&self) -> LintArray {
lint_array!(UNREACHABLE_PUB)
}
}
impl UnreachablePub {
fn perform_lint(&self, cx: &LateContext, what: &str, id: ast::NodeId,
vis: &hir::Visibility, span: Span, exportable: bool) {
let mut applicability = Applicability::MachineApplicable;
match vis.node {
hir::VisibilityKind::Public if !cx.access_levels.is_reachable(id) => {
if span.ctxt().outer().expn_info().is_some() {
applicability = Applicability::MaybeIncorrect;
}
let def_span = cx.tcx.sess.source_map().def_span(span);
let mut err = cx.struct_span_lint(UNREACHABLE_PUB, def_span,
&format!("unreachable `pub` {}", what));
let replacement = if cx.tcx.features().crate_visibility_modifier {
"crate"
} else {
"pub(crate)"
}.to_owned();
err.span_suggestion_with_applicability(vis.span,
"consider restricting its visibility",
replacement,
applicability);
if exportable {
err.help("or consider exporting it for use by other crates");
}
err.emit();
},
_ => {}
}
}
}
impl<'a, 'tcx> LateLintPass<'a, 'tcx> for UnreachablePub {
fn check_item(&mut self, cx: &LateContext, item: &hir::Item) {
self.perform_lint(cx, "item", item.id, &item.vis, item.span, true);
}
fn check_foreign_item(&mut self, cx: &LateContext, foreign_item: &hir::ForeignItem) {
self.perform_lint(cx, "item", foreign_item.id, &foreign_item.vis,
foreign_item.span, true);
}
fn check_struct_field(&mut self, cx: &LateContext, field: &hir::StructField) {
self.perform_lint(cx, "field", field.id, &field.vis, field.span, false);
}
fn check_impl_item(&mut self, cx: &LateContext, impl_item: &hir::ImplItem) {
self.perform_lint(cx, "item", impl_item.id, &impl_item.vis, impl_item.span, false);
}
}
/// Lint for trait and lifetime bounds in type aliases being mostly ignored:
/// They are relevant when using associated types, but otherwise neither checked
/// at definition site nor enforced at use site.
pub struct TypeAliasBounds;
declare_lint! {
TYPE_ALIAS_BOUNDS,
Warn,
"bounds in type aliases are not enforced"
}
impl LintPass for TypeAliasBounds {
fn get_lints(&self) -> LintArray {
lint_array!(TYPE_ALIAS_BOUNDS)
}
}
impl TypeAliasBounds {
fn is_type_variable_assoc(qpath: &hir::QPath) -> bool {
match *qpath {
hir::QPath::TypeRelative(ref ty, _) => {
// If this is a type variable, we found a `T::Assoc`.
match ty.node {
hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) => {
match path.def {
Def::TyParam(_) => true,
_ => false
}
}
_ => false
}
}
hir::QPath::Resolved(..) => false,
}
}
fn suggest_changing_assoc_types(ty: &hir::Ty, err: &mut DiagnosticBuilder) {
// Access to associates types should use `<T as Bound>::Assoc`, which does not need a
// bound. Let's see if this type does that.
// We use a HIR visitor to walk the type.
use rustc::hir::intravisit::{self, Visitor};
struct WalkAssocTypes<'a, 'db> where 'db: 'a {
err: &'a mut DiagnosticBuilder<'db>
}
impl<'a, 'db, 'v> Visitor<'v> for WalkAssocTypes<'a, 'db> {
fn nested_visit_map<'this>(&'this mut self) -> intravisit::NestedVisitorMap<'this, 'v>
{
intravisit::NestedVisitorMap::None
}
fn visit_qpath(&mut self, qpath: &'v hir::QPath, id: hir::HirId, span: Span) {
if TypeAliasBounds::is_type_variable_assoc(qpath) {
self.err.span_help(span,
"use fully disambiguated paths (i.e., `<T as Trait>::Assoc`) to refer to \
associated types in type aliases");
}
intravisit::walk_qpath(self, qpath, id, span)
}
}
// Let's go for a walk!
let mut visitor = WalkAssocTypes { err };
visitor.visit_ty(ty);
}
}
impl<'a, 'tcx> LateLintPass<'a, 'tcx> for TypeAliasBounds {
fn check_item(&mut self, cx: &LateContext, item: &hir::Item) {
let (ty, type_alias_generics) = match item.node {
hir::ItemKind::Ty(ref ty, ref generics) => (&*ty, generics),
_ => return,
};
let mut suggested_changing_assoc_types = false;
// There must not be a where clause
if !type_alias_generics.where_clause.predicates.is_empty() {
let spans : Vec<_> = type_alias_generics.where_clause.predicates.iter()
.map(|pred| pred.span()).collect();
let mut err = cx.struct_span_lint(TYPE_ALIAS_BOUNDS, spans,
"where clauses are not enforced in type aliases");
err.help("the clause will not be checked when the type alias is used, \
and should be removed");
if !suggested_changing_assoc_types {
TypeAliasBounds::suggest_changing_assoc_types(ty, &mut err);
suggested_changing_assoc_types = true;
}
err.emit();
}
// The parameters must not have bounds
for param in type_alias_generics.params.iter() {
let spans: Vec<_> = param.bounds.iter().map(|b| b.span()).collect();
if !spans.is_empty() {
let mut err = cx.struct_span_lint(
TYPE_ALIAS_BOUNDS,
spans,
"bounds on generic parameters are not enforced in type aliases",
);
err.help("the bound will not be checked when the type alias is used, \
and should be removed");
if !suggested_changing_assoc_types {
TypeAliasBounds::suggest_changing_assoc_types(ty, &mut err);
suggested_changing_assoc_types = true;
}
err.emit();
}
}
}
}
/// Lint constants that are erroneous.
/// Without this lint, we might not get any diagnostic if the constant is
/// unused within this crate, even though downstream crates can't use it
/// without producing an error.
pub struct UnusedBrokenConst;
impl LintPass for UnusedBrokenConst {
fn get_lints(&self) -> LintArray {
lint_array!()
}
}
fn validate_const<'a, 'tcx>(
tcx: ty::TyCtxt<'a, 'tcx, 'tcx>,
constant: &ty::Const<'tcx>,
param_env: ty::ParamEnv<'tcx>,
gid: ::rustc::mir::interpret::GlobalId<'tcx>,
what: &str,
) {
let mut ecx = ::rustc_mir::interpret::mk_eval_cx(tcx, gid.instance, param_env).unwrap();
let result = (|| {
let val = ecx.const_to_value(constant.val)?;
use rustc_target::abi::LayoutOf;
let layout = ecx.layout_of(constant.ty)?;
let place = ecx.allocate_place_for_value(val, layout, None)?;
let ptr = place.to_ptr()?;
let mut todo = vec![(ptr, layout.ty, String::new())];
let mut seen = FxHashSet();
seen.insert((ptr, layout.ty));
while let Some((ptr, ty, path)) = todo.pop() {
let layout = ecx.layout_of(ty)?;
ecx.validate_ptr_target(
ptr,
layout.align,
layout,
path,
&mut seen,
&mut todo,
)?;
}
Ok(())
})();
if let Err(err) = result {
let (trace, span) = ecx.generate_stacktrace(None);
let err = ::rustc::mir::interpret::ConstEvalErr {
error: err,
stacktrace: trace,
span,
};
let err = err.struct_error(
tcx.at(span),
&format!("this {} likely exhibits undefined behavior", what),
);
if let Some(mut err) = err {
err.note("The rules on what exactly is undefined behavior aren't clear, \
so this check might be overzealous. Please open an issue on the rust compiler \
repository if you believe it should not be considered undefined behavior",
);
err.emit();
}
}
}
fn check_const(cx: &LateContext, body_id: hir::BodyId, what: &str) {
let def_id = cx.tcx.hir.body_owner_def_id(body_id);
let is_static = cx.tcx.is_static(def_id).is_some();
let param_env = if is_static {
// Use the same param_env as `codegen_static_initializer`, to reuse the cache.
ty::ParamEnv::reveal_all()
} else {
cx.tcx.param_env(def_id)
};
let cid = ::rustc::mir::interpret::GlobalId {
instance: ty::Instance::mono(cx.tcx, def_id),
promoted: None
};
match cx.tcx.const_eval(param_env.and(cid)) {
Ok(val) => validate_const(cx.tcx, val, param_env, cid, what),
Err(err) => {
// errors for statics are already reported directly in the query, avoid duplicates
if !is_static {
let span = cx.tcx.def_span(def_id);
err.report_as_lint(
cx.tcx.at(span),
&format!("this {} cannot be used", what),
cx.current_lint_root(),
);
}
},
}
}
struct UnusedBrokenConstVisitor<'a, 'tcx: 'a>(&'a LateContext<'a, 'tcx>);
impl<'a, 'tcx, 'v> hir::intravisit::Visitor<'v> for UnusedBrokenConstVisitor<'a, 'tcx> {
fn visit_nested_body(&mut self, id: hir::BodyId) {
check_const(self.0, id, "array length");
}
fn nested_visit_map<'this>(&'this mut self) -> hir::intravisit::NestedVisitorMap<'this, 'v> {
hir::intravisit::NestedVisitorMap::None
}
}
impl<'a, 'tcx> LateLintPass<'a, 'tcx> for UnusedBrokenConst {
fn check_item(&mut self, cx: &LateContext, it: &hir::Item) {
match it.node {
hir::ItemKind::Const(_, body_id) => {
check_const(cx, body_id, "constant");
},
hir::ItemKind::Static(_, _, body_id) => {
check_const(cx, body_id, "static");
},
hir::ItemKind::Ty(ref ty, _) => hir::intravisit::walk_ty(
&mut UnusedBrokenConstVisitor(cx),
ty
),
_ => {},
}
}
}
/// Lint for trait and lifetime bounds that don't depend on type parameters
/// which either do nothing, or stop the item from being used.
pub struct TrivialConstraints;
declare_lint! {
TRIVIAL_BOUNDS,
Warn,
"these bounds don't depend on an type parameters"
}
impl LintPass for TrivialConstraints {
fn get_lints(&self) -> LintArray {
lint_array!(TRIVIAL_BOUNDS)
}
}
impl<'a, 'tcx> LateLintPass<'a, 'tcx> for TrivialConstraints {
fn check_item(
&mut self,
cx: &LateContext<'a, 'tcx>,
item: &'tcx hir::Item,
) {
use rustc::ty::fold::TypeFoldable;
use rustc::ty::Predicate::*;
if cx.tcx.features().trivial_bounds {
let def_id = cx.tcx.hir.local_def_id(item.id);
let predicates = cx.tcx.predicates_of(def_id);
for predicate in &predicates.predicates {
let predicate_kind_name = match *predicate {
Trait(..) => "Trait",
TypeOutlives(..) |
RegionOutlives(..) => "Lifetime",
// Ignore projections, as they can only be global
// if the trait bound is global
Projection(..) |
// Ignore bounds that a user can't type
WellFormed(..) |
ObjectSafe(..) |
ClosureKind(..) |
Subtype(..) |
ConstEvaluatable(..) => continue,
};
if predicate.is_global() {
cx.span_lint(
TRIVIAL_BOUNDS,
item.span,
&format!("{} bound {} does not depend on any type \
or lifetime parameters", predicate_kind_name, predicate),
);
}
}
}
}
}
/// Does nothing as a lint pass, but registers some `Lint`s
/// which are used by other parts of the compiler.
#[derive(Copy, Clone)]
pub struct SoftLints;
impl LintPass for SoftLints {
fn get_lints(&self) -> LintArray {
lint_array!(
WHILE_TRUE,
BOX_POINTERS,
NON_SHORTHAND_FIELD_PATTERNS,
UNSAFE_CODE,
MISSING_DOCS,
MISSING_COPY_IMPLEMENTATIONS,
MISSING_DEBUG_IMPLEMENTATIONS,
ANONYMOUS_PARAMETERS,
UNUSED_DOC_COMMENTS,
UNCONDITIONAL_RECURSION,
PLUGIN_AS_LIBRARY,
PRIVATE_NO_MANGLE_FNS,
PRIVATE_NO_MANGLE_STATICS,
NO_MANGLE_CONST_ITEMS,
NO_MANGLE_GENERIC_ITEMS,
MUTABLE_TRANSMUTES,
UNSTABLE_FEATURES,
UNIONS_WITH_DROP_FIELDS,
UNREACHABLE_PUB,
TYPE_ALIAS_BOUNDS,
TRIVIAL_BOUNDS
)
}
}
declare_lint! {
pub ELLIPSIS_INCLUSIVE_RANGE_PATTERNS,
Allow,
"`...` range patterns are deprecated"
}
pub struct EllipsisInclusiveRangePatterns;
impl LintPass for EllipsisInclusiveRangePatterns {
fn get_lints(&self) -> LintArray {
lint_array!(ELLIPSIS_INCLUSIVE_RANGE_PATTERNS)
}
}
impl EarlyLintPass for EllipsisInclusiveRangePatterns {
fn check_pat(&mut self, cx: &EarlyContext, pat: &ast::Pat) {
use self::ast::{PatKind, RangeEnd, RangeSyntax};
if let PatKind::Range(
_, _, Spanned { span, node: RangeEnd::Included(RangeSyntax::DotDotDot) }
) = pat.node {
let msg = "`...` range patterns are deprecated";
let mut err = cx.struct_span_lint(ELLIPSIS_INCLUSIVE_RANGE_PATTERNS, span, msg);
err.span_suggestion_short_with_applicability(
span, "use `..=` for an inclusive range", "..=".to_owned(),
// FIXME: outstanding problem with precedence in ref patterns:
// https://github.com/rust-lang/rust/issues/51043#issuecomment-392252285
Applicability::MaybeIncorrect
);
err.emit()
}
}
}
declare_lint! {
UNNAMEABLE_TEST_FUNCTIONS,
Warn,
"detects an function that cannot be named being marked as #[test]"
}
pub struct UnnameableTestFunctions;
impl LintPass for UnnameableTestFunctions {
fn get_lints(&self) -> LintArray {
lint_array!(UNNAMEABLE_TEST_FUNCTIONS)
}
}
impl<'a, 'tcx> LateLintPass<'a, 'tcx> for UnnameableTestFunctions {
fn check_item(&mut self, cx: &LateContext, it: &hir::Item) {
match it.node {
hir::ItemKind::Fn(..) => {
for attr in &it.attrs {
if attr.name() == "test" {
let parent = cx.tcx.hir.get_parent(it.id);
match cx.tcx.hir.find(parent) {
Some(hir_map::NodeItem(hir::Item {node: hir::ItemKind::Mod(_), ..})) |
None => {}
_ => {
cx.struct_span_lint(
UNNAMEABLE_TEST_FUNCTIONS,
attr.span,
"cannot test inner function",
).emit();
}
}
break;
}
}
}
_ => return,
};
}
}
declare_lint! {
pub ASYNC_IDENTS,
Allow,
"detects `async` being used as an identifier"
}
/// Checks for uses of `async` as an identifier
#[derive(Clone)]
pub struct Async2018;
impl LintPass for Async2018 {
fn get_lints(&self) -> LintArray {
lint_array!(ASYNC_IDENTS)
}
}
impl Async2018 {
fn check_tokens(&mut self, cx: &EarlyContext, tokens: TokenStream) {
for tt in tokens.into_trees() {
match tt {
TokenTree::Token(span, tok) => match tok.ident() {
// only report non-raw idents
Some((ident, false)) if ident.as_str() == "async" => {
self.report(cx, span.substitute_dummy(ident.span))
},
_ => {},
}
TokenTree::Delimited(_, ref delim) => {
self.check_tokens(cx, delim.tts.clone().into())
},
}
}
}
fn report(&mut self, cx: &EarlyContext, span: Span) {
// don't lint `r#async`
if cx.sess.parse_sess.raw_identifier_spans.borrow().contains(&span) {
return;
}
let mut lint = cx.struct_span_lint(
ASYNC_IDENTS,
span,
"`async` is a keyword in the 2018 edition",
);
// Don't suggest about raw identifiers if the feature isn't active
if cx.sess.features_untracked().raw_identifiers {
lint.span_suggestion_with_applicability(
span,
"you can use a raw identifier to stay compatible",
"r#async".to_string(),
Applicability::MachineApplicable,
);
}
lint.emit()
}
}
impl EarlyLintPass for Async2018 {
fn check_mac_def(&mut self, cx: &EarlyContext, mac_def: &ast::MacroDef, _id: ast::NodeId) {
self.check_tokens(cx, mac_def.stream());
}
fn check_mac(&mut self, cx: &EarlyContext, mac: &ast::Mac) {
self.check_tokens(cx, mac.node.tts.clone().into());
}
fn check_ident(&mut self, cx: &EarlyContext, ident: ast::Ident) {
if ident.as_str() == "async" {
self.report(cx, ident.span);
}
}
}