| //! Codegen of intrinsics. This includes `extern "rust-intrinsic"`, `extern "platform-intrinsic"` |
| //! and LLVM intrinsics that have symbol names starting with `llvm.`. |
| |
| mod cpuid; |
| mod llvm; |
| mod simd; |
| |
| pub(crate) use cpuid::codegen_cpuid_call; |
| pub(crate) use llvm::codegen_llvm_intrinsic_call; |
| |
| use rustc_middle::ty::print::with_no_trimmed_paths; |
| use rustc_span::symbol::{kw, sym}; |
| |
| use crate::prelude::*; |
| use cranelift_codegen::ir::AtomicRmwOp; |
| |
| macro intrinsic_pat { |
| (_) => { |
| _ |
| }, |
| ($name:ident) => { |
| sym::$name |
| }, |
| (kw.$name:ident) => { |
| kw::$name |
| }, |
| ($name:literal) => { |
| $name |
| }, |
| } |
| |
| macro intrinsic_arg { |
| (o $fx:expr, $arg:ident) => { |
| $arg |
| }, |
| (c $fx:expr, $arg:ident) => { |
| codegen_operand($fx, $arg) |
| }, |
| (v $fx:expr, $arg:ident) => { |
| codegen_operand($fx, $arg).load_scalar($fx) |
| } |
| } |
| |
| macro intrinsic_substs { |
| ($substs:expr, $index:expr,) => {}, |
| ($substs:expr, $index:expr, $first:ident $(,$rest:ident)*) => { |
| let $first = $substs.type_at($index); |
| intrinsic_substs!($substs, $index+1, $($rest),*); |
| } |
| } |
| |
| macro intrinsic_match { |
| ($fx:expr, $intrinsic:expr, $substs:expr, $args:expr, |
| _ => $unknown:block; |
| $( |
| $($($name:tt).*)|+ $(if $cond:expr)?, $(<$($subst:ident),*>)? ($($a:ident $arg:ident),*) $content:block; |
| )*) => { |
| let _ = $substs; // Silence warning when substs is unused. |
| match $intrinsic { |
| $( |
| $(intrinsic_pat!($($name).*))|* $(if $cond)? => { |
| #[allow(unused_parens, non_snake_case)] |
| { |
| $( |
| intrinsic_substs!($substs, 0, $($subst),*); |
| )? |
| if let [$($arg),*] = $args { |
| let ($($arg,)*) = ( |
| $(intrinsic_arg!($a $fx, $arg),)* |
| ); |
| #[warn(unused_parens, non_snake_case)] |
| { |
| $content |
| } |
| } else { |
| bug!("wrong number of args for intrinsic {:?}", $intrinsic); |
| } |
| } |
| } |
| )* |
| _ => $unknown, |
| } |
| } |
| } |
| |
| macro call_intrinsic_match { |
| ($fx:expr, $intrinsic:expr, $substs:expr, $ret:expr, $destination:expr, $args:expr, $( |
| $name:ident($($arg:ident),*) -> $ty:ident => $func:ident, |
| )*) => { |
| match $intrinsic { |
| $( |
| sym::$name => { |
| assert!($substs.is_empty()); |
| if let [$(ref $arg),*] = *$args { |
| let ($($arg,)*) = ( |
| $(codegen_operand($fx, $arg),)* |
| ); |
| let res = $fx.easy_call(stringify!($func), &[$($arg),*], $fx.tcx.types.$ty); |
| $ret.write_cvalue($fx, res); |
| |
| if let Some((_, dest)) = $destination { |
| let ret_block = $fx.get_block(dest); |
| $fx.bcx.ins().jump(ret_block, &[]); |
| return; |
| } else { |
| unreachable!(); |
| } |
| } else { |
| bug!("wrong number of args for intrinsic {:?}", $intrinsic); |
| } |
| } |
| )* |
| _ => {} |
| } |
| } |
| } |
| |
| macro validate_atomic_type($fx:ident, $intrinsic:ident, $span:ident, $ty:expr) { |
| match $ty.kind() { |
| ty::Uint(_) | ty::Int(_) | ty::RawPtr(..) => {} |
| _ => { |
| $fx.tcx.sess.span_err( |
| $span, |
| &format!( |
| "`{}` intrinsic: expected basic integer or raw pointer type, found `{:?}`", |
| $intrinsic, $ty |
| ), |
| ); |
| // Prevent verifier error |
| crate::trap::trap_unreachable($fx, "compilation should not have succeeded"); |
| return; |
| } |
| } |
| } |
| |
| macro validate_simd_type($fx:ident, $intrinsic:ident, $span:ident, $ty:expr) { |
| if !$ty.is_simd() { |
| $fx.tcx.sess.span_err($span, &format!("invalid monomorphization of `{}` intrinsic: expected SIMD input type, found non-SIMD `{}`", $intrinsic, $ty)); |
| // Prevent verifier error |
| crate::trap::trap_unreachable($fx, "compilation should not have succeeded"); |
| return; |
| } |
| } |
| |
| pub(crate) fn clif_vector_type<'tcx>(tcx: TyCtxt<'tcx>, layout: TyAndLayout<'tcx>) -> Option<Type> { |
| let (element, count) = match layout.abi { |
| Abi::Vector { element, count } => (element, count), |
| _ => unreachable!(), |
| }; |
| |
| match scalar_to_clif_type(tcx, element).by(u16::try_from(count).unwrap()) { |
| // Cranelift currently only implements icmp for 128bit vectors. |
| Some(vector_ty) if vector_ty.bits() == 128 => Some(vector_ty), |
| _ => None, |
| } |
| } |
| |
| fn simd_for_each_lane<'tcx>( |
| fx: &mut FunctionCx<'_, '_, 'tcx>, |
| val: CValue<'tcx>, |
| ret: CPlace<'tcx>, |
| f: impl Fn( |
| &mut FunctionCx<'_, '_, 'tcx>, |
| TyAndLayout<'tcx>, |
| TyAndLayout<'tcx>, |
| Value, |
| ) -> CValue<'tcx>, |
| ) { |
| let layout = val.layout(); |
| |
| let (lane_count, lane_ty) = layout.ty.simd_size_and_type(fx.tcx); |
| let lane_layout = fx.layout_of(lane_ty); |
| let (ret_lane_count, ret_lane_ty) = ret.layout().ty.simd_size_and_type(fx.tcx); |
| let ret_lane_layout = fx.layout_of(ret_lane_ty); |
| assert_eq!(lane_count, ret_lane_count); |
| |
| for lane_idx in 0..lane_count { |
| let lane = val.value_lane(fx, lane_idx).load_scalar(fx); |
| |
| let res_lane = f(fx, lane_layout, ret_lane_layout, lane); |
| |
| ret.place_lane(fx, lane_idx).write_cvalue(fx, res_lane); |
| } |
| } |
| |
| fn simd_pair_for_each_lane<'tcx>( |
| fx: &mut FunctionCx<'_, '_, 'tcx>, |
| x: CValue<'tcx>, |
| y: CValue<'tcx>, |
| ret: CPlace<'tcx>, |
| f: impl Fn( |
| &mut FunctionCx<'_, '_, 'tcx>, |
| TyAndLayout<'tcx>, |
| TyAndLayout<'tcx>, |
| Value, |
| Value, |
| ) -> CValue<'tcx>, |
| ) { |
| assert_eq!(x.layout(), y.layout()); |
| let layout = x.layout(); |
| |
| let (lane_count, lane_ty) = layout.ty.simd_size_and_type(fx.tcx); |
| let lane_layout = fx.layout_of(lane_ty); |
| let (ret_lane_count, ret_lane_ty) = ret.layout().ty.simd_size_and_type(fx.tcx); |
| let ret_lane_layout = fx.layout_of(ret_lane_ty); |
| assert_eq!(lane_count, ret_lane_count); |
| |
| for lane_idx in 0..lane_count { |
| let x_lane = x.value_lane(fx, lane_idx).load_scalar(fx); |
| let y_lane = y.value_lane(fx, lane_idx).load_scalar(fx); |
| |
| let res_lane = f(fx, lane_layout, ret_lane_layout, x_lane, y_lane); |
| |
| ret.place_lane(fx, lane_idx).write_cvalue(fx, res_lane); |
| } |
| } |
| |
| fn simd_reduce<'tcx>( |
| fx: &mut FunctionCx<'_, '_, 'tcx>, |
| val: CValue<'tcx>, |
| acc: Option<Value>, |
| ret: CPlace<'tcx>, |
| f: impl Fn(&mut FunctionCx<'_, '_, 'tcx>, TyAndLayout<'tcx>, Value, Value) -> Value, |
| ) { |
| let (lane_count, lane_ty) = val.layout().ty.simd_size_and_type(fx.tcx); |
| let lane_layout = fx.layout_of(lane_ty); |
| assert_eq!(lane_layout, ret.layout()); |
| |
| let (mut res_val, start_lane) = |
| if let Some(acc) = acc { (acc, 0) } else { (val.value_lane(fx, 0).load_scalar(fx), 1) }; |
| for lane_idx in start_lane..lane_count { |
| let lane = val.value_lane(fx, lane_idx).load_scalar(fx); |
| res_val = f(fx, lane_layout, res_val, lane); |
| } |
| let res = CValue::by_val(res_val, lane_layout); |
| ret.write_cvalue(fx, res); |
| } |
| |
| // FIXME move all uses to `simd_reduce` |
| fn simd_reduce_bool<'tcx>( |
| fx: &mut FunctionCx<'_, '_, 'tcx>, |
| val: CValue<'tcx>, |
| ret: CPlace<'tcx>, |
| f: impl Fn(&mut FunctionCx<'_, '_, 'tcx>, Value, Value) -> Value, |
| ) { |
| let (lane_count, _lane_ty) = val.layout().ty.simd_size_and_type(fx.tcx); |
| assert!(ret.layout().ty.is_bool()); |
| |
| let res_val = val.value_lane(fx, 0).load_scalar(fx); |
| let mut res_val = fx.bcx.ins().band_imm(res_val, 1); // mask to boolean |
| for lane_idx in 1..lane_count { |
| let lane = val.value_lane(fx, lane_idx).load_scalar(fx); |
| let lane = fx.bcx.ins().band_imm(lane, 1); // mask to boolean |
| res_val = f(fx, res_val, lane); |
| } |
| let res_val = if fx.bcx.func.dfg.value_type(res_val) != types::I8 { |
| fx.bcx.ins().ireduce(types::I8, res_val) |
| } else { |
| res_val |
| }; |
| let res = CValue::by_val(res_val, ret.layout()); |
| ret.write_cvalue(fx, res); |
| } |
| |
| fn bool_to_zero_or_max_uint<'tcx>( |
| fx: &mut FunctionCx<'_, '_, 'tcx>, |
| layout: TyAndLayout<'tcx>, |
| val: Value, |
| ) -> CValue<'tcx> { |
| let ty = fx.clif_type(layout.ty).unwrap(); |
| |
| let int_ty = match ty { |
| types::F32 => types::I32, |
| types::F64 => types::I64, |
| ty => ty, |
| }; |
| |
| let val = fx.bcx.ins().bint(int_ty, val); |
| let mut res = fx.bcx.ins().ineg(val); |
| |
| if ty.is_float() { |
| res = fx.bcx.ins().bitcast(ty, res); |
| } |
| |
| CValue::by_val(res, layout) |
| } |
| |
| macro simd_cmp { |
| ($fx:expr, $cc:ident|$cc_f:ident($x:ident, $y:ident) -> $ret:ident) => { |
| let vector_ty = clif_vector_type($fx.tcx, $x.layout()); |
| |
| if let Some(vector_ty) = vector_ty { |
| let x = $x.load_scalar($fx); |
| let y = $y.load_scalar($fx); |
| let val = if vector_ty.lane_type().is_float() { |
| $fx.bcx.ins().fcmp(FloatCC::$cc_f, x, y) |
| } else { |
| $fx.bcx.ins().icmp(IntCC::$cc, x, y) |
| }; |
| |
| // HACK This depends on the fact that icmp for vectors represents bools as 0 and !0, not 0 and 1. |
| let val = $fx.bcx.ins().raw_bitcast(vector_ty, val); |
| |
| $ret.write_cvalue($fx, CValue::by_val(val, $ret.layout())); |
| } else { |
| simd_pair_for_each_lane( |
| $fx, |
| $x, |
| $y, |
| $ret, |
| |fx, lane_layout, res_lane_layout, x_lane, y_lane| { |
| let res_lane = match lane_layout.ty.kind() { |
| ty::Uint(_) | ty::Int(_) => fx.bcx.ins().icmp(IntCC::$cc, x_lane, y_lane), |
| ty::Float(_) => fx.bcx.ins().fcmp(FloatCC::$cc_f, x_lane, y_lane), |
| _ => unreachable!("{:?}", lane_layout.ty), |
| }; |
| bool_to_zero_or_max_uint(fx, res_lane_layout, res_lane) |
| }, |
| ); |
| } |
| }, |
| ($fx:expr, $cc_u:ident|$cc_s:ident|$cc_f:ident($x:ident, $y:ident) -> $ret:ident) => { |
| // FIXME use vector icmp when possible |
| simd_pair_for_each_lane( |
| $fx, |
| $x, |
| $y, |
| $ret, |
| |fx, lane_layout, res_lane_layout, x_lane, y_lane| { |
| let res_lane = match lane_layout.ty.kind() { |
| ty::Uint(_) => fx.bcx.ins().icmp(IntCC::$cc_u, x_lane, y_lane), |
| ty::Int(_) => fx.bcx.ins().icmp(IntCC::$cc_s, x_lane, y_lane), |
| ty::Float(_) => fx.bcx.ins().fcmp(FloatCC::$cc_f, x_lane, y_lane), |
| _ => unreachable!("{:?}", lane_layout.ty), |
| }; |
| bool_to_zero_or_max_uint(fx, res_lane_layout, res_lane) |
| }, |
| ); |
| }, |
| } |
| |
| macro simd_int_binop { |
| ($fx:expr, $op:ident($x:ident, $y:ident) -> $ret:ident) => { |
| simd_int_binop!($fx, $op|$op($x, $y) -> $ret); |
| }, |
| ($fx:expr, $op_u:ident|$op_s:ident($x:ident, $y:ident) -> $ret:ident) => { |
| simd_pair_for_each_lane( |
| $fx, |
| $x, |
| $y, |
| $ret, |
| |fx, lane_layout, ret_lane_layout, x_lane, y_lane| { |
| let res_lane = match lane_layout.ty.kind() { |
| ty::Uint(_) => fx.bcx.ins().$op_u(x_lane, y_lane), |
| ty::Int(_) => fx.bcx.ins().$op_s(x_lane, y_lane), |
| _ => unreachable!("{:?}", lane_layout.ty), |
| }; |
| CValue::by_val(res_lane, ret_lane_layout) |
| }, |
| ); |
| }, |
| } |
| |
| macro simd_int_flt_binop { |
| ($fx:expr, $op:ident|$op_f:ident($x:ident, $y:ident) -> $ret:ident) => { |
| simd_int_flt_binop!($fx, $op|$op|$op_f($x, $y) -> $ret); |
| }, |
| ($fx:expr, $op_u:ident|$op_s:ident|$op_f:ident($x:ident, $y:ident) -> $ret:ident) => { |
| simd_pair_for_each_lane( |
| $fx, |
| $x, |
| $y, |
| $ret, |
| |fx, lane_layout, ret_lane_layout, x_lane, y_lane| { |
| let res_lane = match lane_layout.ty.kind() { |
| ty::Uint(_) => fx.bcx.ins().$op_u(x_lane, y_lane), |
| ty::Int(_) => fx.bcx.ins().$op_s(x_lane, y_lane), |
| ty::Float(_) => fx.bcx.ins().$op_f(x_lane, y_lane), |
| _ => unreachable!("{:?}", lane_layout.ty), |
| }; |
| CValue::by_val(res_lane, ret_lane_layout) |
| }, |
| ); |
| }, |
| } |
| |
| macro simd_flt_binop($fx:expr, $op:ident($x:ident, $y:ident) -> $ret:ident) { |
| simd_pair_for_each_lane( |
| $fx, |
| $x, |
| $y, |
| $ret, |
| |fx, lane_layout, ret_lane_layout, x_lane, y_lane| { |
| let res_lane = match lane_layout.ty.kind() { |
| ty::Float(_) => fx.bcx.ins().$op(x_lane, y_lane), |
| _ => unreachable!("{:?}", lane_layout.ty), |
| }; |
| CValue::by_val(res_lane, ret_lane_layout) |
| }, |
| ); |
| } |
| |
| pub(crate) fn codegen_intrinsic_call<'tcx>( |
| fx: &mut FunctionCx<'_, '_, 'tcx>, |
| instance: Instance<'tcx>, |
| args: &[mir::Operand<'tcx>], |
| destination: Option<(CPlace<'tcx>, BasicBlock)>, |
| span: Span, |
| ) { |
| let intrinsic = fx.tcx.item_name(instance.def_id()); |
| let substs = instance.substs; |
| |
| let ret = match destination { |
| Some((place, _)) => place, |
| None => { |
| // Insert non returning intrinsics here |
| match intrinsic { |
| sym::abort => { |
| trap_abort(fx, "Called intrinsic::abort."); |
| } |
| sym::transmute => { |
| crate::base::codegen_panic(fx, "Transmuting to uninhabited type.", span); |
| } |
| _ => unimplemented!("unsupported instrinsic {}", intrinsic), |
| } |
| return; |
| } |
| }; |
| |
| if intrinsic.as_str().starts_with("simd_") { |
| self::simd::codegen_simd_intrinsic_call(fx, instance, args, ret, span); |
| let ret_block = fx.get_block(destination.expect("SIMD intrinsics don't diverge").1); |
| fx.bcx.ins().jump(ret_block, &[]); |
| return; |
| } |
| |
| let usize_layout = fx.layout_of(fx.tcx.types.usize); |
| |
| call_intrinsic_match! { |
| fx, intrinsic, substs, ret, destination, args, |
| expf32(flt) -> f32 => expf, |
| expf64(flt) -> f64 => exp, |
| exp2f32(flt) -> f32 => exp2f, |
| exp2f64(flt) -> f64 => exp2, |
| sqrtf32(flt) -> f32 => sqrtf, |
| sqrtf64(flt) -> f64 => sqrt, |
| powif32(a, x) -> f32 => __powisf2, // compiler-builtins |
| powif64(a, x) -> f64 => __powidf2, // compiler-builtins |
| powf32(a, x) -> f32 => powf, |
| powf64(a, x) -> f64 => pow, |
| logf32(flt) -> f32 => logf, |
| logf64(flt) -> f64 => log, |
| log2f32(flt) -> f32 => log2f, |
| log2f64(flt) -> f64 => log2, |
| log10f32(flt) -> f32 => log10f, |
| log10f64(flt) -> f64 => log10, |
| fabsf32(flt) -> f32 => fabsf, |
| fabsf64(flt) -> f64 => fabs, |
| fmaf32(x, y, z) -> f32 => fmaf, |
| fmaf64(x, y, z) -> f64 => fma, |
| copysignf32(x, y) -> f32 => copysignf, |
| copysignf64(x, y) -> f64 => copysign, |
| |
| // rounding variants |
| // FIXME use clif insts |
| floorf32(flt) -> f32 => floorf, |
| floorf64(flt) -> f64 => floor, |
| ceilf32(flt) -> f32 => ceilf, |
| ceilf64(flt) -> f64 => ceil, |
| truncf32(flt) -> f32 => truncf, |
| truncf64(flt) -> f64 => trunc, |
| roundf32(flt) -> f32 => roundf, |
| roundf64(flt) -> f64 => round, |
| |
| // trigonometry |
| sinf32(flt) -> f32 => sinf, |
| sinf64(flt) -> f64 => sin, |
| cosf32(flt) -> f32 => cosf, |
| cosf64(flt) -> f64 => cos, |
| } |
| |
| intrinsic_match! { |
| fx, intrinsic, substs, args, |
| _ => { |
| fx.tcx.sess.span_fatal(span, &format!("unsupported intrinsic {}", intrinsic)); |
| }; |
| |
| assume, (c _a) {}; |
| likely | unlikely, (c a) { |
| ret.write_cvalue(fx, a); |
| }; |
| breakpoint, () { |
| fx.bcx.ins().debugtrap(); |
| }; |
| copy | copy_nonoverlapping, <elem_ty> (v src, v dst, v count) { |
| let elem_size: u64 = fx.layout_of(elem_ty).size.bytes(); |
| assert_eq!(args.len(), 3); |
| let byte_amount = if elem_size != 1 { |
| fx.bcx.ins().imul_imm(count, elem_size as i64) |
| } else { |
| count |
| }; |
| |
| if intrinsic == sym::copy_nonoverlapping { |
| // FIXME emit_small_memcpy |
| fx.bcx.call_memcpy(fx.target_config, dst, src, byte_amount); |
| } else { |
| // FIXME emit_small_memmove |
| fx.bcx.call_memmove(fx.target_config, dst, src, byte_amount); |
| } |
| }; |
| // NOTE: the volatile variants have src and dst swapped |
| volatile_copy_memory | volatile_copy_nonoverlapping_memory, <elem_ty> (v dst, v src, v count) { |
| let elem_size: u64 = fx.layout_of(elem_ty).size.bytes(); |
| assert_eq!(args.len(), 3); |
| let byte_amount = if elem_size != 1 { |
| fx.bcx.ins().imul_imm(count, elem_size as i64) |
| } else { |
| count |
| }; |
| |
| // FIXME make the copy actually volatile when using emit_small_mem{cpy,move} |
| if intrinsic == sym::volatile_copy_nonoverlapping_memory { |
| // FIXME emit_small_memcpy |
| fx.bcx.call_memcpy(fx.target_config, dst, src, byte_amount); |
| } else { |
| // FIXME emit_small_memmove |
| fx.bcx.call_memmove(fx.target_config, dst, src, byte_amount); |
| } |
| }; |
| size_of_val, <T> (c ptr) { |
| let layout = fx.layout_of(T); |
| let size = if layout.is_unsized() { |
| let (_ptr, info) = ptr.load_scalar_pair(fx); |
| let (size, _align) = crate::unsize::size_and_align_of_dst(fx, layout, info); |
| size |
| } else { |
| fx |
| .bcx |
| .ins() |
| .iconst(fx.pointer_type, layout.size.bytes() as i64) |
| }; |
| ret.write_cvalue(fx, CValue::by_val(size, usize_layout)); |
| }; |
| min_align_of_val, <T> (c ptr) { |
| let layout = fx.layout_of(T); |
| let align = if layout.is_unsized() { |
| let (_ptr, info) = ptr.load_scalar_pair(fx); |
| let (_size, align) = crate::unsize::size_and_align_of_dst(fx, layout, info); |
| align |
| } else { |
| fx |
| .bcx |
| .ins() |
| .iconst(fx.pointer_type, layout.align.abi.bytes() as i64) |
| }; |
| ret.write_cvalue(fx, CValue::by_val(align, usize_layout)); |
| }; |
| |
| unchecked_add | unchecked_sub | unchecked_div | exact_div | unchecked_rem |
| | unchecked_shl | unchecked_shr, (c x, c y) { |
| // FIXME trap on overflow |
| let bin_op = match intrinsic { |
| sym::unchecked_add => BinOp::Add, |
| sym::unchecked_sub => BinOp::Sub, |
| sym::unchecked_div | sym::exact_div => BinOp::Div, |
| sym::unchecked_rem => BinOp::Rem, |
| sym::unchecked_shl => BinOp::Shl, |
| sym::unchecked_shr => BinOp::Shr, |
| _ => unreachable!(), |
| }; |
| let res = crate::num::codegen_int_binop(fx, bin_op, x, y); |
| ret.write_cvalue(fx, res); |
| }; |
| add_with_overflow | sub_with_overflow | mul_with_overflow, (c x, c y) { |
| assert_eq!(x.layout().ty, y.layout().ty); |
| let bin_op = match intrinsic { |
| sym::add_with_overflow => BinOp::Add, |
| sym::sub_with_overflow => BinOp::Sub, |
| sym::mul_with_overflow => BinOp::Mul, |
| _ => unreachable!(), |
| }; |
| |
| let res = crate::num::codegen_checked_int_binop( |
| fx, |
| bin_op, |
| x, |
| y, |
| ); |
| ret.write_cvalue(fx, res); |
| }; |
| saturating_add | saturating_sub, <T> (c lhs, c rhs) { |
| assert_eq!(lhs.layout().ty, rhs.layout().ty); |
| let bin_op = match intrinsic { |
| sym::saturating_add => BinOp::Add, |
| sym::saturating_sub => BinOp::Sub, |
| _ => unreachable!(), |
| }; |
| |
| let signed = type_sign(T); |
| |
| let checked_res = crate::num::codegen_checked_int_binop( |
| fx, |
| bin_op, |
| lhs, |
| rhs, |
| ); |
| |
| let (val, has_overflow) = checked_res.load_scalar_pair(fx); |
| let clif_ty = fx.clif_type(T).unwrap(); |
| |
| let (min, max) = type_min_max_value(&mut fx.bcx, clif_ty, signed); |
| |
| let val = match (intrinsic, signed) { |
| (sym::saturating_add, false) => fx.bcx.ins().select(has_overflow, max, val), |
| (sym::saturating_sub, false) => fx.bcx.ins().select(has_overflow, min, val), |
| (sym::saturating_add, true) => { |
| let rhs = rhs.load_scalar(fx); |
| let rhs_ge_zero = fx.bcx.ins().icmp_imm(IntCC::SignedGreaterThanOrEqual, rhs, 0); |
| let sat_val = fx.bcx.ins().select(rhs_ge_zero, max, min); |
| fx.bcx.ins().select(has_overflow, sat_val, val) |
| } |
| (sym::saturating_sub, true) => { |
| let rhs = rhs.load_scalar(fx); |
| let rhs_ge_zero = fx.bcx.ins().icmp_imm(IntCC::SignedGreaterThanOrEqual, rhs, 0); |
| let sat_val = fx.bcx.ins().select(rhs_ge_zero, min, max); |
| fx.bcx.ins().select(has_overflow, sat_val, val) |
| } |
| _ => unreachable!(), |
| }; |
| |
| let res = CValue::by_val(val, fx.layout_of(T)); |
| |
| ret.write_cvalue(fx, res); |
| }; |
| rotate_left, <T>(v x, v y) { |
| let layout = fx.layout_of(T); |
| let res = fx.bcx.ins().rotl(x, y); |
| ret.write_cvalue(fx, CValue::by_val(res, layout)); |
| }; |
| rotate_right, <T>(v x, v y) { |
| let layout = fx.layout_of(T); |
| let res = fx.bcx.ins().rotr(x, y); |
| ret.write_cvalue(fx, CValue::by_val(res, layout)); |
| }; |
| |
| // The only difference between offset and arith_offset is regarding UB. Because Cranelift |
| // doesn't have UB both are codegen'ed the same way |
| offset | arith_offset, (c base, v offset) { |
| let pointee_ty = base.layout().ty.builtin_deref(true).unwrap().ty; |
| let pointee_size = fx.layout_of(pointee_ty).size.bytes(); |
| let ptr_diff = if pointee_size != 1 { |
| fx.bcx.ins().imul_imm(offset, pointee_size as i64) |
| } else { |
| offset |
| }; |
| let base_val = base.load_scalar(fx); |
| let res = fx.bcx.ins().iadd(base_val, ptr_diff); |
| ret.write_cvalue(fx, CValue::by_val(res, base.layout())); |
| }; |
| |
| transmute, (c from) { |
| ret.write_cvalue_transmute(fx, from); |
| }; |
| write_bytes | volatile_set_memory, (c dst, v val, v count) { |
| let pointee_ty = dst.layout().ty.builtin_deref(true).unwrap().ty; |
| let pointee_size = fx.layout_of(pointee_ty).size.bytes(); |
| let count = if pointee_size != 1 { |
| fx.bcx.ins().imul_imm(count, pointee_size as i64) |
| } else { |
| count |
| }; |
| let dst_ptr = dst.load_scalar(fx); |
| // FIXME make the memset actually volatile when switching to emit_small_memset |
| // FIXME use emit_small_memset |
| fx.bcx.call_memset(fx.target_config, dst_ptr, val, count); |
| }; |
| ctlz | ctlz_nonzero, <T> (v arg) { |
| // FIXME trap on `ctlz_nonzero` with zero arg. |
| let res = fx.bcx.ins().clz(arg); |
| let res = CValue::by_val(res, fx.layout_of(T)); |
| ret.write_cvalue(fx, res); |
| }; |
| cttz | cttz_nonzero, <T> (v arg) { |
| // FIXME trap on `cttz_nonzero` with zero arg. |
| let res = fx.bcx.ins().ctz(arg); |
| let res = CValue::by_val(res, fx.layout_of(T)); |
| ret.write_cvalue(fx, res); |
| }; |
| ctpop, <T> (v arg) { |
| let res = fx.bcx.ins().popcnt(arg); |
| let res = CValue::by_val(res, fx.layout_of(T)); |
| ret.write_cvalue(fx, res); |
| }; |
| bitreverse, <T> (v arg) { |
| let res = fx.bcx.ins().bitrev(arg); |
| let res = CValue::by_val(res, fx.layout_of(T)); |
| ret.write_cvalue(fx, res); |
| }; |
| bswap, <T> (v arg) { |
| // FIXME(CraneStation/cranelift#794) add bswap instruction to cranelift |
| fn swap(bcx: &mut FunctionBuilder<'_>, v: Value) -> Value { |
| match bcx.func.dfg.value_type(v) { |
| types::I8 => v, |
| |
| // https://code.woboq.org/gcc/include/bits/byteswap.h.html |
| types::I16 => { |
| let tmp1 = bcx.ins().ishl_imm(v, 8); |
| let n1 = bcx.ins().band_imm(tmp1, 0xFF00); |
| |
| let tmp2 = bcx.ins().ushr_imm(v, 8); |
| let n2 = bcx.ins().band_imm(tmp2, 0x00FF); |
| |
| bcx.ins().bor(n1, n2) |
| } |
| types::I32 => { |
| let tmp1 = bcx.ins().ishl_imm(v, 24); |
| let n1 = bcx.ins().band_imm(tmp1, 0xFF00_0000); |
| |
| let tmp2 = bcx.ins().ishl_imm(v, 8); |
| let n2 = bcx.ins().band_imm(tmp2, 0x00FF_0000); |
| |
| let tmp3 = bcx.ins().ushr_imm(v, 8); |
| let n3 = bcx.ins().band_imm(tmp3, 0x0000_FF00); |
| |
| let tmp4 = bcx.ins().ushr_imm(v, 24); |
| let n4 = bcx.ins().band_imm(tmp4, 0x0000_00FF); |
| |
| let or_tmp1 = bcx.ins().bor(n1, n2); |
| let or_tmp2 = bcx.ins().bor(n3, n4); |
| bcx.ins().bor(or_tmp1, or_tmp2) |
| } |
| types::I64 => { |
| let tmp1 = bcx.ins().ishl_imm(v, 56); |
| let n1 = bcx.ins().band_imm(tmp1, 0xFF00_0000_0000_0000u64 as i64); |
| |
| let tmp2 = bcx.ins().ishl_imm(v, 40); |
| let n2 = bcx.ins().band_imm(tmp2, 0x00FF_0000_0000_0000u64 as i64); |
| |
| let tmp3 = bcx.ins().ishl_imm(v, 24); |
| let n3 = bcx.ins().band_imm(tmp3, 0x0000_FF00_0000_0000u64 as i64); |
| |
| let tmp4 = bcx.ins().ishl_imm(v, 8); |
| let n4 = bcx.ins().band_imm(tmp4, 0x0000_00FF_0000_0000u64 as i64); |
| |
| let tmp5 = bcx.ins().ushr_imm(v, 8); |
| let n5 = bcx.ins().band_imm(tmp5, 0x0000_0000_FF00_0000u64 as i64); |
| |
| let tmp6 = bcx.ins().ushr_imm(v, 24); |
| let n6 = bcx.ins().band_imm(tmp6, 0x0000_0000_00FF_0000u64 as i64); |
| |
| let tmp7 = bcx.ins().ushr_imm(v, 40); |
| let n7 = bcx.ins().band_imm(tmp7, 0x0000_0000_0000_FF00u64 as i64); |
| |
| let tmp8 = bcx.ins().ushr_imm(v, 56); |
| let n8 = bcx.ins().band_imm(tmp8, 0x0000_0000_0000_00FFu64 as i64); |
| |
| let or_tmp1 = bcx.ins().bor(n1, n2); |
| let or_tmp2 = bcx.ins().bor(n3, n4); |
| let or_tmp3 = bcx.ins().bor(n5, n6); |
| let or_tmp4 = bcx.ins().bor(n7, n8); |
| |
| let or_tmp5 = bcx.ins().bor(or_tmp1, or_tmp2); |
| let or_tmp6 = bcx.ins().bor(or_tmp3, or_tmp4); |
| bcx.ins().bor(or_tmp5, or_tmp6) |
| } |
| types::I128 => { |
| let (lo, hi) = bcx.ins().isplit(v); |
| let lo = swap(bcx, lo); |
| let hi = swap(bcx, hi); |
| bcx.ins().iconcat(hi, lo) |
| } |
| ty => unreachable!("bswap {}", ty), |
| } |
| } |
| let res = CValue::by_val(swap(&mut fx.bcx, arg), fx.layout_of(T)); |
| ret.write_cvalue(fx, res); |
| }; |
| assert_inhabited | assert_zero_valid | assert_uninit_valid, <T> () { |
| let layout = fx.layout_of(T); |
| if layout.abi.is_uninhabited() { |
| with_no_trimmed_paths(|| crate::base::codegen_panic( |
| fx, |
| &format!("attempted to instantiate uninhabited type `{}`", T), |
| span, |
| )); |
| return; |
| } |
| |
| if intrinsic == sym::assert_zero_valid && !layout.might_permit_raw_init(fx, /*zero:*/ true) { |
| with_no_trimmed_paths(|| crate::base::codegen_panic( |
| fx, |
| &format!("attempted to zero-initialize type `{}`, which is invalid", T), |
| span, |
| )); |
| return; |
| } |
| |
| if intrinsic == sym::assert_uninit_valid && !layout.might_permit_raw_init(fx, /*zero:*/ false) { |
| with_no_trimmed_paths(|| crate::base::codegen_panic( |
| fx, |
| &format!("attempted to leave type `{}` uninitialized, which is invalid", T), |
| span, |
| )); |
| return; |
| } |
| }; |
| |
| volatile_load | unaligned_volatile_load, (c ptr) { |
| // Cranelift treats loads as volatile by default |
| // FIXME correctly handle unaligned_volatile_load |
| let inner_layout = |
| fx.layout_of(ptr.layout().ty.builtin_deref(true).unwrap().ty); |
| let val = CValue::by_ref(Pointer::new(ptr.load_scalar(fx)), inner_layout); |
| ret.write_cvalue(fx, val); |
| }; |
| volatile_store | unaligned_volatile_store, (v ptr, c val) { |
| // Cranelift treats stores as volatile by default |
| // FIXME correctly handle unaligned_volatile_store |
| let dest = CPlace::for_ptr(Pointer::new(ptr), val.layout()); |
| dest.write_cvalue(fx, val); |
| }; |
| |
| pref_align_of | needs_drop | type_id | type_name | variant_count, () { |
| let const_val = |
| fx.tcx.const_eval_instance(ParamEnv::reveal_all(), instance, None).unwrap(); |
| let val = crate::constant::codegen_const_value( |
| fx, |
| const_val, |
| ret.layout().ty, |
| ); |
| ret.write_cvalue(fx, val); |
| }; |
| |
| ptr_offset_from, <T> (v ptr, v base) { |
| let isize_layout = fx.layout_of(fx.tcx.types.isize); |
| |
| let pointee_size: u64 = fx.layout_of(T).size.bytes(); |
| let diff = fx.bcx.ins().isub(ptr, base); |
| // FIXME this can be an exact division. |
| let val = CValue::by_val(fx.bcx.ins().sdiv_imm(diff, pointee_size as i64), isize_layout); |
| ret.write_cvalue(fx, val); |
| }; |
| |
| ptr_guaranteed_eq, (c a, c b) { |
| let val = crate::num::codegen_ptr_binop(fx, BinOp::Eq, a, b); |
| ret.write_cvalue(fx, val); |
| }; |
| |
| ptr_guaranteed_ne, (c a, c b) { |
| let val = crate::num::codegen_ptr_binop(fx, BinOp::Ne, a, b); |
| ret.write_cvalue(fx, val); |
| }; |
| |
| caller_location, () { |
| let caller_location = fx.get_caller_location(span); |
| ret.write_cvalue(fx, caller_location); |
| }; |
| |
| _ if intrinsic.as_str().starts_with("atomic_fence"), () { |
| fx.bcx.ins().fence(); |
| }; |
| _ if intrinsic.as_str().starts_with("atomic_singlethreadfence"), () { |
| // FIXME use a compiler fence once Cranelift supports it |
| fx.bcx.ins().fence(); |
| }; |
| _ if intrinsic.as_str().starts_with("atomic_load"), <T> (v ptr) { |
| validate_atomic_type!(fx, intrinsic, span, T); |
| let ty = fx.clif_type(T).unwrap(); |
| |
| let val = fx.bcx.ins().atomic_load(ty, MemFlags::trusted(), ptr); |
| |
| let val = CValue::by_val(val, fx.layout_of(T)); |
| ret.write_cvalue(fx, val); |
| }; |
| _ if intrinsic.as_str().starts_with("atomic_store"), (v ptr, c val) { |
| validate_atomic_type!(fx, intrinsic, span, val.layout().ty); |
| |
| let val = val.load_scalar(fx); |
| |
| fx.bcx.ins().atomic_store(MemFlags::trusted(), val, ptr); |
| }; |
| _ if intrinsic.as_str().starts_with("atomic_xchg"), (v ptr, c new) { |
| let layout = new.layout(); |
| validate_atomic_type!(fx, intrinsic, span, layout.ty); |
| let ty = fx.clif_type(layout.ty).unwrap(); |
| |
| let new = new.load_scalar(fx); |
| |
| let old = fx.bcx.ins().atomic_rmw(ty, MemFlags::trusted(), AtomicRmwOp::Xchg, ptr, new); |
| |
| let old = CValue::by_val(old, layout); |
| ret.write_cvalue(fx, old); |
| }; |
| _ if intrinsic.as_str().starts_with("atomic_cxchg"), (v ptr, c test_old, c new) { // both atomic_cxchg_* and atomic_cxchgweak_* |
| let layout = new.layout(); |
| validate_atomic_type!(fx, intrinsic, span, layout.ty); |
| |
| let test_old = test_old.load_scalar(fx); |
| let new = new.load_scalar(fx); |
| |
| let old = fx.bcx.ins().atomic_cas(MemFlags::trusted(), ptr, test_old, new); |
| let is_eq = fx.bcx.ins().icmp(IntCC::Equal, old, test_old); |
| |
| let ret_val = CValue::by_val_pair(old, fx.bcx.ins().bint(types::I8, is_eq), ret.layout()); |
| ret.write_cvalue(fx, ret_val) |
| }; |
| |
| _ if intrinsic.as_str().starts_with("atomic_xadd"), (v ptr, c amount) { |
| let layout = amount.layout(); |
| validate_atomic_type!(fx, intrinsic, span, layout.ty); |
| let ty = fx.clif_type(layout.ty).unwrap(); |
| |
| let amount = amount.load_scalar(fx); |
| |
| let old = fx.bcx.ins().atomic_rmw(ty, MemFlags::trusted(), AtomicRmwOp::Add, ptr, amount); |
| |
| let old = CValue::by_val(old, layout); |
| ret.write_cvalue(fx, old); |
| }; |
| _ if intrinsic.as_str().starts_with("atomic_xsub"), (v ptr, c amount) { |
| let layout = amount.layout(); |
| validate_atomic_type!(fx, intrinsic, span, layout.ty); |
| let ty = fx.clif_type(layout.ty).unwrap(); |
| |
| let amount = amount.load_scalar(fx); |
| |
| let old = fx.bcx.ins().atomic_rmw(ty, MemFlags::trusted(), AtomicRmwOp::Sub, ptr, amount); |
| |
| let old = CValue::by_val(old, layout); |
| ret.write_cvalue(fx, old); |
| }; |
| _ if intrinsic.as_str().starts_with("atomic_and"), (v ptr, c src) { |
| let layout = src.layout(); |
| validate_atomic_type!(fx, intrinsic, span, layout.ty); |
| let ty = fx.clif_type(layout.ty).unwrap(); |
| |
| let src = src.load_scalar(fx); |
| |
| let old = fx.bcx.ins().atomic_rmw(ty, MemFlags::trusted(), AtomicRmwOp::And, ptr, src); |
| |
| let old = CValue::by_val(old, layout); |
| ret.write_cvalue(fx, old); |
| }; |
| _ if intrinsic.as_str().starts_with("atomic_or"), (v ptr, c src) { |
| let layout = src.layout(); |
| validate_atomic_type!(fx, intrinsic, span, layout.ty); |
| let ty = fx.clif_type(layout.ty).unwrap(); |
| |
| let src = src.load_scalar(fx); |
| |
| let old = fx.bcx.ins().atomic_rmw(ty, MemFlags::trusted(), AtomicRmwOp::Or, ptr, src); |
| |
| let old = CValue::by_val(old, layout); |
| ret.write_cvalue(fx, old); |
| }; |
| _ if intrinsic.as_str().starts_with("atomic_xor"), (v ptr, c src) { |
| let layout = src.layout(); |
| validate_atomic_type!(fx, intrinsic, span, layout.ty); |
| let ty = fx.clif_type(layout.ty).unwrap(); |
| |
| let src = src.load_scalar(fx); |
| |
| let old = fx.bcx.ins().atomic_rmw(ty, MemFlags::trusted(), AtomicRmwOp::Xor, ptr, src); |
| |
| let old = CValue::by_val(old, layout); |
| ret.write_cvalue(fx, old); |
| }; |
| _ if intrinsic.as_str().starts_with("atomic_nand"), (v ptr, c src) { |
| let layout = src.layout(); |
| validate_atomic_type!(fx, intrinsic, span, layout.ty); |
| let ty = fx.clif_type(layout.ty).unwrap(); |
| |
| let src = src.load_scalar(fx); |
| |
| let old = fx.bcx.ins().atomic_rmw(ty, MemFlags::trusted(), AtomicRmwOp::Nand, ptr, src); |
| |
| let old = CValue::by_val(old, layout); |
| ret.write_cvalue(fx, old); |
| }; |
| _ if intrinsic.as_str().starts_with("atomic_max"), (v ptr, c src) { |
| let layout = src.layout(); |
| validate_atomic_type!(fx, intrinsic, span, layout.ty); |
| let ty = fx.clif_type(layout.ty).unwrap(); |
| |
| let src = src.load_scalar(fx); |
| |
| let old = fx.bcx.ins().atomic_rmw(ty, MemFlags::trusted(), AtomicRmwOp::Smax, ptr, src); |
| |
| let old = CValue::by_val(old, layout); |
| ret.write_cvalue(fx, old); |
| }; |
| _ if intrinsic.as_str().starts_with("atomic_umax"), (v ptr, c src) { |
| let layout = src.layout(); |
| validate_atomic_type!(fx, intrinsic, span, layout.ty); |
| let ty = fx.clif_type(layout.ty).unwrap(); |
| |
| let src = src.load_scalar(fx); |
| |
| let old = fx.bcx.ins().atomic_rmw(ty, MemFlags::trusted(), AtomicRmwOp::Umax, ptr, src); |
| |
| let old = CValue::by_val(old, layout); |
| ret.write_cvalue(fx, old); |
| }; |
| _ if intrinsic.as_str().starts_with("atomic_min"), (v ptr, c src) { |
| let layout = src.layout(); |
| validate_atomic_type!(fx, intrinsic, span, layout.ty); |
| let ty = fx.clif_type(layout.ty).unwrap(); |
| |
| let src = src.load_scalar(fx); |
| |
| let old = fx.bcx.ins().atomic_rmw(ty, MemFlags::trusted(), AtomicRmwOp::Smin, ptr, src); |
| |
| let old = CValue::by_val(old, layout); |
| ret.write_cvalue(fx, old); |
| }; |
| _ if intrinsic.as_str().starts_with("atomic_umin"), (v ptr, c src) { |
| let layout = src.layout(); |
| validate_atomic_type!(fx, intrinsic, span, layout.ty); |
| let ty = fx.clif_type(layout.ty).unwrap(); |
| |
| let src = src.load_scalar(fx); |
| |
| let old = fx.bcx.ins().atomic_rmw(ty, MemFlags::trusted(), AtomicRmwOp::Umin, ptr, src); |
| |
| let old = CValue::by_val(old, layout); |
| ret.write_cvalue(fx, old); |
| }; |
| |
| // In Rust floating point min and max don't propagate NaN. In Cranelift they do however. |
| // For this reason it is necessary to use `a.is_nan() ? b : (a >= b ? b : a)` for `minnumf*` |
| // and `a.is_nan() ? b : (a <= b ? b : a)` for `maxnumf*`. NaN checks are done by comparing |
| // a float against itself. Only in case of NaN is it not equal to itself. |
| minnumf32, (v a, v b) { |
| let a_is_nan = fx.bcx.ins().fcmp(FloatCC::NotEqual, a, a); |
| let a_ge_b = fx.bcx.ins().fcmp(FloatCC::GreaterThanOrEqual, a, b); |
| let temp = fx.bcx.ins().select(a_ge_b, b, a); |
| let val = fx.bcx.ins().select(a_is_nan, b, temp); |
| let val = CValue::by_val(val, fx.layout_of(fx.tcx.types.f32)); |
| ret.write_cvalue(fx, val); |
| }; |
| minnumf64, (v a, v b) { |
| let a_is_nan = fx.bcx.ins().fcmp(FloatCC::NotEqual, a, a); |
| let a_ge_b = fx.bcx.ins().fcmp(FloatCC::GreaterThanOrEqual, a, b); |
| let temp = fx.bcx.ins().select(a_ge_b, b, a); |
| let val = fx.bcx.ins().select(a_is_nan, b, temp); |
| let val = CValue::by_val(val, fx.layout_of(fx.tcx.types.f64)); |
| ret.write_cvalue(fx, val); |
| }; |
| maxnumf32, (v a, v b) { |
| let a_is_nan = fx.bcx.ins().fcmp(FloatCC::NotEqual, a, a); |
| let a_le_b = fx.bcx.ins().fcmp(FloatCC::LessThanOrEqual, a, b); |
| let temp = fx.bcx.ins().select(a_le_b, b, a); |
| let val = fx.bcx.ins().select(a_is_nan, b, temp); |
| let val = CValue::by_val(val, fx.layout_of(fx.tcx.types.f32)); |
| ret.write_cvalue(fx, val); |
| }; |
| maxnumf64, (v a, v b) { |
| let a_is_nan = fx.bcx.ins().fcmp(FloatCC::NotEqual, a, a); |
| let a_le_b = fx.bcx.ins().fcmp(FloatCC::LessThanOrEqual, a, b); |
| let temp = fx.bcx.ins().select(a_le_b, b, a); |
| let val = fx.bcx.ins().select(a_is_nan, b, temp); |
| let val = CValue::by_val(val, fx.layout_of(fx.tcx.types.f64)); |
| ret.write_cvalue(fx, val); |
| }; |
| |
| kw.Try, (v f, v data, v _catch_fn) { |
| // FIXME once unwinding is supported, change this to actually catch panics |
| let f_sig = fx.bcx.func.import_signature(Signature { |
| call_conv: fx.target_config.default_call_conv, |
| params: vec![AbiParam::new(fx.bcx.func.dfg.value_type(data))], |
| returns: vec![], |
| }); |
| |
| fx.bcx.ins().call_indirect(f_sig, f, &[data]); |
| |
| let layout = ret.layout(); |
| let ret_val = CValue::const_val(fx, layout, ty::ScalarInt::null(layout.size)); |
| ret.write_cvalue(fx, ret_val); |
| }; |
| |
| fadd_fast | fsub_fast | fmul_fast | fdiv_fast | frem_fast, (c x, c y) { |
| let res = crate::num::codegen_float_binop(fx, match intrinsic { |
| sym::fadd_fast => BinOp::Add, |
| sym::fsub_fast => BinOp::Sub, |
| sym::fmul_fast => BinOp::Mul, |
| sym::fdiv_fast => BinOp::Div, |
| sym::frem_fast => BinOp::Rem, |
| _ => unreachable!(), |
| }, x, y); |
| ret.write_cvalue(fx, res); |
| }; |
| float_to_int_unchecked, (v f) { |
| let res = crate::cast::clif_int_or_float_cast( |
| fx, |
| f, |
| false, |
| fx.clif_type(ret.layout().ty).unwrap(), |
| type_sign(ret.layout().ty), |
| ); |
| ret.write_cvalue(fx, CValue::by_val(res, ret.layout())); |
| }; |
| |
| raw_eq, <T>(v lhs_ref, v rhs_ref) { |
| fn type_by_size(size: Size) -> Option<Type> { |
| Type::int(size.bits().try_into().ok()?) |
| } |
| |
| let size = fx.layout_of(T).layout.size; |
| // FIXME add and use emit_small_memcmp |
| let is_eq_value = |
| if size == Size::ZERO { |
| // No bytes means they're trivially equal |
| fx.bcx.ins().iconst(types::I8, 1) |
| } else if let Some(clty) = type_by_size(size) { |
| // Can't use `trusted` for these loads; they could be unaligned. |
| let mut flags = MemFlags::new(); |
| flags.set_notrap(); |
| let lhs_val = fx.bcx.ins().load(clty, flags, lhs_ref, 0); |
| let rhs_val = fx.bcx.ins().load(clty, flags, rhs_ref, 0); |
| let eq = fx.bcx.ins().icmp(IntCC::Equal, lhs_val, rhs_val); |
| fx.bcx.ins().bint(types::I8, eq) |
| } else { |
| // Just call `memcmp` (like slices do in core) when the |
| // size is too large or it's not a power-of-two. |
| let signed_bytes = i64::try_from(size.bytes()).unwrap(); |
| let bytes_val = fx.bcx.ins().iconst(fx.pointer_type, signed_bytes); |
| let params = vec![AbiParam::new(fx.pointer_type); 3]; |
| let returns = vec![AbiParam::new(types::I32)]; |
| let args = &[lhs_ref, rhs_ref, bytes_val]; |
| let cmp = fx.lib_call("memcmp", params, returns, args)[0]; |
| let eq = fx.bcx.ins().icmp_imm(IntCC::Equal, cmp, 0); |
| fx.bcx.ins().bint(types::I8, eq) |
| }; |
| ret.write_cvalue(fx, CValue::by_val(is_eq_value, ret.layout())); |
| }; |
| |
| black_box, (c a) { |
| // FIXME implement black_box semantics |
| ret.write_cvalue(fx, a); |
| }; |
| } |
| |
| if let Some((_, dest)) = destination { |
| let ret_block = fx.get_block(dest); |
| fx.bcx.ins().jump(ret_block, &[]); |
| } else { |
| trap_unreachable(fx, "[corruption] Diverging intrinsic returned."); |
| } |
| } |