blob: b2fe781e1c1838decf13a891425ebc42f7ff5abc [file] [log] [blame]
//! Constants for the `f16` double-precision floating point type.
//!
//! *[See also the `f16` primitive type](primitive@f16).*
//!
//! Mathematically significant numbers are provided in the `consts` sub-module.
#[cfg(test)]
mod tests;
#[cfg(not(test))]
use crate::intrinsics;
#[unstable(feature = "f16", issue = "116909")]
pub use core::f16::consts;
#[cfg(not(test))]
impl f16 {
/// Raises a number to an integer power.
///
/// Using this function is generally faster than using `powf`.
/// It might have a different sequence of rounding operations than `powf`,
/// so the results are not guaranteed to agree.
///
/// # Unspecified precision
///
/// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
/// can even differ within the same execution from one invocation to the next.
#[inline]
#[rustc_allow_incoherent_impl]
#[unstable(feature = "f16", issue = "116909")]
#[must_use = "method returns a new number and does not mutate the original value"]
pub fn powi(self, n: i32) -> f16 {
unsafe { intrinsics::powif16(self, n) }
}
/// Computes the absolute value of `self`.
///
/// This function always returns the precise result.
///
/// # Examples
///
/// ```
/// #![feature(f16)]
/// # #[cfg(reliable_f16)] {
///
/// let x = 3.5_f16;
/// let y = -3.5_f16;
///
/// assert_eq!(x.abs(), x);
/// assert_eq!(y.abs(), -y);
///
/// assert!(f16::NAN.abs().is_nan());
/// # }
/// ```
#[inline]
#[rustc_allow_incoherent_impl]
#[unstable(feature = "f16", issue = "116909")]
#[must_use = "method returns a new number and does not mutate the original value"]
pub fn abs(self) -> Self {
// FIXME(f16_f128): replace with `intrinsics::fabsf16` when available
Self::from_bits(self.to_bits() & !(1 << 15))
}
}