| use core::num::{NonZero, Saturating, Wrapping}; |
| |
| use crate::boxed::Box; |
| |
| #[rustc_specialization_trait] |
| pub(super) unsafe trait IsZero { |
| /// Whether this value's representation is all zeros, |
| /// or can be represented with all zeroes. |
| fn is_zero(&self) -> bool; |
| } |
| |
| macro_rules! impl_is_zero { |
| ($t:ty, $is_zero:expr) => { |
| unsafe impl IsZero for $t { |
| #[inline] |
| fn is_zero(&self) -> bool { |
| $is_zero(*self) |
| } |
| } |
| }; |
| } |
| |
| impl_is_zero!(i8, |x| x == 0); // It is needed to impl for arrays and tuples of i8. |
| impl_is_zero!(i16, |x| x == 0); |
| impl_is_zero!(i32, |x| x == 0); |
| impl_is_zero!(i64, |x| x == 0); |
| impl_is_zero!(i128, |x| x == 0); |
| impl_is_zero!(isize, |x| x == 0); |
| |
| impl_is_zero!(u8, |x| x == 0); // It is needed to impl for arrays and tuples of u8. |
| impl_is_zero!(u16, |x| x == 0); |
| impl_is_zero!(u32, |x| x == 0); |
| impl_is_zero!(u64, |x| x == 0); |
| impl_is_zero!(u128, |x| x == 0); |
| impl_is_zero!(usize, |x| x == 0); |
| |
| impl_is_zero!(bool, |x| x == false); |
| impl_is_zero!(char, |x| x == '\0'); |
| |
| impl_is_zero!(f32, |x: f32| x.to_bits() == 0); |
| impl_is_zero!(f64, |x: f64| x.to_bits() == 0); |
| |
| unsafe impl<T> IsZero for *const T { |
| #[inline] |
| fn is_zero(&self) -> bool { |
| (*self).is_null() |
| } |
| } |
| |
| unsafe impl<T> IsZero for *mut T { |
| #[inline] |
| fn is_zero(&self) -> bool { |
| (*self).is_null() |
| } |
| } |
| |
| unsafe impl<T: IsZero, const N: usize> IsZero for [T; N] { |
| #[inline] |
| fn is_zero(&self) -> bool { |
| // Because this is generated as a runtime check, it's not obvious that |
| // it's worth doing if the array is really long. The threshold here |
| // is largely arbitrary, but was picked because as of 2022-07-01 LLVM |
| // fails to const-fold the check in `vec![[1; 32]; n]` |
| // See https://github.com/rust-lang/rust/pull/97581#issuecomment-1166628022 |
| // Feel free to tweak if you have better evidence. |
| |
| N <= 16 && self.iter().all(IsZero::is_zero) |
| } |
| } |
| |
| // This is recursive macro. |
| macro_rules! impl_is_zero_tuples { |
| // Stopper |
| () => { |
| // No use for implementing for empty tuple because it is ZST. |
| }; |
| ($first_arg:ident $(,$rest:ident)*) => { |
| unsafe impl <$first_arg: IsZero, $($rest: IsZero,)*> IsZero for ($first_arg, $($rest,)*){ |
| #[inline] |
| fn is_zero(&self) -> bool{ |
| // Destructure tuple to N references |
| // Rust allows to hide generic params by local variable names. |
| #[allow(non_snake_case)] |
| let ($first_arg, $($rest,)*) = self; |
| |
| $first_arg.is_zero() |
| $( && $rest.is_zero() )* |
| } |
| } |
| |
| impl_is_zero_tuples!($($rest),*); |
| } |
| } |
| |
| impl_is_zero_tuples!(A, B, C, D, E, F, G, H); |
| |
| // `Option<&T>` and `Option<Box<T>>` are guaranteed to represent `None` as null. |
| // For fat pointers, the bytes that would be the pointer metadata in the `Some` |
| // variant are padding in the `None` variant, so ignoring them and |
| // zero-initializing instead is ok. |
| // `Option<&mut T>` never implements `Clone`, so there's no need for an impl of |
| // `SpecFromElem`. |
| |
| unsafe impl<T: ?Sized> IsZero for Option<&T> { |
| #[inline] |
| fn is_zero(&self) -> bool { |
| self.is_none() |
| } |
| } |
| |
| unsafe impl<T: ?Sized> IsZero for Option<Box<T>> { |
| #[inline] |
| fn is_zero(&self) -> bool { |
| self.is_none() |
| } |
| } |
| |
| // `Option<NonZero<u32>>` and similar have a representation guarantee that |
| // they're the same size as the corresponding `u32` type, as well as a guarantee |
| // that transmuting between `NonZero<u32>` and `Option<NonZero<u32>>` works. |
| // While the documentation officially makes it UB to transmute from `None`, |
| // we're the standard library so we can make extra inferences, and we know that |
| // the only niche available to represent `None` is the one that's all zeros. |
| macro_rules! impl_is_zero_option_of_nonzero_int { |
| ($($t:ty),+ $(,)?) => {$( |
| unsafe impl IsZero for Option<NonZero<$t>> { |
| #[inline] |
| fn is_zero(&self) -> bool { |
| self.is_none() |
| } |
| } |
| )+}; |
| } |
| |
| impl_is_zero_option_of_nonzero_int!(u8, u16, u32, u64, u128, usize, i8, i16, i32, i64, i128, isize); |
| |
| macro_rules! impl_is_zero_option_of_int { |
| ($($t:ty),+ $(,)?) => {$( |
| unsafe impl IsZero for Option<$t> { |
| #[inline] |
| fn is_zero(&self) -> bool { |
| const { |
| let none: Self = unsafe { core::mem::MaybeUninit::zeroed().assume_init() }; |
| assert!(none.is_none()); |
| } |
| self.is_none() |
| } |
| } |
| )+}; |
| } |
| |
| impl_is_zero_option_of_int!(u8, u16, u32, u64, u128, i8, i16, i32, i64, i128, usize, isize); |
| |
| unsafe impl<T: IsZero> IsZero for Wrapping<T> { |
| #[inline] |
| fn is_zero(&self) -> bool { |
| self.0.is_zero() |
| } |
| } |
| |
| unsafe impl<T: IsZero> IsZero for Saturating<T> { |
| #[inline] |
| fn is_zero(&self) -> bool { |
| self.0.is_zero() |
| } |
| } |
| |
| macro_rules! impl_is_zero_option_of_bool { |
| ($($t:ty),+ $(,)?) => {$( |
| unsafe impl IsZero for $t { |
| #[inline] |
| fn is_zero(&self) -> bool { |
| // SAFETY: This is *not* a stable layout guarantee, but |
| // inside `core` we're allowed to rely on the current rustc |
| // behavior that options of bools will be one byte with |
| // no padding, so long as they're nested less than 254 deep. |
| let raw: u8 = unsafe { core::mem::transmute(*self) }; |
| raw == 0 |
| } |
| } |
| )+}; |
| } |
| |
| impl_is_zero_option_of_bool! { |
| Option<bool>, |
| Option<Option<bool>>, |
| Option<Option<Option<bool>>>, |
| // Could go further, but not worth the metadata overhead. |
| } |