| //! Intrinsics and other functions that the interpreter executes without |
| //! looking at their MIR. Intrinsics/functions supported here are shared by CTFE |
| //! and miri. |
| |
| use std::assert_matches::assert_matches; |
| |
| use rustc_apfloat::ieee::{Double, Half, Quad, Single}; |
| use rustc_hir::def_id::DefId; |
| use rustc_middle::mir::{self, BinOp, ConstValue, NonDivergingIntrinsic}; |
| use rustc_middle::ty::layout::{LayoutOf as _, TyAndLayout, ValidityRequirement}; |
| use rustc_middle::ty::{GenericArgsRef, Ty, TyCtxt}; |
| use rustc_middle::{bug, ty}; |
| use rustc_span::symbol::{Symbol, sym}; |
| use rustc_target::abi::Size; |
| use tracing::trace; |
| |
| use super::memory::MemoryKind; |
| use super::util::ensure_monomorphic_enough; |
| use super::{ |
| Allocation, CheckInAllocMsg, ConstAllocation, GlobalId, ImmTy, InterpCx, InterpResult, |
| MPlaceTy, Machine, OpTy, Pointer, PointerArithmetic, Provenance, Scalar, err_inval, |
| err_ub_custom, err_unsup_format, interp_ok, throw_inval, throw_ub_custom, throw_ub_format, |
| }; |
| use crate::fluent_generated as fluent; |
| |
| /// Directly returns an `Allocation` containing an absolute path representation of the given type. |
| pub(crate) fn alloc_type_name<'tcx>(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> ConstAllocation<'tcx> { |
| let path = crate::util::type_name(tcx, ty); |
| let alloc = Allocation::from_bytes_byte_aligned_immutable(path.into_bytes()); |
| tcx.mk_const_alloc(alloc) |
| } |
| |
| /// The logic for all nullary intrinsics is implemented here. These intrinsics don't get evaluated |
| /// inside an `InterpCx` and instead have their value computed directly from rustc internal info. |
| pub(crate) fn eval_nullary_intrinsic<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| param_env: ty::ParamEnv<'tcx>, |
| def_id: DefId, |
| args: GenericArgsRef<'tcx>, |
| ) -> InterpResult<'tcx, ConstValue<'tcx>> { |
| let tp_ty = args.type_at(0); |
| let name = tcx.item_name(def_id); |
| interp_ok(match name { |
| sym::type_name => { |
| ensure_monomorphic_enough(tcx, tp_ty)?; |
| let alloc = alloc_type_name(tcx, tp_ty); |
| ConstValue::Slice { data: alloc, meta: alloc.inner().size().bytes() } |
| } |
| sym::needs_drop => { |
| ensure_monomorphic_enough(tcx, tp_ty)?; |
| ConstValue::from_bool(tp_ty.needs_drop(tcx, param_env)) |
| } |
| sym::pref_align_of => { |
| // Correctly handles non-monomorphic calls, so there is no need for ensure_monomorphic_enough. |
| let layout = tcx.layout_of(param_env.and(tp_ty)).map_err(|e| err_inval!(Layout(*e)))?; |
| ConstValue::from_target_usize(layout.align.pref.bytes(), &tcx) |
| } |
| sym::type_id => { |
| ensure_monomorphic_enough(tcx, tp_ty)?; |
| ConstValue::from_u128(tcx.type_id_hash(tp_ty).as_u128()) |
| } |
| sym::variant_count => match tp_ty.kind() { |
| // Correctly handles non-monomorphic calls, so there is no need for ensure_monomorphic_enough. |
| ty::Adt(adt, _) => ConstValue::from_target_usize(adt.variants().len() as u64, &tcx), |
| ty::Alias(..) | ty::Param(_) | ty::Placeholder(_) | ty::Infer(_) => { |
| throw_inval!(TooGeneric) |
| } |
| ty::Pat(_, pat) => match **pat { |
| ty::PatternKind::Range { .. } => ConstValue::from_target_usize(0u64, &tcx), |
| // Future pattern kinds may have more variants |
| }, |
| ty::Bound(_, _) => bug!("bound ty during ctfe"), |
| ty::Bool |
| | ty::Char |
| | ty::Int(_) |
| | ty::Uint(_) |
| | ty::Float(_) |
| | ty::Foreign(_) |
| | ty::Str |
| | ty::Array(_, _) |
| | ty::Slice(_) |
| | ty::RawPtr(_, _) |
| | ty::Ref(_, _, _) |
| | ty::FnDef(_, _) |
| | ty::FnPtr(..) |
| | ty::Dynamic(_, _, _) |
| | ty::Closure(_, _) |
| | ty::CoroutineClosure(_, _) |
| | ty::Coroutine(_, _) |
| | ty::CoroutineWitness(..) |
| | ty::Never |
| | ty::Tuple(_) |
| | ty::Error(_) => ConstValue::from_target_usize(0u64, &tcx), |
| }, |
| other => bug!("`{}` is not a zero arg intrinsic", other), |
| }) |
| } |
| |
| impl<'tcx, M: Machine<'tcx>> InterpCx<'tcx, M> { |
| /// Returns `true` if emulation happened. |
| /// Here we implement the intrinsics that are common to all Miri instances; individual machines can add their own |
| /// intrinsic handling. |
| pub fn eval_intrinsic( |
| &mut self, |
| instance: ty::Instance<'tcx>, |
| args: &[OpTy<'tcx, M::Provenance>], |
| dest: &MPlaceTy<'tcx, M::Provenance>, |
| ret: Option<mir::BasicBlock>, |
| ) -> InterpResult<'tcx, bool> { |
| let instance_args = instance.args; |
| let intrinsic_name = self.tcx.item_name(instance.def_id()); |
| |
| match intrinsic_name { |
| sym::caller_location => { |
| let span = self.find_closest_untracked_caller_location(); |
| let val = self.tcx.span_as_caller_location(span); |
| let val = |
| self.const_val_to_op(val, self.tcx.caller_location_ty(), Some(dest.layout))?; |
| self.copy_op(&val, dest)?; |
| } |
| |
| sym::min_align_of_val | sym::size_of_val => { |
| // Avoid `deref_pointer` -- this is not a deref, the ptr does not have to be |
| // dereferenceable! |
| let place = self.ref_to_mplace(&self.read_immediate(&args[0])?)?; |
| let (size, align) = self |
| .size_and_align_of_mplace(&place)? |
| .ok_or_else(|| err_unsup_format!("`extern type` does not have known layout"))?; |
| |
| let result = match intrinsic_name { |
| sym::min_align_of_val => align.bytes(), |
| sym::size_of_val => size.bytes(), |
| _ => bug!(), |
| }; |
| |
| self.write_scalar(Scalar::from_target_usize(result, self), dest)?; |
| } |
| |
| sym::pref_align_of |
| | sym::needs_drop |
| | sym::type_id |
| | sym::type_name |
| | sym::variant_count => { |
| let gid = GlobalId { instance, promoted: None }; |
| let ty = match intrinsic_name { |
| sym::pref_align_of | sym::variant_count => self.tcx.types.usize, |
| sym::needs_drop => self.tcx.types.bool, |
| sym::type_id => self.tcx.types.u128, |
| sym::type_name => Ty::new_static_str(self.tcx.tcx), |
| _ => bug!(), |
| }; |
| let val = |
| self.ctfe_query(|tcx| tcx.const_eval_global_id(self.param_env, gid, tcx.span))?; |
| let val = self.const_val_to_op(val, ty, Some(dest.layout))?; |
| self.copy_op(&val, dest)?; |
| } |
| |
| sym::ctpop |
| | sym::cttz |
| | sym::cttz_nonzero |
| | sym::ctlz |
| | sym::ctlz_nonzero |
| | sym::bswap |
| | sym::bitreverse => { |
| let ty = instance_args.type_at(0); |
| let layout = self.layout_of(ty)?; |
| let val = self.read_scalar(&args[0])?; |
| |
| let out_val = self.numeric_intrinsic(intrinsic_name, val, layout, dest.layout)?; |
| self.write_scalar(out_val, dest)?; |
| } |
| sym::saturating_add | sym::saturating_sub => { |
| let l = self.read_immediate(&args[0])?; |
| let r = self.read_immediate(&args[1])?; |
| let val = self.saturating_arith( |
| if intrinsic_name == sym::saturating_add { BinOp::Add } else { BinOp::Sub }, |
| &l, |
| &r, |
| )?; |
| self.write_scalar(val, dest)?; |
| } |
| sym::discriminant_value => { |
| let place = self.deref_pointer(&args[0])?; |
| let variant = self.read_discriminant(&place)?; |
| let discr = self.discriminant_for_variant(place.layout.ty, variant)?; |
| self.write_immediate(*discr, dest)?; |
| } |
| sym::exact_div => { |
| let l = self.read_immediate(&args[0])?; |
| let r = self.read_immediate(&args[1])?; |
| self.exact_div(&l, &r, dest)?; |
| } |
| sym::rotate_left | sym::rotate_right => { |
| // rotate_left: (X << (S % BW)) | (X >> ((BW - S) % BW)) |
| // rotate_right: (X << ((BW - S) % BW)) | (X >> (S % BW)) |
| let layout_val = self.layout_of(instance_args.type_at(0))?; |
| let val = self.read_scalar(&args[0])?; |
| let val_bits = val.to_bits(layout_val.size)?; // sign is ignored here |
| |
| let layout_raw_shift = self.layout_of(self.tcx.types.u32)?; |
| let raw_shift = self.read_scalar(&args[1])?; |
| let raw_shift_bits = raw_shift.to_bits(layout_raw_shift.size)?; |
| |
| let width_bits = u128::from(layout_val.size.bits()); |
| let shift_bits = raw_shift_bits % width_bits; |
| let inv_shift_bits = (width_bits - shift_bits) % width_bits; |
| let result_bits = if intrinsic_name == sym::rotate_left { |
| (val_bits << shift_bits) | (val_bits >> inv_shift_bits) |
| } else { |
| (val_bits >> shift_bits) | (val_bits << inv_shift_bits) |
| }; |
| let truncated_bits = layout_val.size.truncate(result_bits); |
| let result = Scalar::from_uint(truncated_bits, layout_val.size); |
| self.write_scalar(result, dest)?; |
| } |
| sym::copy => { |
| self.copy_intrinsic(&args[0], &args[1], &args[2], /*nonoverlapping*/ false)?; |
| } |
| sym::write_bytes => { |
| self.write_bytes_intrinsic(&args[0], &args[1], &args[2], "write_bytes")?; |
| } |
| sym::compare_bytes => { |
| let result = self.compare_bytes_intrinsic(&args[0], &args[1], &args[2])?; |
| self.write_scalar(result, dest)?; |
| } |
| sym::arith_offset => { |
| let ptr = self.read_pointer(&args[0])?; |
| let offset_count = self.read_target_isize(&args[1])?; |
| let pointee_ty = instance_args.type_at(0); |
| |
| let pointee_size = i64::try_from(self.layout_of(pointee_ty)?.size.bytes()).unwrap(); |
| let offset_bytes = offset_count.wrapping_mul(pointee_size); |
| let offset_ptr = ptr.wrapping_signed_offset(offset_bytes, self); |
| self.write_pointer(offset_ptr, dest)?; |
| } |
| sym::ptr_offset_from | sym::ptr_offset_from_unsigned => { |
| let a = self.read_pointer(&args[0])?; |
| let b = self.read_pointer(&args[1])?; |
| |
| let usize_layout = self.layout_of(self.tcx.types.usize)?; |
| let isize_layout = self.layout_of(self.tcx.types.isize)?; |
| |
| // Get offsets for both that are at least relative to the same base. |
| // With `OFFSET_IS_ADDR` this is trivial; without it we need either |
| // two integers or two pointers into the same allocation. |
| let (a_offset, b_offset, is_addr) = if M::Provenance::OFFSET_IS_ADDR { |
| (a.addr().bytes(), b.addr().bytes(), /*is_addr*/ true) |
| } else { |
| match (self.ptr_try_get_alloc_id(a, 0), self.ptr_try_get_alloc_id(b, 0)) { |
| (Err(a), Err(b)) => { |
| // Neither pointer points to an allocation, so they are both absolute. |
| (a, b, /*is_addr*/ true) |
| } |
| (Ok((a_alloc_id, a_offset, _)), Ok((b_alloc_id, b_offset, _))) |
| if a_alloc_id == b_alloc_id => |
| { |
| // Found allocation for both, and it's the same. |
| // Use these offsets for distance calculation. |
| (a_offset.bytes(), b_offset.bytes(), /*is_addr*/ false) |
| } |
| _ => { |
| // Not into the same allocation -- this is UB. |
| throw_ub_custom!( |
| fluent::const_eval_offset_from_different_allocations, |
| name = intrinsic_name, |
| ); |
| } |
| } |
| }; |
| |
| // Compute distance: a - b. |
| let dist = { |
| // Addresses are unsigned, so this is a `usize` computation. We have to do the |
| // overflow check separately anyway. |
| let (val, overflowed) = { |
| let a_offset = ImmTy::from_uint(a_offset, usize_layout); |
| let b_offset = ImmTy::from_uint(b_offset, usize_layout); |
| self.binary_op(BinOp::SubWithOverflow, &a_offset, &b_offset)? |
| .to_scalar_pair() |
| }; |
| if overflowed.to_bool()? { |
| // a < b |
| if intrinsic_name == sym::ptr_offset_from_unsigned { |
| throw_ub_custom!( |
| fluent::const_eval_offset_from_unsigned_overflow, |
| a_offset = a_offset, |
| b_offset = b_offset, |
| is_addr = is_addr, |
| ); |
| } |
| // The signed form of the intrinsic allows this. If we interpret the |
| // difference as isize, we'll get the proper signed difference. If that |
| // seems *positive* or equal to isize::MIN, they were more than isize::MAX apart. |
| let dist = val.to_target_isize(self)?; |
| if dist >= 0 || i128::from(dist) == self.pointer_size().signed_int_min() { |
| throw_ub_custom!( |
| fluent::const_eval_offset_from_underflow, |
| name = intrinsic_name, |
| ); |
| } |
| dist |
| } else { |
| // b >= a |
| let dist = val.to_target_isize(self)?; |
| // If converting to isize produced a *negative* result, we had an overflow |
| // because they were more than isize::MAX apart. |
| if dist < 0 { |
| throw_ub_custom!( |
| fluent::const_eval_offset_from_overflow, |
| name = intrinsic_name, |
| ); |
| } |
| dist |
| } |
| }; |
| |
| // Check that the memory between them is dereferenceable at all, starting from the |
| // origin pointer: `dist` is `a - b`, so it is based on `b`. |
| self.check_ptr_access_signed(b, dist, CheckInAllocMsg::OffsetFromTest)?; |
| // Then check that this is also dereferenceable from `a`. This ensures that they are |
| // derived from the same allocation. |
| self.check_ptr_access_signed( |
| a, |
| dist.checked_neg().unwrap(), // i64::MIN is impossible as no allocation can be that large |
| CheckInAllocMsg::OffsetFromTest, |
| ) |
| .map_err_kind(|_| { |
| // Make the error more specific. |
| err_ub_custom!( |
| fluent::const_eval_offset_from_different_allocations, |
| name = intrinsic_name, |
| ) |
| })?; |
| |
| // Perform division by size to compute return value. |
| let ret_layout = if intrinsic_name == sym::ptr_offset_from_unsigned { |
| assert!(0 <= dist && dist <= self.target_isize_max()); |
| usize_layout |
| } else { |
| assert!(self.target_isize_min() <= dist && dist <= self.target_isize_max()); |
| isize_layout |
| }; |
| let pointee_layout = self.layout_of(instance_args.type_at(0))?; |
| // If ret_layout is unsigned, we checked that so is the distance, so we are good. |
| let val = ImmTy::from_int(dist, ret_layout); |
| let size = ImmTy::from_int(pointee_layout.size.bytes(), ret_layout); |
| self.exact_div(&val, &size, dest)?; |
| } |
| |
| sym::assert_inhabited |
| | sym::assert_zero_valid |
| | sym::assert_mem_uninitialized_valid => { |
| let ty = instance.args.type_at(0); |
| let requirement = ValidityRequirement::from_intrinsic(intrinsic_name).unwrap(); |
| |
| let should_panic = !self |
| .tcx |
| .check_validity_requirement((requirement, self.param_env.and(ty))) |
| .map_err(|_| err_inval!(TooGeneric))?; |
| |
| if should_panic { |
| let layout = self.layout_of(ty)?; |
| |
| let msg = match requirement { |
| // For *all* intrinsics we first check `is_uninhabited` to give a more specific |
| // error message. |
| _ if layout.is_uninhabited() => format!( |
| "aborted execution: attempted to instantiate uninhabited type `{ty}`" |
| ), |
| ValidityRequirement::Inhabited => bug!("handled earlier"), |
| ValidityRequirement::Zero => format!( |
| "aborted execution: attempted to zero-initialize type `{ty}`, which is invalid" |
| ), |
| ValidityRequirement::UninitMitigated0x01Fill => format!( |
| "aborted execution: attempted to leave type `{ty}` uninitialized, which is invalid" |
| ), |
| ValidityRequirement::Uninit => bug!("assert_uninit_valid doesn't exist"), |
| }; |
| |
| M::panic_nounwind(self, &msg)?; |
| // Skip the `return_to_block` at the end (we panicked, we do not return). |
| return interp_ok(true); |
| } |
| } |
| sym::simd_insert => { |
| let index = u64::from(self.read_scalar(&args[1])?.to_u32()?); |
| let elem = &args[2]; |
| let (input, input_len) = self.project_to_simd(&args[0])?; |
| let (dest, dest_len) = self.project_to_simd(dest)?; |
| assert_eq!(input_len, dest_len, "Return vector length must match input length"); |
| // Bounds are not checked by typeck so we have to do it ourselves. |
| if index >= input_len { |
| throw_ub_format!( |
| "`simd_insert` index {index} is out-of-bounds of vector with length {input_len}" |
| ); |
| } |
| |
| for i in 0..dest_len { |
| let place = self.project_index(&dest, i)?; |
| let value = |
| if i == index { elem.clone() } else { self.project_index(&input, i)? }; |
| self.copy_op(&value, &place)?; |
| } |
| } |
| sym::simd_extract => { |
| let index = u64::from(self.read_scalar(&args[1])?.to_u32()?); |
| let (input, input_len) = self.project_to_simd(&args[0])?; |
| // Bounds are not checked by typeck so we have to do it ourselves. |
| if index >= input_len { |
| throw_ub_format!( |
| "`simd_extract` index {index} is out-of-bounds of vector with length {input_len}" |
| ); |
| } |
| self.copy_op(&self.project_index(&input, index)?, dest)?; |
| } |
| sym::black_box => { |
| // These just return their argument |
| self.copy_op(&args[0], dest)?; |
| } |
| sym::raw_eq => { |
| let result = self.raw_eq_intrinsic(&args[0], &args[1])?; |
| self.write_scalar(result, dest)?; |
| } |
| sym::typed_swap => { |
| self.typed_swap_intrinsic(&args[0], &args[1])?; |
| } |
| |
| sym::vtable_size => { |
| let ptr = self.read_pointer(&args[0])?; |
| // `None` because we don't know which trait to expect here; any vtable is okay. |
| let (size, _align) = self.get_vtable_size_and_align(ptr, None)?; |
| self.write_scalar(Scalar::from_target_usize(size.bytes(), self), dest)?; |
| } |
| sym::vtable_align => { |
| let ptr = self.read_pointer(&args[0])?; |
| // `None` because we don't know which trait to expect here; any vtable is okay. |
| let (_size, align) = self.get_vtable_size_and_align(ptr, None)?; |
| self.write_scalar(Scalar::from_target_usize(align.bytes(), self), dest)?; |
| } |
| |
| sym::minnumf16 => self.float_min_intrinsic::<Half>(args, dest)?, |
| sym::minnumf32 => self.float_min_intrinsic::<Single>(args, dest)?, |
| sym::minnumf64 => self.float_min_intrinsic::<Double>(args, dest)?, |
| sym::minnumf128 => self.float_min_intrinsic::<Quad>(args, dest)?, |
| |
| sym::maxnumf16 => self.float_max_intrinsic::<Half>(args, dest)?, |
| sym::maxnumf32 => self.float_max_intrinsic::<Single>(args, dest)?, |
| sym::maxnumf64 => self.float_max_intrinsic::<Double>(args, dest)?, |
| sym::maxnumf128 => self.float_max_intrinsic::<Quad>(args, dest)?, |
| |
| sym::copysignf16 => self.float_copysign_intrinsic::<Half>(args, dest)?, |
| sym::copysignf32 => self.float_copysign_intrinsic::<Single>(args, dest)?, |
| sym::copysignf64 => self.float_copysign_intrinsic::<Double>(args, dest)?, |
| sym::copysignf128 => self.float_copysign_intrinsic::<Quad>(args, dest)?, |
| |
| sym::fabsf16 => self.float_abs_intrinsic::<Half>(args, dest)?, |
| sym::fabsf32 => self.float_abs_intrinsic::<Single>(args, dest)?, |
| sym::fabsf64 => self.float_abs_intrinsic::<Double>(args, dest)?, |
| sym::fabsf128 => self.float_abs_intrinsic::<Quad>(args, dest)?, |
| |
| // Unsupported intrinsic: skip the return_to_block below. |
| _ => return interp_ok(false), |
| } |
| |
| trace!("{:?}", self.dump_place(&dest.clone().into())); |
| self.return_to_block(ret)?; |
| interp_ok(true) |
| } |
| |
| pub(super) fn eval_nondiverging_intrinsic( |
| &mut self, |
| intrinsic: &NonDivergingIntrinsic<'tcx>, |
| ) -> InterpResult<'tcx> { |
| match intrinsic { |
| NonDivergingIntrinsic::Assume(op) => { |
| let op = self.eval_operand(op, None)?; |
| let cond = self.read_scalar(&op)?.to_bool()?; |
| if !cond { |
| throw_ub_custom!(fluent::const_eval_assume_false); |
| } |
| interp_ok(()) |
| } |
| NonDivergingIntrinsic::CopyNonOverlapping(mir::CopyNonOverlapping { |
| count, |
| src, |
| dst, |
| }) => { |
| let src = self.eval_operand(src, None)?; |
| let dst = self.eval_operand(dst, None)?; |
| let count = self.eval_operand(count, None)?; |
| self.copy_intrinsic(&src, &dst, &count, /* nonoverlapping */ true) |
| } |
| } |
| } |
| |
| pub fn numeric_intrinsic( |
| &self, |
| name: Symbol, |
| val: Scalar<M::Provenance>, |
| layout: TyAndLayout<'tcx>, |
| ret_layout: TyAndLayout<'tcx>, |
| ) -> InterpResult<'tcx, Scalar<M::Provenance>> { |
| assert!(layout.ty.is_integral(), "invalid type for numeric intrinsic: {}", layout.ty); |
| let bits = val.to_bits(layout.size)?; // these operations all ignore the sign |
| let extra = 128 - u128::from(layout.size.bits()); |
| let bits_out = match name { |
| sym::ctpop => u128::from(bits.count_ones()), |
| sym::ctlz_nonzero | sym::cttz_nonzero if bits == 0 => { |
| throw_ub_custom!(fluent::const_eval_call_nonzero_intrinsic, name = name,); |
| } |
| sym::ctlz | sym::ctlz_nonzero => u128::from(bits.leading_zeros()) - extra, |
| sym::cttz | sym::cttz_nonzero => u128::from((bits << extra).trailing_zeros()) - extra, |
| sym::bswap => { |
| assert_eq!(layout, ret_layout); |
| (bits << extra).swap_bytes() |
| } |
| sym::bitreverse => { |
| assert_eq!(layout, ret_layout); |
| (bits << extra).reverse_bits() |
| } |
| _ => bug!("not a numeric intrinsic: {}", name), |
| }; |
| interp_ok(Scalar::from_uint(bits_out, ret_layout.size)) |
| } |
| |
| pub fn exact_div( |
| &mut self, |
| a: &ImmTy<'tcx, M::Provenance>, |
| b: &ImmTy<'tcx, M::Provenance>, |
| dest: &MPlaceTy<'tcx, M::Provenance>, |
| ) -> InterpResult<'tcx> { |
| assert_eq!(a.layout.ty, b.layout.ty); |
| assert_matches!(a.layout.ty.kind(), ty::Int(..) | ty::Uint(..)); |
| |
| // Performs an exact division, resulting in undefined behavior where |
| // `x % y != 0` or `y == 0` or `x == T::MIN && y == -1`. |
| // First, check x % y != 0 (or if that computation overflows). |
| let rem = self.binary_op(BinOp::Rem, a, b)?; |
| // sign does not matter for 0 test, so `to_bits` is fine |
| if rem.to_scalar().to_bits(a.layout.size)? != 0 { |
| throw_ub_custom!( |
| fluent::const_eval_exact_div_has_remainder, |
| a = format!("{a}"), |
| b = format!("{b}") |
| ) |
| } |
| // `Rem` says this is all right, so we can let `Div` do its job. |
| let res = self.binary_op(BinOp::Div, a, b)?; |
| self.write_immediate(*res, dest) |
| } |
| |
| pub fn saturating_arith( |
| &self, |
| mir_op: BinOp, |
| l: &ImmTy<'tcx, M::Provenance>, |
| r: &ImmTy<'tcx, M::Provenance>, |
| ) -> InterpResult<'tcx, Scalar<M::Provenance>> { |
| assert_eq!(l.layout.ty, r.layout.ty); |
| assert_matches!(l.layout.ty.kind(), ty::Int(..) | ty::Uint(..)); |
| assert_matches!(mir_op, BinOp::Add | BinOp::Sub); |
| |
| let (val, overflowed) = |
| self.binary_op(mir_op.wrapping_to_overflowing().unwrap(), l, r)?.to_scalar_pair(); |
| interp_ok(if overflowed.to_bool()? { |
| let size = l.layout.size; |
| if l.layout.abi.is_signed() { |
| // For signed ints the saturated value depends on the sign of the first |
| // term since the sign of the second term can be inferred from this and |
| // the fact that the operation has overflowed (if either is 0 no |
| // overflow can occur) |
| let first_term: i128 = l.to_scalar().to_int(l.layout.size)?; |
| if first_term >= 0 { |
| // Negative overflow not possible since the positive first term |
| // can only increase an (in range) negative term for addition |
| // or corresponding negated positive term for subtraction. |
| Scalar::from_int(size.signed_int_max(), size) |
| } else { |
| // Positive overflow not possible for similar reason. |
| Scalar::from_int(size.signed_int_min(), size) |
| } |
| } else { |
| // unsigned |
| if matches!(mir_op, BinOp::Add) { |
| // max unsigned |
| Scalar::from_uint(size.unsigned_int_max(), size) |
| } else { |
| // underflow to 0 |
| Scalar::from_uint(0u128, size) |
| } |
| } |
| } else { |
| val |
| }) |
| } |
| |
| /// Offsets a pointer by some multiple of its type, returning an error if the pointer leaves its |
| /// allocation. |
| pub fn ptr_offset_inbounds( |
| &self, |
| ptr: Pointer<Option<M::Provenance>>, |
| offset_bytes: i64, |
| ) -> InterpResult<'tcx, Pointer<Option<M::Provenance>>> { |
| // The offset must be in bounds starting from `ptr`. |
| self.check_ptr_access_signed(ptr, offset_bytes, CheckInAllocMsg::PointerArithmeticTest)?; |
| // This also implies that there is no overflow, so we are done. |
| interp_ok(ptr.wrapping_signed_offset(offset_bytes, self)) |
| } |
| |
| /// Copy `count*size_of::<T>()` many bytes from `*src` to `*dst`. |
| pub(crate) fn copy_intrinsic( |
| &mut self, |
| src: &OpTy<'tcx, <M as Machine<'tcx>>::Provenance>, |
| dst: &OpTy<'tcx, <M as Machine<'tcx>>::Provenance>, |
| count: &OpTy<'tcx, <M as Machine<'tcx>>::Provenance>, |
| nonoverlapping: bool, |
| ) -> InterpResult<'tcx> { |
| let count = self.read_target_usize(count)?; |
| let layout = self.layout_of(src.layout.ty.builtin_deref(true).unwrap())?; |
| let (size, align) = (layout.size, layout.align.abi); |
| |
| let size = self.compute_size_in_bytes(size, count).ok_or_else(|| { |
| err_ub_custom!( |
| fluent::const_eval_size_overflow, |
| name = if nonoverlapping { "copy_nonoverlapping" } else { "copy" } |
| ) |
| })?; |
| |
| let src = self.read_pointer(src)?; |
| let dst = self.read_pointer(dst)?; |
| |
| self.check_ptr_align(src, align)?; |
| self.check_ptr_align(dst, align)?; |
| |
| self.mem_copy(src, dst, size, nonoverlapping) |
| } |
| |
| /// Does a *typed* swap of `*left` and `*right`. |
| fn typed_swap_intrinsic( |
| &mut self, |
| left: &OpTy<'tcx, <M as Machine<'tcx>>::Provenance>, |
| right: &OpTy<'tcx, <M as Machine<'tcx>>::Provenance>, |
| ) -> InterpResult<'tcx> { |
| let left = self.deref_pointer(left)?; |
| let right = self.deref_pointer(right)?; |
| debug_assert_eq!(left.layout, right.layout); |
| let kind = MemoryKind::Stack; |
| let temp = self.allocate(left.layout, kind)?; |
| self.copy_op(&left, &temp)?; |
| self.copy_op(&right, &left)?; |
| self.copy_op(&temp, &right)?; |
| self.deallocate_ptr(temp.ptr(), None, kind)?; |
| interp_ok(()) |
| } |
| |
| pub fn write_bytes_intrinsic( |
| &mut self, |
| dst: &OpTy<'tcx, <M as Machine<'tcx>>::Provenance>, |
| byte: &OpTy<'tcx, <M as Machine<'tcx>>::Provenance>, |
| count: &OpTy<'tcx, <M as Machine<'tcx>>::Provenance>, |
| name: &'static str, |
| ) -> InterpResult<'tcx> { |
| let layout = self.layout_of(dst.layout.ty.builtin_deref(true).unwrap())?; |
| |
| let dst = self.read_pointer(dst)?; |
| let byte = self.read_scalar(byte)?.to_u8()?; |
| let count = self.read_target_usize(count)?; |
| |
| // `checked_mul` enforces a too small bound (the correct one would probably be target_isize_max), |
| // but no actual allocation can be big enough for the difference to be noticeable. |
| let len = self |
| .compute_size_in_bytes(layout.size, count) |
| .ok_or_else(|| err_ub_custom!(fluent::const_eval_size_overflow, name = name))?; |
| |
| let bytes = std::iter::repeat(byte).take(len.bytes_usize()); |
| self.write_bytes_ptr(dst, bytes) |
| } |
| |
| pub(crate) fn compare_bytes_intrinsic( |
| &mut self, |
| left: &OpTy<'tcx, <M as Machine<'tcx>>::Provenance>, |
| right: &OpTy<'tcx, <M as Machine<'tcx>>::Provenance>, |
| byte_count: &OpTy<'tcx, <M as Machine<'tcx>>::Provenance>, |
| ) -> InterpResult<'tcx, Scalar<M::Provenance>> { |
| let left = self.read_pointer(left)?; |
| let right = self.read_pointer(right)?; |
| let n = Size::from_bytes(self.read_target_usize(byte_count)?); |
| |
| let left_bytes = self.read_bytes_ptr_strip_provenance(left, n)?; |
| let right_bytes = self.read_bytes_ptr_strip_provenance(right, n)?; |
| |
| // `Ordering`'s discriminants are -1/0/+1, so casting does the right thing. |
| let result = Ord::cmp(left_bytes, right_bytes) as i32; |
| interp_ok(Scalar::from_i32(result)) |
| } |
| |
| pub(crate) fn raw_eq_intrinsic( |
| &mut self, |
| lhs: &OpTy<'tcx, <M as Machine<'tcx>>::Provenance>, |
| rhs: &OpTy<'tcx, <M as Machine<'tcx>>::Provenance>, |
| ) -> InterpResult<'tcx, Scalar<M::Provenance>> { |
| let layout = self.layout_of(lhs.layout.ty.builtin_deref(true).unwrap())?; |
| assert!(layout.is_sized()); |
| |
| let get_bytes = |this: &InterpCx<'tcx, M>, |
| op: &OpTy<'tcx, <M as Machine<'tcx>>::Provenance>| |
| -> InterpResult<'tcx, &[u8]> { |
| let ptr = this.read_pointer(op)?; |
| this.check_ptr_align(ptr, layout.align.abi)?; |
| let Some(alloc_ref) = self.get_ptr_alloc(ptr, layout.size)? else { |
| // zero-sized access |
| return interp_ok(&[]); |
| }; |
| alloc_ref.get_bytes_strip_provenance() |
| }; |
| |
| let lhs_bytes = get_bytes(self, lhs)?; |
| let rhs_bytes = get_bytes(self, rhs)?; |
| interp_ok(Scalar::from_bool(lhs_bytes == rhs_bytes)) |
| } |
| |
| fn float_min_intrinsic<F>( |
| &mut self, |
| args: &[OpTy<'tcx, M::Provenance>], |
| dest: &MPlaceTy<'tcx, M::Provenance>, |
| ) -> InterpResult<'tcx, ()> |
| where |
| F: rustc_apfloat::Float + rustc_apfloat::FloatConvert<F> + Into<Scalar<M::Provenance>>, |
| { |
| let a: F = self.read_scalar(&args[0])?.to_float()?; |
| let b: F = self.read_scalar(&args[1])?.to_float()?; |
| let res = self.adjust_nan(a.min(b), &[a, b]); |
| self.write_scalar(res, dest)?; |
| interp_ok(()) |
| } |
| |
| fn float_max_intrinsic<F>( |
| &mut self, |
| args: &[OpTy<'tcx, M::Provenance>], |
| dest: &MPlaceTy<'tcx, M::Provenance>, |
| ) -> InterpResult<'tcx, ()> |
| where |
| F: rustc_apfloat::Float + rustc_apfloat::FloatConvert<F> + Into<Scalar<M::Provenance>>, |
| { |
| let a: F = self.read_scalar(&args[0])?.to_float()?; |
| let b: F = self.read_scalar(&args[1])?.to_float()?; |
| let res = self.adjust_nan(a.max(b), &[a, b]); |
| self.write_scalar(res, dest)?; |
| interp_ok(()) |
| } |
| |
| fn float_copysign_intrinsic<F>( |
| &mut self, |
| args: &[OpTy<'tcx, M::Provenance>], |
| dest: &MPlaceTy<'tcx, M::Provenance>, |
| ) -> InterpResult<'tcx, ()> |
| where |
| F: rustc_apfloat::Float + rustc_apfloat::FloatConvert<F> + Into<Scalar<M::Provenance>>, |
| { |
| let a: F = self.read_scalar(&args[0])?.to_float()?; |
| let b: F = self.read_scalar(&args[1])?.to_float()?; |
| // bitwise, no NaN adjustments |
| self.write_scalar(a.copy_sign(b), dest)?; |
| interp_ok(()) |
| } |
| |
| fn float_abs_intrinsic<F>( |
| &mut self, |
| args: &[OpTy<'tcx, M::Provenance>], |
| dest: &MPlaceTy<'tcx, M::Provenance>, |
| ) -> InterpResult<'tcx, ()> |
| where |
| F: rustc_apfloat::Float + rustc_apfloat::FloatConvert<F> + Into<Scalar<M::Provenance>>, |
| { |
| let x: F = self.read_scalar(&args[0])?.to_float()?; |
| // bitwise, no NaN adjustments |
| self.write_scalar(x.abs(), dest)?; |
| interp_ok(()) |
| } |
| } |