| use std::borrow::Cow; |
| use std::cell::Cell; |
| use std::convert::TryFrom; |
| use std::ops::Deref; |
| |
| use gccjit::{ |
| BinaryOp, Block, ComparisonOp, Context, Function, LValue, Location, RValue, ToRValue, Type, |
| UnaryOp, |
| }; |
| use rustc_abi as abi; |
| use rustc_abi::{Align, HasDataLayout, Size, TargetDataLayout, WrappingRange}; |
| use rustc_apfloat::{Float, Round, Status, ieee}; |
| use rustc_codegen_ssa::MemFlags; |
| use rustc_codegen_ssa::common::{ |
| AtomicOrdering, AtomicRmwBinOp, IntPredicate, RealPredicate, SynchronizationScope, TypeKind, |
| }; |
| use rustc_codegen_ssa::mir::operand::{OperandRef, OperandValue}; |
| use rustc_codegen_ssa::mir::place::PlaceRef; |
| use rustc_codegen_ssa::traits::{ |
| BackendTypes, BaseTypeCodegenMethods, BuilderMethods, ConstCodegenMethods, |
| LayoutTypeCodegenMethods, OverflowOp, StaticBuilderMethods, |
| }; |
| use rustc_data_structures::fx::FxHashSet; |
| use rustc_middle::bug; |
| use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrs; |
| use rustc_middle::ty::layout::{ |
| FnAbiError, FnAbiOfHelpers, FnAbiRequest, HasParamEnv, HasTyCtxt, LayoutError, LayoutOfHelpers, |
| }; |
| use rustc_middle::ty::{Instance, ParamEnv, Ty, TyCtxt}; |
| use rustc_span::Span; |
| use rustc_span::def_id::DefId; |
| use rustc_target::abi::call::FnAbi; |
| use rustc_target::spec::{HasTargetSpec, HasWasmCAbiOpt, HasX86AbiOpt, Target, WasmCAbi, X86Abi}; |
| |
| use crate::common::{SignType, TypeReflection, type_is_pointer}; |
| use crate::context::CodegenCx; |
| use crate::intrinsic::llvm; |
| use crate::type_of::LayoutGccExt; |
| |
| // TODO(antoyo) |
| type Funclet = (); |
| |
| enum ExtremumOperation { |
| Max, |
| Min, |
| } |
| |
| pub struct Builder<'a: 'gcc, 'gcc, 'tcx> { |
| pub cx: &'a CodegenCx<'gcc, 'tcx>, |
| pub block: Block<'gcc>, |
| pub location: Option<Location<'gcc>>, |
| value_counter: Cell<u64>, |
| } |
| |
| impl<'a, 'gcc, 'tcx> Builder<'a, 'gcc, 'tcx> { |
| fn with_cx(cx: &'a CodegenCx<'gcc, 'tcx>, block: Block<'gcc>) -> Self { |
| Builder { cx, block, location: None, value_counter: Cell::new(0) } |
| } |
| |
| fn next_value_counter(&self) -> u64 { |
| self.value_counter.set(self.value_counter.get() + 1); |
| self.value_counter.get() |
| } |
| |
| fn atomic_extremum( |
| &mut self, |
| operation: ExtremumOperation, |
| dst: RValue<'gcc>, |
| src: RValue<'gcc>, |
| order: AtomicOrdering, |
| ) -> RValue<'gcc> { |
| let size = get_maybe_pointer_size(src); |
| |
| let func = self.current_func(); |
| |
| let load_ordering = match order { |
| // TODO(antoyo): does this make sense? |
| AtomicOrdering::AcquireRelease | AtomicOrdering::Release => AtomicOrdering::Acquire, |
| _ => order, |
| }; |
| let previous_value = |
| self.atomic_load(dst.get_type(), dst, load_ordering, Size::from_bytes(size)); |
| let previous_var = |
| func.new_local(self.location, previous_value.get_type(), "previous_value"); |
| let return_value = func.new_local(self.location, previous_value.get_type(), "return_value"); |
| self.llbb().add_assignment(self.location, previous_var, previous_value); |
| self.llbb().add_assignment(self.location, return_value, previous_var.to_rvalue()); |
| |
| let while_block = func.new_block("while"); |
| let after_block = func.new_block("after_while"); |
| self.llbb().end_with_jump(self.location, while_block); |
| |
| // NOTE: since jumps were added and compare_exchange doesn't expect this, the current block in the |
| // state need to be updated. |
| self.switch_to_block(while_block); |
| |
| let comparison_operator = match operation { |
| ExtremumOperation::Max => ComparisonOp::LessThan, |
| ExtremumOperation::Min => ComparisonOp::GreaterThan, |
| }; |
| |
| let cond1 = self.context.new_comparison( |
| self.location, |
| comparison_operator, |
| previous_var.to_rvalue(), |
| self.context.new_cast(self.location, src, previous_value.get_type()), |
| ); |
| let compare_exchange = |
| self.compare_exchange(dst, previous_var, src, order, load_ordering, false); |
| let cond2 = self.cx.context.new_unary_op( |
| self.location, |
| UnaryOp::LogicalNegate, |
| compare_exchange.get_type(), |
| compare_exchange, |
| ); |
| let cond = self.cx.context.new_binary_op( |
| self.location, |
| BinaryOp::LogicalAnd, |
| self.cx.bool_type, |
| cond1, |
| cond2, |
| ); |
| |
| while_block.end_with_conditional(self.location, cond, while_block, after_block); |
| |
| // NOTE: since jumps were added in a place rustc does not expect, the current block in the |
| // state need to be updated. |
| self.switch_to_block(after_block); |
| |
| return_value.to_rvalue() |
| } |
| |
| fn compare_exchange( |
| &self, |
| dst: RValue<'gcc>, |
| cmp: LValue<'gcc>, |
| src: RValue<'gcc>, |
| order: AtomicOrdering, |
| failure_order: AtomicOrdering, |
| weak: bool, |
| ) -> RValue<'gcc> { |
| let size = get_maybe_pointer_size(src); |
| let compare_exchange = |
| self.context.get_builtin_function(format!("__atomic_compare_exchange_{}", size)); |
| let order = self.context.new_rvalue_from_int(self.i32_type, order.to_gcc()); |
| let failure_order = self.context.new_rvalue_from_int(self.i32_type, failure_order.to_gcc()); |
| let weak = self.context.new_rvalue_from_int(self.bool_type, weak as i32); |
| |
| let void_ptr_type = self.context.new_type::<*mut ()>(); |
| let volatile_void_ptr_type = void_ptr_type.make_volatile(); |
| let dst = self.context.new_cast(self.location, dst, volatile_void_ptr_type); |
| let expected = |
| self.context.new_cast(self.location, cmp.get_address(self.location), void_ptr_type); |
| |
| // NOTE: not sure why, but we have the wrong type here. |
| let int_type = compare_exchange.get_param(2).to_rvalue().get_type(); |
| let src = self.context.new_bitcast(self.location, src, int_type); |
| self.context.new_call(self.location, compare_exchange, &[ |
| dst, |
| expected, |
| src, |
| weak, |
| order, |
| failure_order, |
| ]) |
| } |
| |
| pub fn assign(&self, lvalue: LValue<'gcc>, value: RValue<'gcc>) { |
| self.llbb().add_assignment(self.location, lvalue, value); |
| } |
| |
| fn check_call<'b>( |
| &mut self, |
| _typ: &str, |
| func: Function<'gcc>, |
| args: &'b [RValue<'gcc>], |
| ) -> Cow<'b, [RValue<'gcc>]> { |
| let mut all_args_match = true; |
| let mut param_types = vec![]; |
| let param_count = func.get_param_count(); |
| for (index, arg) in args.iter().enumerate().take(param_count) { |
| let param = func.get_param(index as i32); |
| let param = param.to_rvalue().get_type(); |
| if param != arg.get_type() { |
| all_args_match = false; |
| } |
| param_types.push(param); |
| } |
| |
| if all_args_match { |
| return Cow::Borrowed(args); |
| } |
| |
| let casted_args: Vec<_> = param_types |
| .into_iter() |
| .zip(args.iter()) |
| .map(|(expected_ty, &actual_val)| { |
| let actual_ty = actual_val.get_type(); |
| if expected_ty != actual_ty { |
| self.bitcast(actual_val, expected_ty) |
| } else { |
| actual_val |
| } |
| }) |
| .collect(); |
| |
| debug_assert_eq!(casted_args.len(), args.len()); |
| |
| Cow::Owned(casted_args) |
| } |
| |
| fn check_ptr_call<'b>( |
| &mut self, |
| _typ: &str, |
| func_ptr: RValue<'gcc>, |
| args: &'b [RValue<'gcc>], |
| ) -> Cow<'b, [RValue<'gcc>]> { |
| let mut all_args_match = true; |
| let mut param_types = vec![]; |
| let gcc_func = func_ptr.get_type().dyncast_function_ptr_type().expect("function ptr"); |
| for (index, arg) in args.iter().enumerate().take(gcc_func.get_param_count()) { |
| let param = gcc_func.get_param_type(index); |
| if param != arg.get_type() { |
| all_args_match = false; |
| } |
| param_types.push(param); |
| } |
| |
| let mut on_stack_param_indices = FxHashSet::default(); |
| if let Some(indices) = self.on_stack_params.borrow().get(&gcc_func) { |
| on_stack_param_indices.clone_from(indices); |
| } |
| |
| if all_args_match { |
| return Cow::Borrowed(args); |
| } |
| |
| let func_name = format!("{:?}", func_ptr); |
| |
| let mut casted_args: Vec<_> = param_types |
| .into_iter() |
| .zip(args.iter()) |
| .enumerate() |
| .map(|(index, (expected_ty, &actual_val))| { |
| if llvm::ignore_arg_cast(&func_name, index, args.len()) { |
| return actual_val; |
| } |
| |
| let actual_ty = actual_val.get_type(); |
| if expected_ty != actual_ty { |
| if !actual_ty.is_vector() |
| && !expected_ty.is_vector() |
| && (actual_ty.is_integral() && expected_ty.is_integral()) |
| || (actual_ty.get_pointee().is_some() |
| && expected_ty.get_pointee().is_some()) |
| { |
| self.context.new_cast(self.location, actual_val, expected_ty) |
| } else if on_stack_param_indices.contains(&index) { |
| let ty = actual_val.get_type(); |
| // It's possible that the value behind the pointer is actually not exactly |
| // the expected type, so to go around that, we add a cast before |
| // dereferencing the value. |
| if let Some(pointee_val) = ty.get_pointee() |
| && pointee_val != expected_ty |
| { |
| let new_val = self.context.new_cast( |
| self.location, |
| actual_val, |
| expected_ty.make_pointer(), |
| ); |
| new_val.dereference(self.location).to_rvalue() |
| } else { |
| actual_val.dereference(self.location).to_rvalue() |
| } |
| } else { |
| // FIXME: this condition seems wrong: it will pass when both types are not |
| // a vector. |
| assert!( |
| (!expected_ty.is_vector() || actual_ty.is_vector()) |
| && (expected_ty.is_vector() || !actual_ty.is_vector()), |
| "{:?} (is vector: {}) -> {:?} (is vector: {}), Function: {:?}[{}]", |
| actual_ty, |
| actual_ty.is_vector(), |
| expected_ty, |
| expected_ty.is_vector(), |
| func_ptr, |
| index |
| ); |
| // TODO(antoyo): perhaps use __builtin_convertvector for vector casting. |
| // TODO: remove bitcast now that vector types can be compared? |
| // ==> We use bitcast to avoid having to do many manual casts from e.g. __m256i to __v32qi (in |
| // the case of _mm256_aesenc_epi128). |
| self.bitcast(actual_val, expected_ty) |
| } |
| } else { |
| actual_val |
| } |
| }) |
| .collect(); |
| |
| // NOTE: to take into account variadic functions. |
| for arg in args.iter().skip(casted_args.len()) { |
| casted_args.push(*arg); |
| } |
| |
| Cow::Owned(casted_args) |
| } |
| |
| fn check_store(&mut self, val: RValue<'gcc>, ptr: RValue<'gcc>) -> RValue<'gcc> { |
| let stored_ty = self.cx.val_ty(val); |
| let stored_ptr_ty = self.cx.type_ptr_to(stored_ty); |
| self.bitcast(ptr, stored_ptr_ty) |
| } |
| |
| pub fn current_func(&self) -> Function<'gcc> { |
| self.block.get_function() |
| } |
| |
| fn function_call( |
| &mut self, |
| func: RValue<'gcc>, |
| args: &[RValue<'gcc>], |
| _funclet: Option<&Funclet>, |
| ) -> RValue<'gcc> { |
| // TODO(antoyo): remove when the API supports a different type for functions. |
| let func: Function<'gcc> = self.cx.rvalue_as_function(func); |
| let args = self.check_call("call", func, args); |
| |
| // gccjit requires to use the result of functions, even when it's not used. |
| // That's why we assign the result to a local or call add_eval(). |
| let return_type = func.get_return_type(); |
| let void_type = self.context.new_type::<()>(); |
| let current_func = self.block.get_function(); |
| if return_type != void_type { |
| let result = current_func.new_local( |
| self.location, |
| return_type, |
| format!("returnValue{}", self.next_value_counter()), |
| ); |
| self.block.add_assignment( |
| self.location, |
| result, |
| self.cx.context.new_call(self.location, func, &args), |
| ); |
| result.to_rvalue() |
| } else { |
| self.block |
| .add_eval(self.location, self.cx.context.new_call(self.location, func, &args)); |
| // Return dummy value when not having return value. |
| self.context.new_rvalue_zero(self.isize_type) |
| } |
| } |
| |
| fn function_ptr_call( |
| &mut self, |
| typ: Type<'gcc>, |
| mut func_ptr: RValue<'gcc>, |
| args: &[RValue<'gcc>], |
| _funclet: Option<&Funclet>, |
| ) -> RValue<'gcc> { |
| let gcc_func = match func_ptr.get_type().dyncast_function_ptr_type() { |
| Some(func) => func, |
| None => { |
| // NOTE: due to opaque pointers now being used, we need to cast here. |
| let new_func_type = typ.dyncast_function_ptr_type().expect("function ptr"); |
| func_ptr = self.context.new_cast(self.location, func_ptr, typ); |
| new_func_type |
| } |
| }; |
| let func_name = format!("{:?}", func_ptr); |
| let previous_arg_count = args.len(); |
| let orig_args = args; |
| let args = { |
| let function_address_names = self.function_address_names.borrow(); |
| let original_function_name = function_address_names.get(&func_ptr); |
| func_ptr = llvm::adjust_function(self.context, &func_name, func_ptr, args); |
| llvm::adjust_intrinsic_arguments( |
| self, |
| gcc_func, |
| args.into(), |
| &func_name, |
| original_function_name, |
| ) |
| }; |
| let args_adjusted = args.len() != previous_arg_count; |
| let args = self.check_ptr_call("call", func_ptr, &args); |
| |
| // gccjit requires to use the result of functions, even when it's not used. |
| // That's why we assign the result to a local or call add_eval(). |
| let return_type = gcc_func.get_return_type(); |
| let void_type = self.context.new_type::<()>(); |
| let current_func = self.block.get_function(); |
| |
| if return_type != void_type { |
| let return_value = self.cx.context.new_call_through_ptr(self.location, func_ptr, &args); |
| let return_value = llvm::adjust_intrinsic_return_value( |
| self, |
| return_value, |
| &func_name, |
| &args, |
| args_adjusted, |
| orig_args, |
| ); |
| let result = current_func.new_local( |
| self.location, |
| return_value.get_type(), |
| format!("ptrReturnValue{}", self.next_value_counter()), |
| ); |
| self.block.add_assignment(self.location, result, return_value); |
| result.to_rvalue() |
| } else { |
| #[cfg(not(feature = "master"))] |
| if gcc_func.get_param_count() == 0 { |
| // FIXME(antoyo): As a temporary workaround for unsupported LLVM intrinsics. |
| self.block.add_eval( |
| self.location, |
| self.cx.context.new_call_through_ptr(self.location, func_ptr, &[]), |
| ); |
| } else { |
| self.block.add_eval( |
| self.location, |
| self.cx.context.new_call_through_ptr(self.location, func_ptr, &args), |
| ); |
| } |
| #[cfg(feature = "master")] |
| self.block.add_eval( |
| self.location, |
| self.cx.context.new_call_through_ptr(self.location, func_ptr, &args), |
| ); |
| // Return dummy value when not having return value. |
| self.context.new_rvalue_zero(self.isize_type) |
| } |
| } |
| |
| pub fn overflow_call( |
| &self, |
| func: Function<'gcc>, |
| args: &[RValue<'gcc>], |
| _funclet: Option<&Funclet>, |
| ) -> RValue<'gcc> { |
| // gccjit requires to use the result of functions, even when it's not used. |
| // That's why we assign the result to a local. |
| let return_type = self.context.new_type::<bool>(); |
| let current_func = self.block.get_function(); |
| // TODO(antoyo): return the new_call() directly? Since the overflow function has no side-effects. |
| let result = current_func.new_local( |
| self.location, |
| return_type, |
| format!("overflowReturnValue{}", self.next_value_counter()), |
| ); |
| self.block.add_assignment( |
| self.location, |
| result, |
| self.cx.context.new_call(self.location, func, args), |
| ); |
| result.to_rvalue() |
| } |
| } |
| |
| impl<'tcx> HasTyCtxt<'tcx> for Builder<'_, '_, 'tcx> { |
| fn tcx(&self) -> TyCtxt<'tcx> { |
| self.cx.tcx() |
| } |
| } |
| |
| impl HasDataLayout for Builder<'_, '_, '_> { |
| fn data_layout(&self) -> &TargetDataLayout { |
| self.cx.data_layout() |
| } |
| } |
| |
| impl<'tcx> LayoutOfHelpers<'tcx> for Builder<'_, '_, 'tcx> { |
| #[inline] |
| fn handle_layout_err(&self, err: LayoutError<'tcx>, span: Span, ty: Ty<'tcx>) -> ! { |
| self.cx.handle_layout_err(err, span, ty) |
| } |
| } |
| |
| impl<'tcx> FnAbiOfHelpers<'tcx> for Builder<'_, '_, 'tcx> { |
| #[inline] |
| fn handle_fn_abi_err( |
| &self, |
| err: FnAbiError<'tcx>, |
| span: Span, |
| fn_abi_request: FnAbiRequest<'tcx>, |
| ) -> ! { |
| self.cx.handle_fn_abi_err(err, span, fn_abi_request) |
| } |
| } |
| |
| impl<'a, 'gcc, 'tcx> Deref for Builder<'a, 'gcc, 'tcx> { |
| type Target = CodegenCx<'gcc, 'tcx>; |
| |
| fn deref<'b>(&'b self) -> &'a Self::Target { |
| self.cx |
| } |
| } |
| |
| impl<'gcc, 'tcx> BackendTypes for Builder<'_, 'gcc, 'tcx> { |
| type Value = <CodegenCx<'gcc, 'tcx> as BackendTypes>::Value; |
| type Metadata = <CodegenCx<'gcc, 'tcx> as BackendTypes>::Metadata; |
| type Function = <CodegenCx<'gcc, 'tcx> as BackendTypes>::Function; |
| type BasicBlock = <CodegenCx<'gcc, 'tcx> as BackendTypes>::BasicBlock; |
| type Type = <CodegenCx<'gcc, 'tcx> as BackendTypes>::Type; |
| type Funclet = <CodegenCx<'gcc, 'tcx> as BackendTypes>::Funclet; |
| |
| type DIScope = <CodegenCx<'gcc, 'tcx> as BackendTypes>::DIScope; |
| type DILocation = <CodegenCx<'gcc, 'tcx> as BackendTypes>::DILocation; |
| type DIVariable = <CodegenCx<'gcc, 'tcx> as BackendTypes>::DIVariable; |
| } |
| |
| fn set_rvalue_location<'a, 'gcc, 'tcx>( |
| bx: &mut Builder<'a, 'gcc, 'tcx>, |
| rvalue: RValue<'gcc>, |
| ) -> RValue<'gcc> { |
| if bx.location.is_some() { |
| #[cfg(feature = "master")] |
| rvalue.set_location(bx.location.unwrap()); |
| } |
| rvalue |
| } |
| |
| impl<'a, 'gcc, 'tcx> BuilderMethods<'a, 'tcx> for Builder<'a, 'gcc, 'tcx> { |
| type CodegenCx = CodegenCx<'gcc, 'tcx>; |
| |
| fn build(cx: &'a CodegenCx<'gcc, 'tcx>, block: Block<'gcc>) -> Builder<'a, 'gcc, 'tcx> { |
| Builder::with_cx(cx, block) |
| } |
| |
| fn llbb(&self) -> Block<'gcc> { |
| self.block |
| } |
| |
| fn append_block(cx: &'a CodegenCx<'gcc, 'tcx>, func: RValue<'gcc>, name: &str) -> Block<'gcc> { |
| let func = cx.rvalue_as_function(func); |
| func.new_block(name) |
| } |
| |
| fn append_sibling_block(&mut self, name: &str) -> Block<'gcc> { |
| let func = self.current_func(); |
| func.new_block(name) |
| } |
| |
| fn switch_to_block(&mut self, block: Self::BasicBlock) { |
| self.block = block; |
| } |
| |
| fn ret_void(&mut self) { |
| self.llbb().end_with_void_return(self.location) |
| } |
| |
| fn ret(&mut self, mut value: RValue<'gcc>) { |
| if self.structs_as_pointer.borrow().contains(&value) { |
| // NOTE: hack to workaround a limitation of the rustc API: see comment on |
| // CodegenCx.structs_as_pointer |
| value = value.dereference(self.location).to_rvalue(); |
| } |
| let expected_return_type = self.current_func().get_return_type(); |
| if !expected_return_type.is_compatible_with(value.get_type()) { |
| // NOTE: due to opaque pointers now being used, we need to cast here. |
| value = self.context.new_cast(self.location, value, expected_return_type); |
| } |
| self.llbb().end_with_return(self.location, value); |
| } |
| |
| fn br(&mut self, dest: Block<'gcc>) { |
| self.llbb().end_with_jump(self.location, dest) |
| } |
| |
| fn cond_br(&mut self, cond: RValue<'gcc>, then_block: Block<'gcc>, else_block: Block<'gcc>) { |
| self.llbb().end_with_conditional(self.location, cond, then_block, else_block) |
| } |
| |
| fn switch( |
| &mut self, |
| value: RValue<'gcc>, |
| default_block: Block<'gcc>, |
| cases: impl ExactSizeIterator<Item = (u128, Block<'gcc>)>, |
| ) { |
| let mut gcc_cases = vec![]; |
| let typ = self.val_ty(value); |
| for (on_val, dest) in cases { |
| let on_val = self.const_uint_big(typ, on_val); |
| gcc_cases.push(self.context.new_case(on_val, on_val, dest)); |
| } |
| self.block.end_with_switch(self.location, value, default_block, &gcc_cases); |
| } |
| |
| #[cfg(feature = "master")] |
| fn invoke( |
| &mut self, |
| typ: Type<'gcc>, |
| fn_attrs: Option<&CodegenFnAttrs>, |
| _fn_abi: Option<&FnAbi<'tcx, Ty<'tcx>>>, |
| func: RValue<'gcc>, |
| args: &[RValue<'gcc>], |
| then: Block<'gcc>, |
| catch: Block<'gcc>, |
| _funclet: Option<&Funclet>, |
| instance: Option<Instance<'tcx>>, |
| ) -> RValue<'gcc> { |
| let try_block = self.current_func().new_block("try"); |
| |
| let current_block = self.block; |
| self.block = try_block; |
| let call = self.call(typ, fn_attrs, None, func, args, None, instance); // TODO(antoyo): use funclet here? |
| self.block = current_block; |
| |
| let return_value = |
| self.current_func().new_local(self.location, call.get_type(), "invokeResult"); |
| |
| try_block.add_assignment(self.location, return_value, call); |
| |
| try_block.end_with_jump(self.location, then); |
| |
| if self.cleanup_blocks.borrow().contains(&catch) { |
| self.block.add_try_finally(self.location, try_block, catch); |
| } else { |
| self.block.add_try_catch(self.location, try_block, catch); |
| } |
| |
| self.block.end_with_jump(self.location, then); |
| |
| return_value.to_rvalue() |
| } |
| |
| #[cfg(not(feature = "master"))] |
| fn invoke( |
| &mut self, |
| typ: Type<'gcc>, |
| fn_attrs: Option<&CodegenFnAttrs>, |
| fn_abi: Option<&FnAbi<'tcx, Ty<'tcx>>>, |
| func: RValue<'gcc>, |
| args: &[RValue<'gcc>], |
| then: Block<'gcc>, |
| catch: Block<'gcc>, |
| _funclet: Option<&Funclet>, |
| instance: Option<Instance<'tcx>>, |
| ) -> RValue<'gcc> { |
| let call_site = self.call(typ, fn_attrs, None, func, args, None, instance); |
| let condition = self.context.new_rvalue_from_int(self.bool_type, 1); |
| self.llbb().end_with_conditional(self.location, condition, then, catch); |
| if let Some(_fn_abi) = fn_abi { |
| // TODO(bjorn3): Apply function attributes |
| } |
| call_site |
| } |
| |
| fn unreachable(&mut self) { |
| let func = self.context.get_builtin_function("__builtin_unreachable"); |
| self.block.add_eval(self.location, self.context.new_call(self.location, func, &[])); |
| let return_type = self.block.get_function().get_return_type(); |
| let void_type = self.context.new_type::<()>(); |
| if return_type == void_type { |
| self.block.end_with_void_return(self.location) |
| } else { |
| let return_value = |
| self.current_func().new_local(self.location, return_type, "unreachableReturn"); |
| self.block.end_with_return(self.location, return_value) |
| } |
| } |
| |
| fn add(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { |
| self.gcc_add(a, b) |
| } |
| |
| fn fadd(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { |
| a + b |
| } |
| |
| fn sub(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { |
| self.gcc_sub(a, b) |
| } |
| |
| fn fsub(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { |
| a - b |
| } |
| |
| fn mul(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { |
| self.gcc_mul(a, b) |
| } |
| |
| fn fmul(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { |
| self.cx.context.new_binary_op(self.location, BinaryOp::Mult, a.get_type(), a, b) |
| } |
| |
| fn udiv(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { |
| self.gcc_udiv(a, b) |
| } |
| |
| fn exactudiv(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { |
| // TODO(antoyo): poison if not exact. |
| let a_type = a.get_type().to_unsigned(self); |
| let a = self.gcc_int_cast(a, a_type); |
| let b_type = b.get_type().to_unsigned(self); |
| let b = self.gcc_int_cast(b, b_type); |
| a / b |
| } |
| |
| fn sdiv(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { |
| self.gcc_sdiv(a, b) |
| } |
| |
| fn exactsdiv(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { |
| // TODO(antoyo): poison if not exact. |
| // FIXME(antoyo): rustc_codegen_ssa::mir::intrinsic uses different types for a and b but they |
| // should be the same. |
| let typ = a.get_type().to_signed(self); |
| let b = self.context.new_cast(self.location, b, typ); |
| a / b |
| } |
| |
| fn fdiv(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { |
| a / b |
| } |
| |
| fn urem(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { |
| self.gcc_urem(a, b) |
| } |
| |
| fn srem(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { |
| self.gcc_srem(a, b) |
| } |
| |
| fn frem(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { |
| // TODO(antoyo): add check in libgccjit since using the binary operator % causes the following error: |
| // during RTL pass: expand |
| // libgccjit.so: error: in expmed_mode_index, at expmed.h:240 |
| // 0x7f0101d58dc6 expmed_mode_index |
| // ../../../gcc/gcc/expmed.h:240 |
| // 0x7f0101d58e35 expmed_op_cost_ptr |
| // ../../../gcc/gcc/expmed.h:262 |
| // 0x7f0101d594a1 sdiv_cost_ptr |
| // ../../../gcc/gcc/expmed.h:531 |
| // 0x7f0101d594f3 sdiv_cost |
| // ../../../gcc/gcc/expmed.h:549 |
| // 0x7f0101d6af7e expand_divmod(int, tree_code, machine_mode, rtx_def*, rtx_def*, rtx_def*, int, optab_methods) |
| // ../../../gcc/gcc/expmed.cc:4356 |
| // 0x7f0101d94f9e expand_expr_divmod |
| // ../../../gcc/gcc/expr.cc:8929 |
| // 0x7f0101d97a26 expand_expr_real_2(separate_ops*, rtx_def*, machine_mode, expand_modifier) |
| // ../../../gcc/gcc/expr.cc:9566 |
| // 0x7f0101bef6ef expand_gimple_stmt_1 |
| // ../../../gcc/gcc/cfgexpand.cc:3967 |
| // 0x7f0101bef910 expand_gimple_stmt |
| // ../../../gcc/gcc/cfgexpand.cc:4028 |
| // 0x7f0101bf6ee7 expand_gimple_basic_block |
| // ../../../gcc/gcc/cfgexpand.cc:6069 |
| // 0x7f0101bf9194 execute |
| // ../../../gcc/gcc/cfgexpand.cc:6795 |
| let a_type = a.get_type(); |
| let a_type_unqualified = a_type.unqualified(); |
| if a_type.is_compatible_with(self.cx.float_type) { |
| let fmodf = self.context.get_builtin_function("fmodf"); |
| // FIXME(antoyo): this seems to produce the wrong result. |
| return self.context.new_call(self.location, fmodf, &[a, b]); |
| } |
| |
| #[cfg(feature = "master")] |
| match self.cx.type_kind(a_type) { |
| TypeKind::Half | TypeKind::Float => { |
| let fmodf = self.context.get_builtin_function("fmodf"); |
| return self.context.new_call(self.location, fmodf, &[a, b]); |
| } |
| TypeKind::Double => { |
| let fmod = self.context.get_builtin_function("fmod"); |
| return self.context.new_call(self.location, fmod, &[a, b]); |
| } |
| TypeKind::FP128 => { |
| let fmodl = self.context.get_builtin_function("fmodl"); |
| return self.context.new_call(self.location, fmodl, &[a, b]); |
| } |
| _ => (), |
| } |
| |
| if let Some(vector_type) = a_type_unqualified.dyncast_vector() { |
| assert_eq!(a_type_unqualified, b.get_type().unqualified()); |
| |
| let num_units = vector_type.get_num_units(); |
| let new_elements: Vec<_> = (0..num_units) |
| .map(|i| { |
| let index = self.context.new_rvalue_from_long(self.cx.type_u32(), i as _); |
| let x = self.extract_element(a, index).to_rvalue(); |
| let y = self.extract_element(b, index).to_rvalue(); |
| self.frem(x, y) |
| }) |
| .collect(); |
| |
| return self.context.new_rvalue_from_vector(self.location, a_type, &new_elements); |
| } |
| assert_eq!(a_type_unqualified, self.cx.double_type); |
| |
| let fmod = self.context.get_builtin_function("fmod"); |
| self.context.new_call(self.location, fmod, &[a, b]) |
| } |
| |
| fn shl(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { |
| self.gcc_shl(a, b) |
| } |
| |
| fn lshr(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { |
| self.gcc_lshr(a, b) |
| } |
| |
| fn ashr(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { |
| // TODO(antoyo): check whether behavior is an arithmetic shift for >> . |
| // It seems to be if the value is signed. |
| self.gcc_lshr(a, b) |
| } |
| |
| fn and(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { |
| self.gcc_and(a, b) |
| } |
| |
| fn or(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { |
| self.cx.gcc_or(a, b, self.location) |
| } |
| |
| fn xor(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { |
| set_rvalue_location(self, self.gcc_xor(a, b)) |
| } |
| |
| fn neg(&mut self, a: RValue<'gcc>) -> RValue<'gcc> { |
| set_rvalue_location(self, self.gcc_neg(a)) |
| } |
| |
| fn fneg(&mut self, a: RValue<'gcc>) -> RValue<'gcc> { |
| set_rvalue_location( |
| self, |
| self.cx.context.new_unary_op(self.location, UnaryOp::Minus, a.get_type(), a), |
| ) |
| } |
| |
| fn not(&mut self, a: RValue<'gcc>) -> RValue<'gcc> { |
| set_rvalue_location(self, self.gcc_not(a)) |
| } |
| |
| fn unchecked_sadd(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { |
| set_rvalue_location(self, self.gcc_add(a, b)) |
| } |
| |
| fn unchecked_uadd(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { |
| set_rvalue_location(self, self.gcc_add(a, b)) |
| } |
| |
| fn unchecked_ssub(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { |
| set_rvalue_location(self, self.gcc_sub(a, b)) |
| } |
| |
| fn unchecked_usub(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { |
| // TODO(antoyo): should generate poison value? |
| set_rvalue_location(self, self.gcc_sub(a, b)) |
| } |
| |
| fn unchecked_smul(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { |
| set_rvalue_location(self, self.gcc_mul(a, b)) |
| } |
| |
| fn unchecked_umul(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { |
| set_rvalue_location(self, self.gcc_mul(a, b)) |
| } |
| |
| fn fadd_fast(&mut self, lhs: RValue<'gcc>, rhs: RValue<'gcc>) -> RValue<'gcc> { |
| // NOTE: it seems like we cannot enable fast-mode for a single operation in GCC. |
| set_rvalue_location(self, lhs + rhs) |
| } |
| |
| fn fsub_fast(&mut self, lhs: RValue<'gcc>, rhs: RValue<'gcc>) -> RValue<'gcc> { |
| // NOTE: it seems like we cannot enable fast-mode for a single operation in GCC. |
| set_rvalue_location(self, lhs - rhs) |
| } |
| |
| fn fmul_fast(&mut self, lhs: RValue<'gcc>, rhs: RValue<'gcc>) -> RValue<'gcc> { |
| // NOTE: it seems like we cannot enable fast-mode for a single operation in GCC. |
| set_rvalue_location(self, lhs * rhs) |
| } |
| |
| fn fdiv_fast(&mut self, lhs: RValue<'gcc>, rhs: RValue<'gcc>) -> RValue<'gcc> { |
| // NOTE: it seems like we cannot enable fast-mode for a single operation in GCC. |
| set_rvalue_location(self, lhs / rhs) |
| } |
| |
| fn frem_fast(&mut self, lhs: RValue<'gcc>, rhs: RValue<'gcc>) -> RValue<'gcc> { |
| // NOTE: it seems like we cannot enable fast-mode for a single operation in GCC. |
| let result = self.frem(lhs, rhs); |
| set_rvalue_location(self, result); |
| result |
| } |
| |
| fn fadd_algebraic(&mut self, lhs: RValue<'gcc>, rhs: RValue<'gcc>) -> RValue<'gcc> { |
| // NOTE: it seems like we cannot enable fast-mode for a single operation in GCC. |
| lhs + rhs |
| } |
| |
| fn fsub_algebraic(&mut self, lhs: RValue<'gcc>, rhs: RValue<'gcc>) -> RValue<'gcc> { |
| // NOTE: it seems like we cannot enable fast-mode for a single operation in GCC. |
| lhs - rhs |
| } |
| |
| fn fmul_algebraic(&mut self, lhs: RValue<'gcc>, rhs: RValue<'gcc>) -> RValue<'gcc> { |
| // NOTE: it seems like we cannot enable fast-mode for a single operation in GCC. |
| lhs * rhs |
| } |
| |
| fn fdiv_algebraic(&mut self, lhs: RValue<'gcc>, rhs: RValue<'gcc>) -> RValue<'gcc> { |
| // NOTE: it seems like we cannot enable fast-mode for a single operation in GCC. |
| lhs / rhs |
| } |
| |
| fn frem_algebraic(&mut self, lhs: RValue<'gcc>, rhs: RValue<'gcc>) -> RValue<'gcc> { |
| // NOTE: it seems like we cannot enable fast-mode for a single operation in GCC. |
| self.frem(lhs, rhs) |
| } |
| |
| fn checked_binop( |
| &mut self, |
| oop: OverflowOp, |
| typ: Ty<'_>, |
| lhs: Self::Value, |
| rhs: Self::Value, |
| ) -> (Self::Value, Self::Value) { |
| self.gcc_checked_binop(oop, typ, lhs, rhs) |
| } |
| |
| fn alloca(&mut self, size: Size, align: Align) -> RValue<'gcc> { |
| let ty = self.cx.type_array(self.cx.type_i8(), size.bytes()).get_aligned(align.bytes()); |
| // TODO(antoyo): It might be better to return a LValue, but fixing the rustc API is non-trivial. |
| self.current_func() |
| .new_local(self.location, ty, format!("stack_var_{}", self.next_value_counter())) |
| .get_address(self.location) |
| } |
| |
| fn dynamic_alloca(&mut self, _len: RValue<'gcc>, _align: Align) -> RValue<'gcc> { |
| unimplemented!(); |
| } |
| |
| fn load(&mut self, pointee_ty: Type<'gcc>, ptr: RValue<'gcc>, align: Align) -> RValue<'gcc> { |
| let block = self.llbb(); |
| let function = block.get_function(); |
| // NOTE: instead of returning the dereference here, we have to assign it to a variable in |
| // the current basic block. Otherwise, it could be used in another basic block, causing a |
| // dereference after a drop, for instance. |
| // FIXME(antoyo): this check that we don't call get_aligned() a second time on a type. |
| // Ideally, we shouldn't need to do this check. |
| let aligned_type = if pointee_ty == self.cx.u128_type || pointee_ty == self.cx.i128_type { |
| pointee_ty |
| } else { |
| pointee_ty.get_aligned(align.bytes()) |
| }; |
| let ptr = self.context.new_cast(self.location, ptr, aligned_type.make_pointer()); |
| let deref = ptr.dereference(self.location).to_rvalue(); |
| let loaded_value = function.new_local( |
| self.location, |
| aligned_type, |
| format!("loadedValue{}", self.next_value_counter()), |
| ); |
| block.add_assignment(self.location, loaded_value, deref); |
| loaded_value.to_rvalue() |
| } |
| |
| fn volatile_load(&mut self, ty: Type<'gcc>, ptr: RValue<'gcc>) -> RValue<'gcc> { |
| let ptr = self.context.new_cast(self.location, ptr, ty.make_volatile().make_pointer()); |
| ptr.dereference(self.location).to_rvalue() |
| } |
| |
| fn atomic_load( |
| &mut self, |
| _ty: Type<'gcc>, |
| ptr: RValue<'gcc>, |
| order: AtomicOrdering, |
| size: Size, |
| ) -> RValue<'gcc> { |
| // TODO(antoyo): use ty. |
| // TODO(antoyo): handle alignment. |
| let atomic_load = |
| self.context.get_builtin_function(format!("__atomic_load_{}", size.bytes())); |
| let ordering = self.context.new_rvalue_from_int(self.i32_type, order.to_gcc()); |
| |
| let volatile_const_void_ptr_type = |
| self.context.new_type::<()>().make_const().make_volatile().make_pointer(); |
| let ptr = self.context.new_cast(self.location, ptr, volatile_const_void_ptr_type); |
| self.context.new_call(self.location, atomic_load, &[ptr, ordering]) |
| } |
| |
| fn load_operand( |
| &mut self, |
| place: PlaceRef<'tcx, RValue<'gcc>>, |
| ) -> OperandRef<'tcx, RValue<'gcc>> { |
| assert_eq!(place.val.llextra.is_some(), place.layout.is_unsized()); |
| |
| if place.layout.is_zst() { |
| return OperandRef::zero_sized(place.layout); |
| } |
| |
| fn scalar_load_metadata<'a, 'gcc, 'tcx>( |
| bx: &mut Builder<'a, 'gcc, 'tcx>, |
| load: RValue<'gcc>, |
| scalar: &abi::Scalar, |
| ) { |
| let vr = scalar.valid_range(bx); |
| match scalar.primitive() { |
| abi::Primitive::Int(..) => { |
| if !scalar.is_always_valid(bx) { |
| bx.range_metadata(load, vr); |
| } |
| } |
| abi::Primitive::Pointer(_) if vr.start < vr.end && !vr.contains(0) => { |
| bx.nonnull_metadata(load); |
| } |
| _ => {} |
| } |
| } |
| |
| let val = if place.val.llextra.is_some() { |
| // FIXME: Merge with the `else` below? |
| OperandValue::Ref(place.val) |
| } else if place.layout.is_gcc_immediate() { |
| let load = self.load(place.layout.gcc_type(self), place.val.llval, place.val.align); |
| if let abi::Abi::Scalar(ref scalar) = place.layout.abi { |
| scalar_load_metadata(self, load, scalar); |
| } |
| OperandValue::Immediate(self.to_immediate(load, place.layout)) |
| } else if let abi::Abi::ScalarPair(ref a, ref b) = place.layout.abi { |
| let b_offset = a.size(self).align_to(b.align(self).abi); |
| |
| let mut load = |i, scalar: &abi::Scalar, align| { |
| let llptr = if i == 0 { |
| place.val.llval |
| } else { |
| self.inbounds_ptradd(place.val.llval, self.const_usize(b_offset.bytes())) |
| }; |
| let llty = place.layout.scalar_pair_element_gcc_type(self, i); |
| let load = self.load(llty, llptr, align); |
| scalar_load_metadata(self, load, scalar); |
| if scalar.is_bool() { self.trunc(load, self.type_i1()) } else { load } |
| }; |
| |
| OperandValue::Pair( |
| load(0, a, place.val.align), |
| load(1, b, place.val.align.restrict_for_offset(b_offset)), |
| ) |
| } else { |
| OperandValue::Ref(place.val) |
| }; |
| |
| OperandRef { val, layout: place.layout } |
| } |
| |
| fn write_operand_repeatedly( |
| &mut self, |
| cg_elem: OperandRef<'tcx, RValue<'gcc>>, |
| count: u64, |
| dest: PlaceRef<'tcx, RValue<'gcc>>, |
| ) { |
| let zero = self.const_usize(0); |
| let count = self.const_usize(count); |
| let start = dest.project_index(self, zero).val.llval; |
| let end = dest.project_index(self, count).val.llval; |
| |
| let header_bb = self.append_sibling_block("repeat_loop_header"); |
| let body_bb = self.append_sibling_block("repeat_loop_body"); |
| let next_bb = self.append_sibling_block("repeat_loop_next"); |
| |
| let ptr_type = start.get_type(); |
| let current = self.llbb().get_function().new_local(self.location, ptr_type, "loop_var"); |
| let current_val = current.to_rvalue(); |
| self.assign(current, start); |
| |
| self.br(header_bb); |
| |
| self.switch_to_block(header_bb); |
| let keep_going = self.icmp(IntPredicate::IntNE, current_val, end); |
| self.cond_br(keep_going, body_bb, next_bb); |
| |
| self.switch_to_block(body_bb); |
| let align = dest.val.align.restrict_for_offset(dest.layout.field(self.cx(), 0).size); |
| cg_elem.val.store(self, PlaceRef::new_sized_aligned(current_val, cg_elem.layout, align)); |
| |
| let next = self.inbounds_gep(self.backend_type(cg_elem.layout), current.to_rvalue(), &[ |
| self.const_usize(1), |
| ]); |
| self.llbb().add_assignment(self.location, current, next); |
| self.br(header_bb); |
| |
| self.switch_to_block(next_bb); |
| } |
| |
| fn range_metadata(&mut self, _load: RValue<'gcc>, _range: WrappingRange) { |
| // TODO(antoyo) |
| } |
| |
| fn nonnull_metadata(&mut self, _load: RValue<'gcc>) { |
| // TODO(antoyo) |
| } |
| |
| fn store(&mut self, val: RValue<'gcc>, ptr: RValue<'gcc>, align: Align) -> RValue<'gcc> { |
| self.store_with_flags(val, ptr, align, MemFlags::empty()) |
| } |
| |
| fn store_with_flags( |
| &mut self, |
| val: RValue<'gcc>, |
| ptr: RValue<'gcc>, |
| align: Align, |
| _flags: MemFlags, |
| ) -> RValue<'gcc> { |
| let ptr = self.check_store(val, ptr); |
| let destination = ptr.dereference(self.location); |
| // NOTE: libgccjit does not support specifying the alignment on the assignment, so we cast |
| // to type so it gets the proper alignment. |
| let destination_type = destination.to_rvalue().get_type().unqualified(); |
| let aligned_type = destination_type.get_aligned(align.bytes()).make_pointer(); |
| let aligned_destination = self.cx.context.new_bitcast(self.location, ptr, aligned_type); |
| let aligned_destination = aligned_destination.dereference(self.location); |
| self.llbb().add_assignment(self.location, aligned_destination, val); |
| // TODO(antoyo): handle align and flags. |
| // NOTE: dummy value here since it's never used. FIXME(antoyo): API should not return a value here? |
| // When adding support for NONTEMPORAL, make sure to not just emit MOVNT on x86; see the |
| // LLVM backend for details. |
| self.cx.context.new_rvalue_zero(self.type_i32()) |
| } |
| |
| fn atomic_store( |
| &mut self, |
| value: RValue<'gcc>, |
| ptr: RValue<'gcc>, |
| order: AtomicOrdering, |
| size: Size, |
| ) { |
| // TODO(antoyo): handle alignment. |
| let atomic_store = |
| self.context.get_builtin_function(format!("__atomic_store_{}", size.bytes())); |
| let ordering = self.context.new_rvalue_from_int(self.i32_type, order.to_gcc()); |
| let volatile_const_void_ptr_type = |
| self.context.new_type::<()>().make_volatile().make_pointer(); |
| let ptr = self.context.new_cast(self.location, ptr, volatile_const_void_ptr_type); |
| |
| // FIXME(antoyo): fix libgccjit to allow comparing an integer type with an aligned integer type because |
| // the following cast is required to avoid this error: |
| // gcc_jit_context_new_call: mismatching types for argument 2 of function "__atomic_store_4": assignment to param arg1 (type: int) from loadedValue3577 (type: unsigned int __attribute__((aligned(4)))) |
| let int_type = atomic_store.get_param(1).to_rvalue().get_type(); |
| let value = self.context.new_bitcast(self.location, value, int_type); |
| self.llbb().add_eval( |
| self.location, |
| self.context.new_call(self.location, atomic_store, &[ptr, value, ordering]), |
| ); |
| } |
| |
| fn gep( |
| &mut self, |
| typ: Type<'gcc>, |
| ptr: RValue<'gcc>, |
| indices: &[RValue<'gcc>], |
| ) -> RValue<'gcc> { |
| // NOTE: due to opaque pointers now being used, we need to cast here. |
| let ptr = self.context.new_cast(self.location, ptr, typ.make_pointer()); |
| let ptr_type = ptr.get_type(); |
| let mut pointee_type = ptr.get_type(); |
| // NOTE: we cannot use array indexing here like in inbounds_gep because array indexing is |
| // always considered in bounds in GCC (TODO(antoyo): to be verified). |
| // So, we have to cast to a number. |
| let mut result = self.context.new_bitcast(self.location, ptr, self.sizet_type); |
| // FIXME(antoyo): if there were more than 1 index, this code is probably wrong and would |
| // require dereferencing the pointer. |
| for index in indices { |
| pointee_type = pointee_type.get_pointee().expect("pointee type"); |
| #[cfg(feature = "master")] |
| let pointee_size = { |
| let size = self.cx.context.new_sizeof(pointee_type); |
| self.context.new_cast(self.location, size, index.get_type()) |
| }; |
| #[cfg(not(feature = "master"))] |
| let pointee_size = |
| self.context.new_rvalue_from_int(index.get_type(), pointee_type.get_size() as i32); |
| result = result + self.gcc_int_cast(*index * pointee_size, self.sizet_type); |
| } |
| self.context.new_bitcast(self.location, result, ptr_type) |
| } |
| |
| fn inbounds_gep( |
| &mut self, |
| typ: Type<'gcc>, |
| ptr: RValue<'gcc>, |
| indices: &[RValue<'gcc>], |
| ) -> RValue<'gcc> { |
| // NOTE: due to opaque pointers now being used, we need to cast here. |
| let ptr = self.context.new_cast(self.location, ptr, typ.make_pointer()); |
| // NOTE: array indexing is always considered in bounds in GCC (TODO(antoyo): to be verified). |
| let mut indices = indices.iter(); |
| let index = indices.next().expect("first index in inbounds_gep"); |
| let mut result = self.context.new_array_access(self.location, ptr, *index); |
| for index in indices { |
| result = self.context.new_array_access(self.location, result, *index); |
| } |
| result.get_address(self.location) |
| } |
| |
| /* Casts */ |
| fn trunc(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { |
| // TODO(antoyo): check that it indeed truncate the value. |
| self.gcc_int_cast(value, dest_ty) |
| } |
| |
| fn sext(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { |
| // TODO(antoyo): check that it indeed sign extend the value. |
| if dest_ty.dyncast_vector().is_some() { |
| // TODO(antoyo): nothing to do as it is only for LLVM? |
| return value; |
| } |
| self.context.new_cast(self.location, value, dest_ty) |
| } |
| |
| fn fptoui(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { |
| set_rvalue_location(self, self.gcc_float_to_uint_cast(value, dest_ty)) |
| } |
| |
| fn fptosi(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { |
| set_rvalue_location(self, self.gcc_float_to_int_cast(value, dest_ty)) |
| } |
| |
| fn uitofp(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { |
| set_rvalue_location(self, self.gcc_uint_to_float_cast(value, dest_ty)) |
| } |
| |
| fn sitofp(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { |
| set_rvalue_location(self, self.gcc_int_to_float_cast(value, dest_ty)) |
| } |
| |
| fn fptrunc(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { |
| // TODO(antoyo): make sure it truncates. |
| set_rvalue_location(self, self.context.new_cast(self.location, value, dest_ty)) |
| } |
| |
| fn fpext(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { |
| set_rvalue_location(self, self.context.new_cast(self.location, value, dest_ty)) |
| } |
| |
| fn ptrtoint(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { |
| let usize_value = self.cx.const_bitcast(value, self.cx.type_isize()); |
| self.intcast(usize_value, dest_ty, false) |
| } |
| |
| fn inttoptr(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { |
| let usize_value = self.intcast(value, self.cx.type_isize(), false); |
| self.cx.const_bitcast(usize_value, dest_ty) |
| } |
| |
| fn bitcast(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { |
| self.cx.const_bitcast(value, dest_ty) |
| } |
| |
| fn intcast( |
| &mut self, |
| value: RValue<'gcc>, |
| dest_typ: Type<'gcc>, |
| _is_signed: bool, |
| ) -> RValue<'gcc> { |
| // NOTE: is_signed is for value, not dest_typ. |
| self.gcc_int_cast(value, dest_typ) |
| } |
| |
| fn pointercast(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { |
| let val_type = value.get_type(); |
| match (type_is_pointer(val_type), type_is_pointer(dest_ty)) { |
| (false, true) => { |
| // NOTE: Projecting a field of a pointer type will attempt a cast from a signed char to |
| // a pointer, which is not supported by gccjit. |
| self.cx.context.new_cast( |
| self.location, |
| self.inttoptr(value, val_type.make_pointer()), |
| dest_ty, |
| ) |
| } |
| (false, false) => { |
| // When they are not pointers, we want a transmute (or reinterpret_cast). |
| self.bitcast(value, dest_ty) |
| } |
| (true, true) => self.cx.context.new_cast(self.location, value, dest_ty), |
| (true, false) => unimplemented!(), |
| } |
| } |
| |
| /* Comparisons */ |
| fn icmp(&mut self, op: IntPredicate, lhs: RValue<'gcc>, rhs: RValue<'gcc>) -> RValue<'gcc> { |
| self.gcc_icmp(op, lhs, rhs) |
| } |
| |
| fn fcmp(&mut self, op: RealPredicate, lhs: RValue<'gcc>, rhs: RValue<'gcc>) -> RValue<'gcc> { |
| self.context.new_comparison(self.location, op.to_gcc_comparison(), lhs, rhs) |
| } |
| |
| /* Miscellaneous instructions */ |
| fn memcpy( |
| &mut self, |
| dst: RValue<'gcc>, |
| _dst_align: Align, |
| src: RValue<'gcc>, |
| _src_align: Align, |
| size: RValue<'gcc>, |
| flags: MemFlags, |
| ) { |
| assert!(!flags.contains(MemFlags::NONTEMPORAL), "non-temporal memcpy not supported"); |
| let size = self.intcast(size, self.type_size_t(), false); |
| let _is_volatile = flags.contains(MemFlags::VOLATILE); |
| let dst = self.pointercast(dst, self.type_i8p()); |
| let src = self.pointercast(src, self.type_ptr_to(self.type_void())); |
| let memcpy = self.context.get_builtin_function("memcpy"); |
| // TODO(antoyo): handle aligns and is_volatile. |
| self.block.add_eval( |
| self.location, |
| self.context.new_call(self.location, memcpy, &[dst, src, size]), |
| ); |
| } |
| |
| fn memmove( |
| &mut self, |
| dst: RValue<'gcc>, |
| _dst_align: Align, |
| src: RValue<'gcc>, |
| _src_align: Align, |
| size: RValue<'gcc>, |
| flags: MemFlags, |
| ) { |
| assert!(!flags.contains(MemFlags::NONTEMPORAL), "non-temporal memmove not supported"); |
| let size = self.intcast(size, self.type_size_t(), false); |
| let _is_volatile = flags.contains(MemFlags::VOLATILE); |
| let dst = self.pointercast(dst, self.type_i8p()); |
| let src = self.pointercast(src, self.type_ptr_to(self.type_void())); |
| |
| let memmove = self.context.get_builtin_function("memmove"); |
| // TODO(antoyo): handle is_volatile. |
| self.block.add_eval( |
| self.location, |
| self.context.new_call(self.location, memmove, &[dst, src, size]), |
| ); |
| } |
| |
| fn memset( |
| &mut self, |
| ptr: RValue<'gcc>, |
| fill_byte: RValue<'gcc>, |
| size: RValue<'gcc>, |
| _align: Align, |
| flags: MemFlags, |
| ) { |
| assert!(!flags.contains(MemFlags::NONTEMPORAL), "non-temporal memset not supported"); |
| let _is_volatile = flags.contains(MemFlags::VOLATILE); |
| let ptr = self.pointercast(ptr, self.type_i8p()); |
| let memset = self.context.get_builtin_function("memset"); |
| // TODO(antoyo): handle align and is_volatile. |
| let fill_byte = self.context.new_cast(self.location, fill_byte, self.i32_type); |
| let size = self.intcast(size, self.type_size_t(), false); |
| self.block.add_eval( |
| self.location, |
| self.context.new_call(self.location, memset, &[ptr, fill_byte, size]), |
| ); |
| } |
| |
| fn select( |
| &mut self, |
| cond: RValue<'gcc>, |
| then_val: RValue<'gcc>, |
| mut else_val: RValue<'gcc>, |
| ) -> RValue<'gcc> { |
| let func = self.current_func(); |
| let variable = func.new_local(self.location, then_val.get_type(), "selectVar"); |
| let then_block = func.new_block("then"); |
| let else_block = func.new_block("else"); |
| let after_block = func.new_block("after"); |
| self.llbb().end_with_conditional(self.location, cond, then_block, else_block); |
| |
| then_block.add_assignment(self.location, variable, then_val); |
| then_block.end_with_jump(self.location, after_block); |
| |
| if !then_val.get_type().is_compatible_with(else_val.get_type()) { |
| else_val = self.context.new_cast(self.location, else_val, then_val.get_type()); |
| } |
| else_block.add_assignment(self.location, variable, else_val); |
| else_block.end_with_jump(self.location, after_block); |
| |
| // NOTE: since jumps were added in a place rustc does not expect, the current block in the |
| // state need to be updated. |
| self.switch_to_block(after_block); |
| |
| variable.to_rvalue() |
| } |
| |
| #[allow(dead_code)] |
| fn va_arg(&mut self, _list: RValue<'gcc>, _ty: Type<'gcc>) -> RValue<'gcc> { |
| unimplemented!(); |
| } |
| |
| #[cfg(feature = "master")] |
| fn extract_element(&mut self, vec: RValue<'gcc>, idx: RValue<'gcc>) -> RValue<'gcc> { |
| self.context.new_vector_access(self.location, vec, idx).to_rvalue() |
| } |
| |
| #[cfg(not(feature = "master"))] |
| fn extract_element(&mut self, vec: RValue<'gcc>, idx: RValue<'gcc>) -> RValue<'gcc> { |
| let vector_type = vec |
| .get_type() |
| .unqualified() |
| .dyncast_vector() |
| .expect("Called extract_element on a non-vector type"); |
| let element_type = vector_type.get_element_type(); |
| let vec_num_units = vector_type.get_num_units(); |
| let array_type = |
| self.context.new_array_type(self.location, element_type, vec_num_units as u64); |
| let array = self.context.new_bitcast(self.location, vec, array_type).to_rvalue(); |
| self.context.new_array_access(self.location, array, idx).to_rvalue() |
| } |
| |
| fn vector_splat(&mut self, _num_elts: usize, _elt: RValue<'gcc>) -> RValue<'gcc> { |
| unimplemented!(); |
| } |
| |
| fn extract_value(&mut self, aggregate_value: RValue<'gcc>, idx: u64) -> RValue<'gcc> { |
| // FIXME(antoyo): it would be better if the API only called this on struct, not on arrays. |
| assert_eq!(idx as usize as u64, idx); |
| let value_type = aggregate_value.get_type(); |
| |
| if value_type.dyncast_array().is_some() { |
| let index = self |
| .context |
| .new_rvalue_from_long(self.u64_type, i64::try_from(idx).expect("i64::try_from")); |
| let element = self.context.new_array_access(self.location, aggregate_value, index); |
| element.get_address(self.location) |
| } else if value_type.dyncast_vector().is_some() { |
| panic!(); |
| } else if let Some(pointer_type) = value_type.get_pointee() { |
| if let Some(struct_type) = pointer_type.is_struct() { |
| // NOTE: hack to workaround a limitation of the rustc API: see comment on |
| // CodegenCx.structs_as_pointer |
| aggregate_value |
| .dereference_field(self.location, struct_type.get_field(idx as i32)) |
| .to_rvalue() |
| } else { |
| panic!("Unexpected type {:?}", value_type); |
| } |
| } else if let Some(struct_type) = value_type.is_struct() { |
| aggregate_value |
| .access_field(self.location, struct_type.get_field(idx as i32)) |
| .to_rvalue() |
| } else { |
| panic!("Unexpected type {:?}", value_type); |
| } |
| } |
| |
| fn insert_value( |
| &mut self, |
| aggregate_value: RValue<'gcc>, |
| value: RValue<'gcc>, |
| idx: u64, |
| ) -> RValue<'gcc> { |
| // FIXME(antoyo): it would be better if the API only called this on struct, not on arrays. |
| assert_eq!(idx as usize as u64, idx); |
| let value_type = aggregate_value.get_type(); |
| |
| let lvalue = if value_type.dyncast_array().is_some() { |
| let index = self |
| .context |
| .new_rvalue_from_long(self.u64_type, i64::try_from(idx).expect("i64::try_from")); |
| self.context.new_array_access(self.location, aggregate_value, index) |
| } else if value_type.dyncast_vector().is_some() { |
| panic!(); |
| } else if let Some(pointer_type) = value_type.get_pointee() { |
| if let Some(struct_type) = pointer_type.is_struct() { |
| // NOTE: hack to workaround a limitation of the rustc API: see comment on |
| // CodegenCx.structs_as_pointer |
| aggregate_value.dereference_field(self.location, struct_type.get_field(idx as i32)) |
| } else { |
| panic!("Unexpected type {:?}", value_type); |
| } |
| } else { |
| panic!("Unexpected type {:?}", value_type); |
| }; |
| |
| let lvalue_type = lvalue.to_rvalue().get_type(); |
| let value = |
| // NOTE: sometimes, rustc will create a value with the wrong type. |
| if lvalue_type != value.get_type() { |
| self.context.new_cast(self.location, value, lvalue_type) |
| } |
| else { |
| value |
| }; |
| |
| self.llbb().add_assignment(self.location, lvalue, value); |
| |
| aggregate_value |
| } |
| |
| fn set_personality_fn(&mut self, _personality: RValue<'gcc>) { |
| #[cfg(feature = "master")] |
| { |
| let personality = self.rvalue_as_function(_personality); |
| self.current_func().set_personality_function(personality); |
| } |
| } |
| |
| #[cfg(feature = "master")] |
| fn cleanup_landing_pad(&mut self, pers_fn: RValue<'gcc>) -> (RValue<'gcc>, RValue<'gcc>) { |
| self.set_personality_fn(pers_fn); |
| |
| // NOTE: insert the current block in a variable so that a later call to invoke knows to |
| // generate a try/finally instead of a try/catch for this block. |
| self.cleanup_blocks.borrow_mut().insert(self.block); |
| |
| let eh_pointer_builtin = |
| self.cx.context.get_target_builtin_function("__builtin_eh_pointer"); |
| let zero = self.cx.context.new_rvalue_zero(self.int_type); |
| let ptr = self.cx.context.new_call(self.location, eh_pointer_builtin, &[zero]); |
| |
| let value1_type = self.u8_type.make_pointer(); |
| let ptr = self.cx.context.new_cast(self.location, ptr, value1_type); |
| let value1 = ptr; |
| let value2 = zero; // TODO(antoyo): set the proper value here (the type of exception?). |
| |
| (value1, value2) |
| } |
| |
| #[cfg(not(feature = "master"))] |
| fn cleanup_landing_pad(&mut self, _pers_fn: RValue<'gcc>) -> (RValue<'gcc>, RValue<'gcc>) { |
| let value1 = self |
| .current_func() |
| .new_local(self.location, self.u8_type.make_pointer(), "landing_pad0") |
| .to_rvalue(); |
| let value2 = |
| self.current_func().new_local(self.location, self.i32_type, "landing_pad1").to_rvalue(); |
| (value1, value2) |
| } |
| |
| fn filter_landing_pad(&mut self, pers_fn: RValue<'gcc>) -> (RValue<'gcc>, RValue<'gcc>) { |
| // TODO(antoyo): generate the correct landing pad |
| self.cleanup_landing_pad(pers_fn) |
| } |
| |
| #[cfg(feature = "master")] |
| fn resume(&mut self, exn0: RValue<'gcc>, _exn1: RValue<'gcc>) { |
| let exn_type = exn0.get_type(); |
| let exn = self.context.new_cast(self.location, exn0, exn_type); |
| let unwind_resume = self.context.get_target_builtin_function("__builtin_unwind_resume"); |
| self.llbb() |
| .add_eval(self.location, self.context.new_call(self.location, unwind_resume, &[exn])); |
| self.unreachable(); |
| } |
| |
| #[cfg(not(feature = "master"))] |
| fn resume(&mut self, _exn0: RValue<'gcc>, _exn1: RValue<'gcc>) { |
| self.unreachable(); |
| } |
| |
| fn cleanup_pad(&mut self, _parent: Option<RValue<'gcc>>, _args: &[RValue<'gcc>]) -> Funclet { |
| unimplemented!(); |
| } |
| |
| fn cleanup_ret(&mut self, _funclet: &Funclet, _unwind: Option<Block<'gcc>>) { |
| unimplemented!(); |
| } |
| |
| fn catch_pad(&mut self, _parent: RValue<'gcc>, _args: &[RValue<'gcc>]) -> Funclet { |
| unimplemented!(); |
| } |
| |
| fn catch_switch( |
| &mut self, |
| _parent: Option<RValue<'gcc>>, |
| _unwind: Option<Block<'gcc>>, |
| _handlers: &[Block<'gcc>], |
| ) -> RValue<'gcc> { |
| unimplemented!(); |
| } |
| |
| // Atomic Operations |
| fn atomic_cmpxchg( |
| &mut self, |
| dst: RValue<'gcc>, |
| cmp: RValue<'gcc>, |
| src: RValue<'gcc>, |
| order: AtomicOrdering, |
| failure_order: AtomicOrdering, |
| weak: bool, |
| ) -> (RValue<'gcc>, RValue<'gcc>) { |
| let expected = self.current_func().new_local(None, cmp.get_type(), "expected"); |
| self.llbb().add_assignment(None, expected, cmp); |
| // NOTE: gcc doesn't support a failure memory model that is stronger than the success |
| // memory model. |
| let order = if failure_order as i32 > order as i32 { failure_order } else { order }; |
| let success = self.compare_exchange(dst, expected, src, order, failure_order, weak); |
| |
| // NOTE: since success contains the call to the intrinsic, it must be added to the basic block before |
| // expected so that we store expected after the call. |
| let success_var = self.current_func().new_local(self.location, self.bool_type, "success"); |
| self.llbb().add_assignment(self.location, success_var, success); |
| |
| (expected.to_rvalue(), success_var.to_rvalue()) |
| } |
| |
| fn atomic_rmw( |
| &mut self, |
| op: AtomicRmwBinOp, |
| dst: RValue<'gcc>, |
| src: RValue<'gcc>, |
| order: AtomicOrdering, |
| ) -> RValue<'gcc> { |
| let size = get_maybe_pointer_size(src); |
| let name = match op { |
| AtomicRmwBinOp::AtomicXchg => format!("__atomic_exchange_{}", size), |
| AtomicRmwBinOp::AtomicAdd => format!("__atomic_fetch_add_{}", size), |
| AtomicRmwBinOp::AtomicSub => format!("__atomic_fetch_sub_{}", size), |
| AtomicRmwBinOp::AtomicAnd => format!("__atomic_fetch_and_{}", size), |
| AtomicRmwBinOp::AtomicNand => format!("__atomic_fetch_nand_{}", size), |
| AtomicRmwBinOp::AtomicOr => format!("__atomic_fetch_or_{}", size), |
| AtomicRmwBinOp::AtomicXor => format!("__atomic_fetch_xor_{}", size), |
| AtomicRmwBinOp::AtomicMax => { |
| return self.atomic_extremum(ExtremumOperation::Max, dst, src, order); |
| } |
| AtomicRmwBinOp::AtomicMin => { |
| return self.atomic_extremum(ExtremumOperation::Min, dst, src, order); |
| } |
| AtomicRmwBinOp::AtomicUMax => { |
| return self.atomic_extremum(ExtremumOperation::Max, dst, src, order); |
| } |
| AtomicRmwBinOp::AtomicUMin => { |
| return self.atomic_extremum(ExtremumOperation::Min, dst, src, order); |
| } |
| }; |
| |
| let atomic_function = self.context.get_builtin_function(name); |
| let order = self.context.new_rvalue_from_int(self.i32_type, order.to_gcc()); |
| |
| let void_ptr_type = self.context.new_type::<*mut ()>(); |
| let volatile_void_ptr_type = void_ptr_type.make_volatile(); |
| let dst = self.context.new_cast(self.location, dst, volatile_void_ptr_type); |
| // FIXME(antoyo): not sure why, but we have the wrong type here. |
| let new_src_type = atomic_function.get_param(1).to_rvalue().get_type(); |
| let src = self.context.new_bitcast(self.location, src, new_src_type); |
| let res = self.context.new_call(self.location, atomic_function, &[dst, src, order]); |
| self.context.new_cast(self.location, res, src.get_type()) |
| } |
| |
| fn atomic_fence(&mut self, order: AtomicOrdering, scope: SynchronizationScope) { |
| let name = match scope { |
| SynchronizationScope::SingleThread => "__atomic_signal_fence", |
| SynchronizationScope::CrossThread => "__atomic_thread_fence", |
| }; |
| let thread_fence = self.context.get_builtin_function(name); |
| let order = self.context.new_rvalue_from_int(self.i32_type, order.to_gcc()); |
| self.llbb() |
| .add_eval(self.location, self.context.new_call(self.location, thread_fence, &[order])); |
| } |
| |
| fn set_invariant_load(&mut self, load: RValue<'gcc>) { |
| // NOTE: Hack to consider vtable function pointer as non-global-variable function pointer. |
| self.normal_function_addresses.borrow_mut().insert(load); |
| // TODO(antoyo) |
| } |
| |
| fn lifetime_start(&mut self, _ptr: RValue<'gcc>, _size: Size) { |
| // TODO(antoyo) |
| } |
| |
| fn lifetime_end(&mut self, _ptr: RValue<'gcc>, _size: Size) { |
| // TODO(antoyo) |
| } |
| |
| fn call( |
| &mut self, |
| typ: Type<'gcc>, |
| _fn_attrs: Option<&CodegenFnAttrs>, |
| fn_abi: Option<&FnAbi<'tcx, Ty<'tcx>>>, |
| func: RValue<'gcc>, |
| args: &[RValue<'gcc>], |
| funclet: Option<&Funclet>, |
| _instance: Option<Instance<'tcx>>, |
| ) -> RValue<'gcc> { |
| // FIXME(antoyo): remove when having a proper API. |
| let gcc_func = unsafe { std::mem::transmute::<RValue<'gcc>, Function<'gcc>>(func) }; |
| let call = if self.functions.borrow().values().any(|value| *value == gcc_func) { |
| self.function_call(func, args, funclet) |
| } else { |
| // If it's a not function that was defined, it's a function pointer. |
| self.function_ptr_call(typ, func, args, funclet) |
| }; |
| if let Some(_fn_abi) = fn_abi { |
| // TODO(bjorn3): Apply function attributes |
| } |
| call |
| } |
| |
| fn zext(&mut self, value: RValue<'gcc>, dest_typ: Type<'gcc>) -> RValue<'gcc> { |
| // FIXME(antoyo): this does not zero-extend. |
| self.gcc_int_cast(value, dest_typ) |
| } |
| |
| fn cx(&self) -> &CodegenCx<'gcc, 'tcx> { |
| self.cx |
| } |
| |
| fn apply_attrs_to_cleanup_callsite(&mut self, _llret: RValue<'gcc>) { |
| // FIXME(bjorn3): implement |
| } |
| |
| fn set_span(&mut self, _span: Span) {} |
| |
| fn from_immediate(&mut self, val: Self::Value) -> Self::Value { |
| if self.cx().val_ty(val) == self.cx().type_i1() { |
| self.zext(val, self.cx().type_i8()) |
| } else { |
| val |
| } |
| } |
| |
| fn to_immediate_scalar(&mut self, val: Self::Value, scalar: abi::Scalar) -> Self::Value { |
| if scalar.is_bool() { |
| return self.trunc(val, self.cx().type_i1()); |
| } |
| val |
| } |
| |
| fn fptoui_sat(&mut self, val: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { |
| self.fptoint_sat(false, val, dest_ty) |
| } |
| |
| fn fptosi_sat(&mut self, val: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> { |
| self.fptoint_sat(true, val, dest_ty) |
| } |
| } |
| |
| impl<'a, 'gcc, 'tcx> Builder<'a, 'gcc, 'tcx> { |
| fn fptoint_sat( |
| &mut self, |
| signed: bool, |
| val: RValue<'gcc>, |
| dest_ty: Type<'gcc>, |
| ) -> RValue<'gcc> { |
| let src_ty = self.cx.val_ty(val); |
| let (float_ty, int_ty) = if self.cx.type_kind(src_ty) == TypeKind::Vector { |
| assert_eq!(self.cx.vector_length(src_ty), self.cx.vector_length(dest_ty)); |
| (self.cx.element_type(src_ty), self.cx.element_type(dest_ty)) |
| } else { |
| (src_ty, dest_ty) |
| }; |
| |
| // FIXME(jistone): the following was originally the fallback SSA implementation, before LLVM 13 |
| // added native `fptosi.sat` and `fptoui.sat` conversions, but it was used by GCC as well. |
| // Now that LLVM always relies on its own, the code has been moved to GCC, but the comments are |
| // still LLVM-specific. This should be updated, and use better GCC specifics if possible. |
| |
| let int_width = self.cx.int_width(int_ty); |
| let float_width = self.cx.float_width(float_ty); |
| // LLVM's fpto[su]i returns undef when the input val is infinite, NaN, or does not fit into the |
| // destination integer type after rounding towards zero. This `undef` value can cause UB in |
| // safe code (see issue #10184), so we implement a saturating conversion on top of it: |
| // Semantically, the mathematical value of the input is rounded towards zero to the next |
| // mathematical integer, and then the result is clamped into the range of the destination |
| // integer type. Positive and negative infinity are mapped to the maximum and minimum value of |
| // the destination integer type. NaN is mapped to 0. |
| // |
| // Define f_min and f_max as the largest and smallest (finite) floats that are exactly equal to |
| // a value representable in int_ty. |
| // They are exactly equal to int_ty::{MIN,MAX} if float_ty has enough significand bits. |
| // Otherwise, int_ty::MAX must be rounded towards zero, as it is one less than a power of two. |
| // int_ty::MIN, however, is either zero or a negative power of two and is thus exactly |
| // representable. Note that this only works if float_ty's exponent range is sufficiently large. |
| // f16 or 256 bit integers would break this property. Right now the smallest float type is f32 |
| // with exponents ranging up to 127, which is barely enough for i128::MIN = -2^127. |
| // On the other hand, f_max works even if int_ty::MAX is greater than float_ty::MAX. Because |
| // we're rounding towards zero, we just get float_ty::MAX (which is always an integer). |
| // This already happens today with u128::MAX = 2^128 - 1 > f32::MAX. |
| let int_max = |signed: bool, int_width: u64| -> u128 { |
| let shift_amount = 128 - int_width; |
| if signed { i128::MAX as u128 >> shift_amount } else { u128::MAX >> shift_amount } |
| }; |
| let int_min = |signed: bool, int_width: u64| -> i128 { |
| if signed { i128::MIN >> (128 - int_width) } else { 0 } |
| }; |
| |
| let compute_clamp_bounds_single = |signed: bool, int_width: u64| -> (u128, u128) { |
| let rounded_min = |
| ieee::Single::from_i128_r(int_min(signed, int_width), Round::TowardZero); |
| assert_eq!(rounded_min.status, Status::OK); |
| let rounded_max = |
| ieee::Single::from_u128_r(int_max(signed, int_width), Round::TowardZero); |
| assert!(rounded_max.value.is_finite()); |
| (rounded_min.value.to_bits(), rounded_max.value.to_bits()) |
| }; |
| let compute_clamp_bounds_double = |signed: bool, int_width: u64| -> (u128, u128) { |
| let rounded_min = |
| ieee::Double::from_i128_r(int_min(signed, int_width), Round::TowardZero); |
| assert_eq!(rounded_min.status, Status::OK); |
| let rounded_max = |
| ieee::Double::from_u128_r(int_max(signed, int_width), Round::TowardZero); |
| assert!(rounded_max.value.is_finite()); |
| (rounded_min.value.to_bits(), rounded_max.value.to_bits()) |
| }; |
| // To implement saturation, we perform the following steps: |
| // |
| // 1. Cast val to an integer with fpto[su]i. This may result in undef. |
| // 2. Compare val to f_min and f_max, and use the comparison results to select: |
| // a) int_ty::MIN if val < f_min or val is NaN |
| // b) int_ty::MAX if val > f_max |
| // c) the result of fpto[su]i otherwise |
| // 3. If val is NaN, return 0.0, otherwise return the result of step 2. |
| // |
| // This avoids resulting undef because values in range [f_min, f_max] by definition fit into the |
| // destination type. It creates an undef temporary, but *producing* undef is not UB. Our use of |
| // undef does not introduce any non-determinism either. |
| // More importantly, the above procedure correctly implements saturating conversion. |
| // Proof (sketch): |
| // If val is NaN, 0 is returned by definition. |
| // Otherwise, val is finite or infinite and thus can be compared with f_min and f_max. |
| // This yields three cases to consider: |
| // (1) if val in [f_min, f_max], the result of fpto[su]i is returned, which agrees with |
| // saturating conversion for inputs in that range. |
| // (2) if val > f_max, then val is larger than int_ty::MAX. This holds even if f_max is rounded |
| // (i.e., if f_max < int_ty::MAX) because in those cases, nextUp(f_max) is already larger |
| // than int_ty::MAX. Because val is larger than int_ty::MAX, the return value of int_ty::MAX |
| // is correct. |
| // (3) if val < f_min, then val is smaller than int_ty::MIN. As shown earlier, f_min exactly equals |
| // int_ty::MIN and therefore the return value of int_ty::MIN is correct. |
| // QED. |
| |
| let float_bits_to_llval = |bx: &mut Self, bits| { |
| let bits_llval = match float_width { |
| 32 => bx.cx().const_u32(bits as u32), |
| 64 => bx.cx().const_u64(bits as u64), |
| n => bug!("unsupported float width {}", n), |
| }; |
| bx.bitcast(bits_llval, float_ty) |
| }; |
| let (f_min, f_max) = match float_width { |
| 32 => compute_clamp_bounds_single(signed, int_width), |
| 64 => compute_clamp_bounds_double(signed, int_width), |
| n => bug!("unsupported float width {}", n), |
| }; |
| let f_min = float_bits_to_llval(self, f_min); |
| let f_max = float_bits_to_llval(self, f_max); |
| let int_max = self.cx.const_uint_big(int_ty, int_max(signed, int_width)); |
| let int_min = self.cx.const_uint_big(int_ty, int_min(signed, int_width) as u128); |
| let zero = self.cx.const_uint(int_ty, 0); |
| |
| // If we're working with vectors, constants must be "splatted": the constant is duplicated |
| // into each lane of the vector. The algorithm stays the same, we are just using the |
| // same constant across all lanes. |
| let maybe_splat = |bx: &mut Self, val| { |
| if bx.cx().type_kind(dest_ty) == TypeKind::Vector { |
| bx.vector_splat(bx.vector_length(dest_ty), val) |
| } else { |
| val |
| } |
| }; |
| let f_min = maybe_splat(self, f_min); |
| let f_max = maybe_splat(self, f_max); |
| let int_max = maybe_splat(self, int_max); |
| let int_min = maybe_splat(self, int_min); |
| let zero = maybe_splat(self, zero); |
| |
| // Step 1 ... |
| let fptosui_result = |
| if signed { self.fptosi(val, dest_ty) } else { self.fptoui(val, dest_ty) }; |
| let less_or_nan = self.fcmp(RealPredicate::RealULT, val, f_min); |
| let greater = self.fcmp(RealPredicate::RealOGT, val, f_max); |
| |
| // Step 2: We use two comparisons and two selects, with %s1 being the |
| // result: |
| // %less_or_nan = fcmp ult %val, %f_min |
| // %greater = fcmp olt %val, %f_max |
| // %s0 = select %less_or_nan, int_ty::MIN, %fptosi_result |
| // %s1 = select %greater, int_ty::MAX, %s0 |
| // Note that %less_or_nan uses an *unordered* comparison. This |
| // comparison is true if the operands are not comparable (i.e., if val is |
| // NaN). The unordered comparison ensures that s1 becomes int_ty::MIN if |
| // val is NaN. |
| // |
| // Performance note: Unordered comparison can be lowered to a "flipped" |
| // comparison and a negation, and the negation can be merged into the |
| // select. Therefore, it not necessarily any more expensive than an |
| // ordered ("normal") comparison. Whether these optimizations will be |
| // performed is ultimately up to the backend, but at least x86 does |
| // perform them. |
| let s0 = self.select(less_or_nan, int_min, fptosui_result); |
| let s1 = self.select(greater, int_max, s0); |
| |
| // Step 3: NaN replacement. |
| // For unsigned types, the above step already yielded int_ty::MIN == 0 if val is NaN. |
| // Therefore we only need to execute this step for signed integer types. |
| if signed { |
| // LLVM has no isNaN predicate, so we use (val == val) instead |
| let cmp = self.fcmp(RealPredicate::RealOEQ, val, val); |
| self.select(cmp, s1, zero) |
| } else { |
| s1 |
| } |
| } |
| |
| #[cfg(feature = "master")] |
| pub fn shuffle_vector( |
| &mut self, |
| v1: RValue<'gcc>, |
| v2: RValue<'gcc>, |
| mask: RValue<'gcc>, |
| ) -> RValue<'gcc> { |
| // TODO(antoyo): use a recursive unqualified() here. |
| let vector_type = v1.get_type().unqualified().dyncast_vector().expect("vector type"); |
| let element_type = vector_type.get_element_type(); |
| let vec_num_units = vector_type.get_num_units(); |
| |
| let mask_element_type = if element_type.is_integral() { |
| element_type |
| } else { |
| #[cfg(feature = "master")] |
| { |
| self.cx.type_ix(element_type.get_size() as u64 * 8) |
| } |
| #[cfg(not(feature = "master"))] |
| self.int_type |
| }; |
| |
| let vector_type = |
| mask.get_type().dyncast_vector().expect("simd_shuffle mask should be of vector type"); |
| let mask_num_units = vector_type.get_num_units(); |
| let mut mask_elements = vec![]; |
| for i in 0..mask_num_units { |
| let index = self.context.new_rvalue_from_long(self.cx.type_u32(), i as _); |
| mask_elements.push(self.context.new_cast( |
| self.location, |
| self.extract_element(mask, index).to_rvalue(), |
| mask_element_type, |
| )); |
| } |
| |
| // NOTE: the mask needs to be the same length as the input vectors, so add the missing |
| // elements in the mask if needed. |
| for _ in mask_num_units..vec_num_units { |
| mask_elements.push(self.context.new_rvalue_zero(mask_element_type)); |
| } |
| |
| let result_type = self.context.new_vector_type(element_type, mask_num_units as u64); |
| let (v1, v2) = if vec_num_units < mask_num_units { |
| // NOTE: the mask needs to be the same length as the input vectors, so join the 2 |
| // vectors and create a dummy second vector. |
| let mut elements = vec![]; |
| for i in 0..vec_num_units { |
| elements.push( |
| self.context |
| .new_vector_access( |
| self.location, |
| v1, |
| self.context.new_rvalue_from_int(self.int_type, i as i32), |
| ) |
| .to_rvalue(), |
| ); |
| } |
| for i in 0..(mask_num_units - vec_num_units) { |
| elements.push( |
| self.context |
| .new_vector_access( |
| self.location, |
| v2, |
| self.context.new_rvalue_from_int(self.int_type, i as i32), |
| ) |
| .to_rvalue(), |
| ); |
| } |
| let v1 = self.context.new_rvalue_from_vector(self.location, result_type, &elements); |
| let zero = self.context.new_rvalue_zero(element_type); |
| let v2 = self.context.new_rvalue_from_vector( |
| self.location, |
| result_type, |
| &vec![zero; mask_num_units], |
| ); |
| (v1, v2) |
| } else { |
| (v1, v2) |
| }; |
| |
| let new_mask_num_units = std::cmp::max(mask_num_units, vec_num_units); |
| let mask_type = self.context.new_vector_type(mask_element_type, new_mask_num_units as u64); |
| let mask = self.context.new_rvalue_from_vector(self.location, mask_type, &mask_elements); |
| let result = self.context.new_rvalue_vector_perm(self.location, v1, v2, mask); |
| |
| if vec_num_units != mask_num_units { |
| // NOTE: if padding was added, only select the number of elements of the masks to |
| // remove that padding in the result. |
| let mut elements = vec![]; |
| for i in 0..mask_num_units { |
| elements.push( |
| self.context |
| .new_vector_access( |
| self.location, |
| result, |
| self.context.new_rvalue_from_int(self.int_type, i as i32), |
| ) |
| .to_rvalue(), |
| ); |
| } |
| self.context.new_rvalue_from_vector(self.location, result_type, &elements) |
| } else { |
| result |
| } |
| } |
| |
| #[cfg(not(feature = "master"))] |
| pub fn shuffle_vector( |
| &mut self, |
| _v1: RValue<'gcc>, |
| _v2: RValue<'gcc>, |
| _mask: RValue<'gcc>, |
| ) -> RValue<'gcc> { |
| unimplemented!(); |
| } |
| |
| #[cfg(feature = "master")] |
| pub fn vector_reduce<F>(&mut self, src: RValue<'gcc>, op: F) -> RValue<'gcc> |
| where |
| F: Fn(RValue<'gcc>, RValue<'gcc>, &'gcc Context<'gcc>) -> RValue<'gcc>, |
| { |
| let vector_type = src.get_type().unqualified().dyncast_vector().expect("vector type"); |
| let element_type = vector_type.get_element_type(); |
| let mask_element_type = self.type_ix(element_type.get_size() as u64 * 8); |
| let element_count = vector_type.get_num_units(); |
| let mut vector_elements = vec![]; |
| for i in 0..element_count { |
| vector_elements.push(i); |
| } |
| let mask_type = self.context.new_vector_type(mask_element_type, element_count as u64); |
| let mut shift = 1; |
| let mut res = src; |
| while shift < element_count { |
| let vector_elements: Vec<_> = vector_elements |
| .iter() |
| .map(|i| { |
| self.context.new_rvalue_from_int( |
| mask_element_type, |
| ((i + shift) % element_count) as i32, |
| ) |
| }) |
| .collect(); |
| let mask = |
| self.context.new_rvalue_from_vector(self.location, mask_type, &vector_elements); |
| let shifted = self.context.new_rvalue_vector_perm(self.location, res, res, mask); |
| shift *= 2; |
| res = op(res, shifted, self.context); |
| } |
| self.context |
| .new_vector_access(self.location, res, self.context.new_rvalue_zero(self.int_type)) |
| .to_rvalue() |
| } |
| |
| #[cfg(not(feature = "master"))] |
| pub fn vector_reduce<F>(&mut self, _src: RValue<'gcc>, _op: F) -> RValue<'gcc> |
| where |
| F: Fn(RValue<'gcc>, RValue<'gcc>, &'gcc Context<'gcc>) -> RValue<'gcc>, |
| { |
| unimplemented!(); |
| } |
| |
| pub fn vector_reduce_op(&mut self, src: RValue<'gcc>, op: BinaryOp) -> RValue<'gcc> { |
| let loc = self.location; |
| self.vector_reduce(src, |a, b, context| context.new_binary_op(loc, op, a.get_type(), a, b)) |
| } |
| |
| pub fn vector_reduce_fadd_reassoc( |
| &mut self, |
| _acc: RValue<'gcc>, |
| _src: RValue<'gcc>, |
| ) -> RValue<'gcc> { |
| unimplemented!(); |
| } |
| |
| #[cfg(feature = "master")] |
| pub fn vector_reduce_fadd(&mut self, acc: RValue<'gcc>, src: RValue<'gcc>) -> RValue<'gcc> { |
| let vector_type = src.get_type().unqualified().dyncast_vector().expect("vector type"); |
| let element_count = vector_type.get_num_units(); |
| (0..element_count) |
| .map(|i| { |
| self.context |
| .new_vector_access( |
| self.location, |
| src, |
| self.context.new_rvalue_from_int(self.int_type, i as _), |
| ) |
| .to_rvalue() |
| }) |
| .fold(acc, |x, i| x + i) |
| } |
| |
| #[cfg(not(feature = "master"))] |
| pub fn vector_reduce_fadd(&mut self, _acc: RValue<'gcc>, _src: RValue<'gcc>) -> RValue<'gcc> { |
| unimplemented!(); |
| } |
| |
| pub fn vector_reduce_fmul_reassoc( |
| &mut self, |
| _acc: RValue<'gcc>, |
| _src: RValue<'gcc>, |
| ) -> RValue<'gcc> { |
| unimplemented!(); |
| } |
| |
| #[cfg(feature = "master")] |
| pub fn vector_reduce_fmul(&mut self, acc: RValue<'gcc>, src: RValue<'gcc>) -> RValue<'gcc> { |
| let vector_type = src.get_type().unqualified().dyncast_vector().expect("vector type"); |
| let element_count = vector_type.get_num_units(); |
| (0..element_count) |
| .map(|i| { |
| self.context |
| .new_vector_access( |
| self.location, |
| src, |
| self.context.new_rvalue_from_int(self.int_type, i as _), |
| ) |
| .to_rvalue() |
| }) |
| .fold(acc, |x, i| x * i) |
| } |
| |
| #[cfg(not(feature = "master"))] |
| pub fn vector_reduce_fmul(&mut self, _acc: RValue<'gcc>, _src: RValue<'gcc>) -> RValue<'gcc> { |
| unimplemented!() |
| } |
| |
| // Inspired by Hacker's Delight min implementation. |
| pub fn vector_reduce_min(&mut self, src: RValue<'gcc>) -> RValue<'gcc> { |
| let loc = self.location; |
| self.vector_reduce(src, |a, b, context| { |
| let differences_or_zeros = difference_or_zero(loc, a, b, context); |
| context.new_binary_op(loc, BinaryOp::Plus, b.get_type(), b, differences_or_zeros) |
| }) |
| } |
| |
| // Inspired by Hacker's Delight max implementation. |
| pub fn vector_reduce_max(&mut self, src: RValue<'gcc>) -> RValue<'gcc> { |
| let loc = self.location; |
| self.vector_reduce(src, |a, b, context| { |
| let differences_or_zeros = difference_or_zero(loc, a, b, context); |
| context.new_binary_op(loc, BinaryOp::Minus, a.get_type(), a, differences_or_zeros) |
| }) |
| } |
| |
| fn vector_extremum( |
| &mut self, |
| a: RValue<'gcc>, |
| b: RValue<'gcc>, |
| direction: ExtremumOperation, |
| ) -> RValue<'gcc> { |
| let vector_type = a.get_type(); |
| |
| // mask out the NaNs in b and replace them with the corresponding lane in a, so when a and |
| // b get compared & spliced together, we get the numeric values instead of NaNs. |
| let b_nan_mask = self.context.new_comparison(self.location, ComparisonOp::NotEquals, b, b); |
| let mask_type = b_nan_mask.get_type(); |
| let b_nan_mask_inverted = |
| self.context.new_unary_op(self.location, UnaryOp::BitwiseNegate, mask_type, b_nan_mask); |
| let a_cast = self.context.new_bitcast(self.location, a, mask_type); |
| let b_cast = self.context.new_bitcast(self.location, b, mask_type); |
| let res = (b_nan_mask & a_cast) | (b_nan_mask_inverted & b_cast); |
| let b = self.context.new_bitcast(self.location, res, vector_type); |
| |
| // now do the actual comparison |
| let comparison_op = match direction { |
| ExtremumOperation::Min => ComparisonOp::LessThan, |
| ExtremumOperation::Max => ComparisonOp::GreaterThan, |
| }; |
| let cmp = self.context.new_comparison(self.location, comparison_op, a, b); |
| let cmp_inverted = |
| self.context.new_unary_op(self.location, UnaryOp::BitwiseNegate, cmp.get_type(), cmp); |
| let res = (cmp & a_cast) | (cmp_inverted & res); |
| self.context.new_bitcast(self.location, res, vector_type) |
| } |
| |
| pub fn vector_fmin(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { |
| self.vector_extremum(a, b, ExtremumOperation::Min) |
| } |
| |
| #[cfg(feature = "master")] |
| pub fn vector_reduce_fmin(&mut self, src: RValue<'gcc>) -> RValue<'gcc> { |
| let vector_type = src.get_type().unqualified().dyncast_vector().expect("vector type"); |
| let element_count = vector_type.get_num_units(); |
| let mut acc = self |
| .context |
| .new_vector_access(self.location, src, self.context.new_rvalue_zero(self.int_type)) |
| .to_rvalue(); |
| for i in 1..element_count { |
| let elem = self |
| .context |
| .new_vector_access( |
| self.location, |
| src, |
| self.context.new_rvalue_from_int(self.int_type, i as _), |
| ) |
| .to_rvalue(); |
| let cmp = self.context.new_comparison(self.location, ComparisonOp::LessThan, acc, elem); |
| acc = self.select(cmp, acc, elem); |
| } |
| acc |
| } |
| |
| #[cfg(not(feature = "master"))] |
| pub fn vector_reduce_fmin(&mut self, _src: RValue<'gcc>) -> RValue<'gcc> { |
| unimplemented!(); |
| } |
| |
| pub fn vector_fmax(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> { |
| self.vector_extremum(a, b, ExtremumOperation::Max) |
| } |
| |
| #[cfg(feature = "master")] |
| pub fn vector_reduce_fmax(&mut self, src: RValue<'gcc>) -> RValue<'gcc> { |
| let vector_type = src.get_type().unqualified().dyncast_vector().expect("vector type"); |
| let element_count = vector_type.get_num_units(); |
| let mut acc = self |
| .context |
| .new_vector_access(self.location, src, self.context.new_rvalue_zero(self.int_type)) |
| .to_rvalue(); |
| for i in 1..element_count { |
| let elem = self |
| .context |
| .new_vector_access( |
| self.location, |
| src, |
| self.context.new_rvalue_from_int(self.int_type, i as _), |
| ) |
| .to_rvalue(); |
| let cmp = |
| self.context.new_comparison(self.location, ComparisonOp::GreaterThan, acc, elem); |
| acc = self.select(cmp, acc, elem); |
| } |
| acc |
| } |
| |
| #[cfg(not(feature = "master"))] |
| pub fn vector_reduce_fmax(&mut self, _src: RValue<'gcc>) -> RValue<'gcc> { |
| unimplemented!(); |
| } |
| |
| pub fn vector_select( |
| &mut self, |
| cond: RValue<'gcc>, |
| then_val: RValue<'gcc>, |
| else_val: RValue<'gcc>, |
| ) -> RValue<'gcc> { |
| // cond is a vector of integers, not of bools. |
| let vector_type = cond.get_type().unqualified().dyncast_vector().expect("vector type"); |
| let num_units = vector_type.get_num_units(); |
| let element_type = vector_type.get_element_type(); |
| |
| #[cfg(feature = "master")] |
| let (cond, element_type) = { |
| // TODO(antoyo): dyncast_vector should not require a call to unqualified. |
| let then_val_vector_type = |
| then_val.get_type().unqualified().dyncast_vector().expect("vector type"); |
| let then_val_element_type = then_val_vector_type.get_element_type(); |
| let then_val_element_size = then_val_element_type.get_size(); |
| |
| // NOTE: the mask needs to be of the same size as the other arguments in order for the & |
| // operation to work. |
| if then_val_element_size != element_type.get_size() { |
| let new_element_type = self.type_ix(then_val_element_size as u64 * 8); |
| let new_vector_type = |
| self.context.new_vector_type(new_element_type, num_units as u64); |
| let cond = self.context.convert_vector(self.location, cond, new_vector_type); |
| (cond, new_element_type) |
| } else { |
| (cond, element_type) |
| } |
| }; |
| |
| let cond_type = cond.get_type(); |
| |
| let zeros = vec![self.context.new_rvalue_zero(element_type); num_units]; |
| let zeros = self.context.new_rvalue_from_vector(self.location, cond_type, &zeros); |
| |
| let result_type = then_val.get_type(); |
| |
| let masks = |
| self.context.new_comparison(self.location, ComparisonOp::NotEquals, cond, zeros); |
| // NOTE: masks is a vector of integers, but the values can be vectors of floats, so use bitcast to make |
| // the & operation work. |
| let then_val = self.bitcast_if_needed(then_val, masks.get_type()); |
| let then_vals = masks & then_val; |
| |
| let minus_ones = vec![self.context.new_rvalue_from_int(element_type, -1); num_units]; |
| let minus_ones = self.context.new_rvalue_from_vector(self.location, cond_type, &minus_ones); |
| let inverted_masks = masks ^ minus_ones; |
| // NOTE: sometimes, the type of else_val can be different than the type of then_val in |
| // libgccjit (vector of int vs vector of int32_t), but they should be the same for the AND |
| // operation to work. |
| // TODO: remove bitcast now that vector types can be compared? |
| let else_val = self.context.new_bitcast(self.location, else_val, then_val.get_type()); |
| let else_vals = inverted_masks & else_val; |
| |
| let res = then_vals | else_vals; |
| self.bitcast_if_needed(res, result_type) |
| } |
| } |
| |
| fn difference_or_zero<'gcc>( |
| loc: Option<Location<'gcc>>, |
| a: RValue<'gcc>, |
| b: RValue<'gcc>, |
| context: &'gcc Context<'gcc>, |
| ) -> RValue<'gcc> { |
| let difference = a - b; |
| let masks = context.new_comparison(loc, ComparisonOp::GreaterThanEquals, b, a); |
| // NOTE: masks is a vector of integers, but the values can be vectors of floats, so use bitcast to make |
| // the & operation work. |
| let a_type = a.get_type(); |
| let masks = |
| if masks.get_type() != a_type { context.new_bitcast(loc, masks, a_type) } else { masks }; |
| difference & masks |
| } |
| |
| impl<'a, 'gcc, 'tcx> StaticBuilderMethods for Builder<'a, 'gcc, 'tcx> { |
| fn get_static(&mut self, def_id: DefId) -> RValue<'gcc> { |
| // Forward to the `get_static` method of `CodegenCx` |
| self.cx().get_static(def_id).get_address(self.location) |
| } |
| } |
| |
| impl<'tcx> HasParamEnv<'tcx> for Builder<'_, '_, 'tcx> { |
| fn param_env(&self) -> ParamEnv<'tcx> { |
| self.cx.param_env() |
| } |
| } |
| |
| impl<'tcx> HasTargetSpec for Builder<'_, '_, 'tcx> { |
| fn target_spec(&self) -> &Target { |
| self.cx.target_spec() |
| } |
| } |
| |
| impl<'tcx> HasWasmCAbiOpt for Builder<'_, '_, 'tcx> { |
| fn wasm_c_abi_opt(&self) -> WasmCAbi { |
| self.cx.wasm_c_abi_opt() |
| } |
| } |
| |
| impl<'tcx> HasX86AbiOpt for Builder<'_, '_, 'tcx> { |
| fn x86_abi_opt(&self) -> X86Abi { |
| self.cx.x86_abi_opt() |
| } |
| } |
| |
| pub trait ToGccComp { |
| fn to_gcc_comparison(&self) -> ComparisonOp; |
| } |
| |
| impl ToGccComp for IntPredicate { |
| fn to_gcc_comparison(&self) -> ComparisonOp { |
| match *self { |
| IntPredicate::IntEQ => ComparisonOp::Equals, |
| IntPredicate::IntNE => ComparisonOp::NotEquals, |
| IntPredicate::IntUGT => ComparisonOp::GreaterThan, |
| IntPredicate::IntUGE => ComparisonOp::GreaterThanEquals, |
| IntPredicate::IntULT => ComparisonOp::LessThan, |
| IntPredicate::IntULE => ComparisonOp::LessThanEquals, |
| IntPredicate::IntSGT => ComparisonOp::GreaterThan, |
| IntPredicate::IntSGE => ComparisonOp::GreaterThanEquals, |
| IntPredicate::IntSLT => ComparisonOp::LessThan, |
| IntPredicate::IntSLE => ComparisonOp::LessThanEquals, |
| } |
| } |
| } |
| |
| impl ToGccComp for RealPredicate { |
| fn to_gcc_comparison(&self) -> ComparisonOp { |
| // TODO(antoyo): check that ordered vs non-ordered is respected. |
| match *self { |
| RealPredicate::RealPredicateFalse => unreachable!(), |
| RealPredicate::RealOEQ => ComparisonOp::Equals, |
| RealPredicate::RealOGT => ComparisonOp::GreaterThan, |
| RealPredicate::RealOGE => ComparisonOp::GreaterThanEquals, |
| RealPredicate::RealOLT => ComparisonOp::LessThan, |
| RealPredicate::RealOLE => ComparisonOp::LessThanEquals, |
| RealPredicate::RealONE => ComparisonOp::NotEquals, |
| RealPredicate::RealORD => unreachable!(), |
| RealPredicate::RealUNO => unreachable!(), |
| RealPredicate::RealUEQ => ComparisonOp::Equals, |
| RealPredicate::RealUGT => ComparisonOp::GreaterThan, |
| RealPredicate::RealUGE => ComparisonOp::GreaterThan, |
| RealPredicate::RealULT => ComparisonOp::LessThan, |
| RealPredicate::RealULE => ComparisonOp::LessThan, |
| RealPredicate::RealUNE => ComparisonOp::NotEquals, |
| RealPredicate::RealPredicateTrue => unreachable!(), |
| } |
| } |
| } |
| |
| #[repr(C)] |
| #[allow(non_camel_case_types)] |
| enum MemOrdering { |
| __ATOMIC_RELAXED, |
| __ATOMIC_CONSUME, |
| __ATOMIC_ACQUIRE, |
| __ATOMIC_RELEASE, |
| __ATOMIC_ACQ_REL, |
| __ATOMIC_SEQ_CST, |
| } |
| |
| trait ToGccOrdering { |
| fn to_gcc(self) -> i32; |
| } |
| |
| impl ToGccOrdering for AtomicOrdering { |
| fn to_gcc(self) -> i32 { |
| use MemOrdering::*; |
| |
| let ordering = match self { |
| AtomicOrdering::Unordered => __ATOMIC_RELAXED, |
| AtomicOrdering::Relaxed => __ATOMIC_RELAXED, // TODO(antoyo): check if that's the same. |
| AtomicOrdering::Acquire => __ATOMIC_ACQUIRE, |
| AtomicOrdering::Release => __ATOMIC_RELEASE, |
| AtomicOrdering::AcquireRelease => __ATOMIC_ACQ_REL, |
| AtomicOrdering::SequentiallyConsistent => __ATOMIC_SEQ_CST, |
| }; |
| ordering as i32 |
| } |
| } |
| |
| // Needed because gcc 12 `get_size()` doesn't work on pointers. |
| #[cfg(feature = "master")] |
| fn get_maybe_pointer_size(value: RValue<'_>) -> u32 { |
| value.get_type().get_size() |
| } |
| |
| #[cfg(not(feature = "master"))] |
| fn get_maybe_pointer_size(value: RValue<'_>) -> u32 { |
| let type_ = value.get_type(); |
| if type_.get_pointee().is_some() { |
| std::mem::size_of::<*const ()>() as _ |
| } else { |
| type_.get_size() |
| } |
| } |