blob: d18a8e87453a54e6788fc9eec352390b0588fa6e [file] [log] [blame]
use crate::borrow_check::nll::type_check::constraint_conversion;
use crate::borrow_check::nll::type_check::{Locations, MirTypeckRegionConstraints};
use crate::borrow_check::nll::universal_regions::UniversalRegions;
use crate::borrow_check::nll::ToRegionVid;
use rustc::infer::canonical::QueryRegionConstraints;
use rustc::infer::outlives::free_region_map::FreeRegionRelations;
use rustc::infer::region_constraints::GenericKind;
use rustc::infer::InferCtxt;
use rustc::mir::ConstraintCategory;
use rustc::traits::query::outlives_bounds::{self, OutlivesBound};
use rustc::traits::query::type_op::{self, TypeOp};
use rustc::ty::{self, RegionVid, Ty};
use rustc_data_structures::transitive_relation::TransitiveRelation;
use std::rc::Rc;
use syntax_pos::DUMMY_SP;
#[derive(Debug)]
crate struct UniversalRegionRelations<'tcx> {
universal_regions: Rc<UniversalRegions<'tcx>>,
/// Stores the outlives relations that are known to hold from the
/// implied bounds, in-scope where-clauses, and that sort of
/// thing.
outlives: TransitiveRelation<RegionVid>,
/// This is the `<=` relation; that is, if `a: b`, then `b <= a`,
/// and we store that here. This is useful when figuring out how
/// to express some local region in terms of external regions our
/// caller will understand.
inverse_outlives: TransitiveRelation<RegionVid>,
}
/// Each RBP `('a, GK)` indicates that `GK: 'a` can be assumed to
/// be true. These encode relationships like `T: 'a` that are
/// added via implicit bounds.
///
/// Each region here is guaranteed to be a key in the `indices`
/// map. We use the "original" regions (i.e., the keys from the
/// map, and not the values) because the code in
/// `process_registered_region_obligations` has some special-cased
/// logic expecting to see (e.g.) `ReStatic`, and if we supplied
/// our special inference variable there, we would mess that up.
type RegionBoundPairs<'tcx> = Vec<(ty::Region<'tcx>, GenericKind<'tcx>)>;
/// As part of computing the free region relations, we also have to
/// normalize the input-output types, which we then need later. So we
/// return those. This vector consists of first the input types and
/// then the output type as the last element.
type NormalizedInputsAndOutput<'tcx> = Vec<Ty<'tcx>>;
crate struct CreateResult<'tcx> {
crate universal_region_relations: Rc<UniversalRegionRelations<'tcx>>,
crate region_bound_pairs: RegionBoundPairs<'tcx>,
crate normalized_inputs_and_output: NormalizedInputsAndOutput<'tcx>,
}
crate fn create(
infcx: &InferCtxt<'_, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
implicit_region_bound: Option<ty::Region<'tcx>>,
universal_regions: &Rc<UniversalRegions<'tcx>>,
constraints: &mut MirTypeckRegionConstraints<'tcx>,
) -> CreateResult<'tcx> {
UniversalRegionRelationsBuilder {
infcx,
param_env,
implicit_region_bound,
constraints,
universal_regions: universal_regions.clone(),
region_bound_pairs: Vec::new(),
relations: UniversalRegionRelations {
universal_regions: universal_regions.clone(),
outlives: Default::default(),
inverse_outlives: Default::default(),
},
}.create()
}
impl UniversalRegionRelations<'tcx> {
/// Records in the `outlives_relation` (and
/// `inverse_outlives_relation`) that `fr_a: fr_b`. Invoked by the
/// builder below.
fn relate_universal_regions(&mut self, fr_a: RegionVid, fr_b: RegionVid) {
debug!(
"relate_universal_regions: fr_a={:?} outlives fr_b={:?}",
fr_a, fr_b
);
self.outlives.add(fr_a, fr_b);
self.inverse_outlives.add(fr_b, fr_a);
}
/// Given two universal regions, returns the postdominating
/// upper-bound (effectively the least upper bound).
///
/// (See `TransitiveRelation::postdom_upper_bound` for details on
/// the postdominating upper bound in general.)
crate fn postdom_upper_bound(&self, fr1: RegionVid, fr2: RegionVid) -> RegionVid {
assert!(self.universal_regions.is_universal_region(fr1));
assert!(self.universal_regions.is_universal_region(fr2));
*self
.inverse_outlives
.postdom_upper_bound(&fr1, &fr2)
.unwrap_or(&self.universal_regions.fr_static)
}
/// Finds an "upper bound" for `fr` that is not local. In other
/// words, returns the smallest (*) known region `fr1` that (a)
/// outlives `fr` and (b) is not local.
///
/// (*) If there are multiple competing choices, we return all of them.
crate fn non_local_upper_bounds(&'a self, fr: &'a RegionVid) -> Vec<&'a RegionVid> {
debug!("non_local_upper_bound(fr={:?})", fr);
let res = self.non_local_bounds(&self.inverse_outlives, fr);
assert!(!res.is_empty(), "can't find an upper bound!?");
res
}
/// Returns the "postdominating" bound of the set of
/// `non_local_upper_bounds` for the given region.
crate fn non_local_upper_bound(&self, fr: RegionVid) -> RegionVid {
let upper_bounds = self.non_local_upper_bounds(&fr);
// In case we find more than one, reduce to one for
// convenience. This is to prevent us from generating more
// complex constraints, but it will cause spurious errors.
let post_dom = self
.inverse_outlives
.mutual_immediate_postdominator(upper_bounds);
debug!("non_local_bound: post_dom={:?}", post_dom);
post_dom
.and_then(|&post_dom| {
// If the mutual immediate postdom is not local, then
// there is no non-local result we can return.
if !self.universal_regions.is_local_free_region(post_dom) {
Some(post_dom)
} else {
None
}
})
.unwrap_or(self.universal_regions.fr_static)
}
/// Finds a "lower bound" for `fr` that is not local. In other
/// words, returns the largest (*) known region `fr1` that (a) is
/// outlived by `fr` and (b) is not local.
///
/// (*) If there are multiple competing choices, we pick the "postdominating"
/// one. See `TransitiveRelation::postdom_upper_bound` for details.
crate fn non_local_lower_bound(&self, fr: RegionVid) -> Option<RegionVid> {
debug!("non_local_lower_bound(fr={:?})", fr);
let lower_bounds = self.non_local_bounds(&self.outlives, &fr);
// In case we find more than one, reduce to one for
// convenience. This is to prevent us from generating more
// complex constraints, but it will cause spurious errors.
let post_dom = self
.outlives
.mutual_immediate_postdominator(lower_bounds);
debug!("non_local_bound: post_dom={:?}", post_dom);
post_dom
.and_then(|&post_dom| {
// If the mutual immediate postdom is not local, then
// there is no non-local result we can return.
if !self.universal_regions.is_local_free_region(post_dom) {
Some(post_dom)
} else {
None
}
})
}
/// Helper for `non_local_upper_bounds` and `non_local_lower_bounds`.
/// Repeatedly invokes `postdom_parent` until we find something that is not
/// local. Returns `None` if we never do so.
fn non_local_bounds<'a>(
&self,
relation: &'a TransitiveRelation<RegionVid>,
fr0: &'a RegionVid,
) -> Vec<&'a RegionVid> {
// This method assumes that `fr0` is one of the universally
// quantified region variables.
assert!(self.universal_regions.is_universal_region(*fr0));
let mut external_parents = vec![];
let mut queue = vec![fr0];
// Keep expanding `fr` into its parents until we reach
// non-local regions.
while let Some(fr) = queue.pop() {
if !self.universal_regions.is_local_free_region(*fr) {
external_parents.push(fr);
continue;
}
queue.extend(relation.parents(fr));
}
debug!("non_local_bound: external_parents={:?}", external_parents);
external_parents
}
/// Returns `true` if fr1 is known to outlive fr2.
///
/// This will only ever be true for universally quantified regions.
crate fn outlives(&self, fr1: RegionVid, fr2: RegionVid) -> bool {
self.outlives.contains(&fr1, &fr2)
}
/// Returns a vector of free regions `x` such that `fr1: x` is
/// known to hold.
crate fn regions_outlived_by(&self, fr1: RegionVid) -> Vec<&RegionVid> {
self.outlives.reachable_from(&fr1)
}
}
struct UniversalRegionRelationsBuilder<'this, 'tcx> {
infcx: &'this InferCtxt<'this, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
universal_regions: Rc<UniversalRegions<'tcx>>,
implicit_region_bound: Option<ty::Region<'tcx>>,
constraints: &'this mut MirTypeckRegionConstraints<'tcx>,
// outputs:
relations: UniversalRegionRelations<'tcx>,
region_bound_pairs: RegionBoundPairs<'tcx>,
}
impl UniversalRegionRelationsBuilder<'cx, 'tcx> {
crate fn create(mut self) -> CreateResult<'tcx> {
let unnormalized_input_output_tys = self
.universal_regions
.unnormalized_input_tys
.iter()
.cloned()
.chain(Some(self.universal_regions.unnormalized_output_ty));
// For each of the input/output types:
// - Normalize the type. This will create some region
// constraints, which we buffer up because we are
// not ready to process them yet.
// - Then compute the implied bounds. This will adjust
// the `region_bound_pairs` and so forth.
// - After this is done, we'll process the constraints, once
// the `relations` is built.
let mut normalized_inputs_and_output =
Vec::with_capacity(self.universal_regions.unnormalized_input_tys.len() + 1);
let constraint_sets: Vec<_> = unnormalized_input_output_tys
.flat_map(|ty| {
debug!("build: input_or_output={:?}", ty);
let (ty, constraints1) = self
.param_env
.and(type_op::normalize::Normalize::new(ty))
.fully_perform(self.infcx)
.unwrap_or_else(|_| bug!("failed to normalize {:?}", ty));
let constraints2 = self.add_implied_bounds(ty);
normalized_inputs_and_output.push(ty);
constraints1
.into_iter()
.chain(constraints2)
})
.collect();
// Insert the facts we know from the predicates. Why? Why not.
let param_env = self.param_env;
self.add_outlives_bounds(outlives_bounds::explicit_outlives_bounds(param_env));
// Finally:
// - outlives is reflexive, so `'r: 'r` for every region `'r`
// - `'static: 'r` for every region `'r`
// - `'r: 'fn_body` for every (other) universally quantified
// region `'r`, all of which are provided by our caller
let fr_static = self.universal_regions.fr_static;
let fr_fn_body = self.universal_regions.fr_fn_body;
for fr in self.universal_regions.universal_regions() {
debug!(
"build: relating free region {:?} to itself and to 'static",
fr
);
self.relations.relate_universal_regions(fr, fr);
self.relations.relate_universal_regions(fr_static, fr);
self.relations.relate_universal_regions(fr, fr_fn_body);
}
for data in &constraint_sets {
constraint_conversion::ConstraintConversion::new(
self.infcx,
&self.universal_regions,
&self.region_bound_pairs,
self.implicit_region_bound,
self.param_env,
Locations::All(DUMMY_SP),
ConstraintCategory::Internal,
&mut self.constraints,
).convert_all(data);
}
CreateResult {
universal_region_relations: Rc::new(self.relations),
region_bound_pairs: self.region_bound_pairs,
normalized_inputs_and_output,
}
}
/// Update the type of a single local, which should represent
/// either the return type of the MIR or one of its arguments. At
/// the same time, compute and add any implied bounds that come
/// from this local.
fn add_implied_bounds(&mut self, ty: Ty<'tcx>) -> Option<Rc<QueryRegionConstraints<'tcx>>> {
debug!("add_implied_bounds(ty={:?})", ty);
let (bounds, constraints) =
self.param_env
.and(type_op::implied_outlives_bounds::ImpliedOutlivesBounds { ty })
.fully_perform(self.infcx)
.unwrap_or_else(|_| bug!("failed to compute implied bounds {:?}", ty));
self.add_outlives_bounds(bounds);
constraints
}
/// Registers the `OutlivesBound` items from `outlives_bounds` in
/// the outlives relation as well as the region-bound pairs
/// listing.
fn add_outlives_bounds<I>(&mut self, outlives_bounds: I)
where
I: IntoIterator<Item = OutlivesBound<'tcx>>,
{
for outlives_bound in outlives_bounds {
debug!("add_outlives_bounds(bound={:?})", outlives_bound);
match outlives_bound {
OutlivesBound::RegionSubRegion(r1, r2) => {
// `where Type:` is lowered to `where Type: 'empty` so that
// we check `Type` is well formed, but there's no use for
// this bound here.
if let ty::ReEmpty = r1 {
return;
}
// The bound says that `r1 <= r2`; we store `r2: r1`.
let r1 = self.universal_regions.to_region_vid(r1);
let r2 = self.universal_regions.to_region_vid(r2);
self.relations.relate_universal_regions(r2, r1);
}
OutlivesBound::RegionSubParam(r_a, param_b) => {
self.region_bound_pairs
.push((r_a, GenericKind::Param(param_b)));
}
OutlivesBound::RegionSubProjection(r_a, projection_b) => {
self.region_bound_pairs
.push((r_a, GenericKind::Projection(projection_b)));
}
}
}
}
}
/// This trait is used by the `impl-trait` constraint code to abstract
/// over the `FreeRegionMap` from lexical regions and
/// `UniversalRegions` (from NLL)`.
impl<'tcx> FreeRegionRelations<'tcx> for UniversalRegionRelations<'tcx> {
fn sub_free_regions(&self, shorter: ty::Region<'tcx>, longer: ty::Region<'tcx>) -> bool {
let shorter = shorter.to_region_vid();
assert!(self.universal_regions.is_universal_region(shorter));
let longer = longer.to_region_vid();
assert!(self.universal_regions.is_universal_region(longer));
self.outlives(longer, shorter)
}
}