blob: 397cdecbb6f77563b59acc48c27e4410dc4f57e6 [file] [log] [blame]
//! Management of the encoding of LLVM bytecode into rlibs
//!
//! This module contains the management of encoding LLVM bytecode into rlibs,
//! primarily for the usage in LTO situations. Currently the compiler will
//! unconditionally encode LLVM-IR into rlibs regardless of what's happening
//! elsewhere, so we currently compress the bytecode via deflate to avoid taking
//! up too much space on disk.
//!
//! After compressing the bytecode we then have the rest of the format to
//! basically deal with various bugs in various archive implementations. The
//! format currently is:
//!
//! RLIB LLVM-BYTECODE OBJECT LAYOUT
//! Version 2
//! Bytes Data
//! 0..10 "RUST_OBJECT" encoded in ASCII
//! 11..14 format version as little-endian u32
//! 15..19 the length of the module identifier string
//! 20..n the module identifier string
//! n..n+8 size in bytes of deflate compressed LLVM bitcode as
//! little-endian u64
//! n+9.. compressed LLVM bitcode
//! ? maybe a byte to make this whole thing even length
use std::io::{Read, Write};
use std::ptr;
use std::str;
use flate2::Compression;
use flate2::read::DeflateDecoder;
use flate2::write::DeflateEncoder;
// This is the "magic number" expected at the beginning of a LLVM bytecode
// object in an rlib.
pub const RLIB_BYTECODE_OBJECT_MAGIC: &[u8] = b"RUST_OBJECT";
// The version number this compiler will write to bytecode objects in rlibs
pub const RLIB_BYTECODE_OBJECT_VERSION: u8 = 2;
pub fn encode(identifier: &str, bytecode: &[u8]) -> Vec<u8> {
let mut encoded = Vec::new();
// Start off with the magic string
encoded.extend_from_slice(RLIB_BYTECODE_OBJECT_MAGIC);
// Next up is the version
encoded.extend_from_slice(&[RLIB_BYTECODE_OBJECT_VERSION, 0, 0, 0]);
// Next is the LLVM module identifier length + contents
let identifier_len = identifier.len();
encoded.extend_from_slice(&[
(identifier_len >> 0) as u8,
(identifier_len >> 8) as u8,
(identifier_len >> 16) as u8,
(identifier_len >> 24) as u8,
]);
encoded.extend_from_slice(identifier.as_bytes());
// Next is the LLVM module deflate compressed, prefixed with its length. We
// don't know its length yet, so fill in 0s
let deflated_size_pos = encoded.len();
encoded.extend_from_slice(&[0, 0, 0, 0, 0, 0, 0, 0]);
let before = encoded.len();
DeflateEncoder::new(&mut encoded, Compression::fast())
.write_all(bytecode)
.unwrap();
let after = encoded.len();
// Fill in the length we reserved space for before
let bytecode_len = (after - before) as u64;
encoded[deflated_size_pos + 0] = (bytecode_len >> 0) as u8;
encoded[deflated_size_pos + 1] = (bytecode_len >> 8) as u8;
encoded[deflated_size_pos + 2] = (bytecode_len >> 16) as u8;
encoded[deflated_size_pos + 3] = (bytecode_len >> 24) as u8;
encoded[deflated_size_pos + 4] = (bytecode_len >> 32) as u8;
encoded[deflated_size_pos + 5] = (bytecode_len >> 40) as u8;
encoded[deflated_size_pos + 6] = (bytecode_len >> 48) as u8;
encoded[deflated_size_pos + 7] = (bytecode_len >> 56) as u8;
// If the number of bytes written to the object so far is odd, add a
// padding byte to make it even. This works around a crash bug in LLDB
// (see issue #15950)
if encoded.len() % 2 == 1 {
encoded.push(0);
}
return encoded
}
pub struct DecodedBytecode<'a> {
identifier: &'a str,
encoded_bytecode: &'a [u8],
}
impl<'a> DecodedBytecode<'a> {
pub fn new(data: &'a [u8]) -> Result<DecodedBytecode<'a>, &'static str> {
if !data.starts_with(RLIB_BYTECODE_OBJECT_MAGIC) {
return Err("magic bytecode prefix not found")
}
let data = &data[RLIB_BYTECODE_OBJECT_MAGIC.len()..];
if !data.starts_with(&[RLIB_BYTECODE_OBJECT_VERSION, 0, 0, 0]) {
return Err("wrong version prefix found in bytecode")
}
let data = &data[4..];
if data.len() < 4 {
return Err("bytecode corrupted")
}
let identifier_len = unsafe {
u32::from_le(ptr::read_unaligned(data.as_ptr() as *const u32)) as usize
};
let data = &data[4..];
if data.len() < identifier_len {
return Err("bytecode corrupted")
}
let identifier = match str::from_utf8(&data[..identifier_len]) {
Ok(s) => s,
Err(_) => return Err("bytecode corrupted")
};
let data = &data[identifier_len..];
if data.len() < 8 {
return Err("bytecode corrupted")
}
let bytecode_len = unsafe {
u64::from_le(ptr::read_unaligned(data.as_ptr() as *const u64)) as usize
};
let data = &data[8..];
if data.len() < bytecode_len {
return Err("bytecode corrupted")
}
let encoded_bytecode = &data[..bytecode_len];
Ok(DecodedBytecode {
identifier,
encoded_bytecode,
})
}
pub fn bytecode(&self) -> Vec<u8> {
let mut data = Vec::new();
DeflateDecoder::new(self.encoded_bytecode).read_to_end(&mut data).unwrap();
return data
}
pub fn identifier(&self) -> &'a str {
self.identifier
}
}