blob: 46e76512d35fc16d4a3cd8baca22276163da4cf6 [file] [log] [blame]
use super::{error_to_const_error, CompileTimeEvalContext, CompileTimeInterpreter, MemoryExtra};
use crate::interpret::eval_nullary_intrinsic;
use crate::interpret::{
intern_const_alloc_recursive, Allocation, ConstValue, GlobalId, ImmTy, Immediate, InterpCx,
InterpResult, MPlaceTy, MemoryKind, OpTy, RawConst, RefTracking, Scalar, ScalarMaybeUndef,
StackPopCleanup,
};
use rustc::hir::def::DefKind;
use rustc::mir;
use rustc::mir::interpret::{ConstEvalErr, ErrorHandled};
use rustc::traits::Reveal;
use rustc::ty::{self, layout, layout::LayoutOf, subst::Subst, TyCtxt};
use rustc_span::source_map::Span;
use std::convert::TryInto;
pub fn note_on_undefined_behavior_error() -> &'static str {
"The rules on what exactly is undefined behavior aren't clear, \
so this check might be overzealous. Please open an issue on the rustc \
repository if you believe it should not be considered undefined behavior."
}
// Returns a pointer to where the result lives
fn eval_body_using_ecx<'mir, 'tcx>(
ecx: &mut CompileTimeEvalContext<'mir, 'tcx>,
cid: GlobalId<'tcx>,
body: &'mir mir::Body<'tcx>,
) -> InterpResult<'tcx, MPlaceTy<'tcx>> {
debug!("eval_body_using_ecx: {:?}, {:?}", cid, ecx.param_env);
let tcx = ecx.tcx.tcx;
let layout = ecx.layout_of(body.return_ty().subst(tcx, cid.instance.substs))?;
assert!(!layout.is_unsized());
let ret = ecx.allocate(layout, MemoryKind::Stack);
let name = ty::tls::with(|tcx| tcx.def_path_str(cid.instance.def_id()));
let prom = cid.promoted.map_or(String::new(), |p| format!("::promoted[{:?}]", p));
trace!("eval_body_using_ecx: pushing stack frame for global: {}{}", name, prom);
// Assert all args (if any) are zero-sized types; `eval_body_using_ecx` doesn't
// make sense if the body is expecting nontrivial arguments.
// (The alternative would be to use `eval_fn_call` with an args slice.)
for arg in body.args_iter() {
let decl = body.local_decls.get(arg).expect("arg missing from local_decls");
let layout = ecx.layout_of(decl.ty.subst(tcx, cid.instance.substs))?;
assert!(layout.is_zst())
}
ecx.push_stack_frame(
cid.instance,
body.span,
body,
Some(ret.into()),
StackPopCleanup::None { cleanup: false },
)?;
// The main interpreter loop.
ecx.run()?;
// Intern the result
intern_const_alloc_recursive(ecx, tcx.static_mutability(cid.instance.def_id()), ret)?;
debug!("eval_body_using_ecx done: {:?}", *ret);
Ok(ret)
}
/// The `InterpCx` is only meant to be used to do field and index projections into constants for
/// `simd_shuffle` and const patterns in match arms.
///
/// The function containing the `match` that is currently being analyzed may have generic bounds
/// that inform us about the generic bounds of the constant. E.g., using an associated constant
/// of a function's generic parameter will require knowledge about the bounds on the generic
/// parameter. These bounds are passed to `mk_eval_cx` via the `ParamEnv` argument.
pub(super) fn mk_eval_cx<'mir, 'tcx>(
tcx: TyCtxt<'tcx>,
span: Span,
param_env: ty::ParamEnv<'tcx>,
can_access_statics: bool,
) -> CompileTimeEvalContext<'mir, 'tcx> {
debug!("mk_eval_cx: {:?}", param_env);
InterpCx::new(
tcx.at(span),
param_env,
CompileTimeInterpreter::new(),
MemoryExtra { can_access_statics },
)
}
pub(super) fn op_to_const<'tcx>(
ecx: &CompileTimeEvalContext<'_, 'tcx>,
op: OpTy<'tcx>,
) -> &'tcx ty::Const<'tcx> {
// We do not have value optimizations for everything.
// Only scalars and slices, since they are very common.
// Note that further down we turn scalars of undefined bits back to `ByRef`. These can result
// from scalar unions that are initialized with one of their zero sized variants. We could
// instead allow `ConstValue::Scalar` to store `ScalarMaybeUndef`, but that would affect all
// the usual cases of extracting e.g. a `usize`, without there being a real use case for the
// `Undef` situation.
let try_as_immediate = match op.layout.abi {
layout::Abi::Scalar(..) => true,
layout::Abi::ScalarPair(..) => match op.layout.ty.kind {
ty::Ref(_, inner, _) => match inner.kind {
ty::Slice(elem) => elem == ecx.tcx.types.u8,
ty::Str => true,
_ => false,
},
_ => false,
},
_ => false,
};
let immediate = if try_as_immediate {
Err(ecx.read_immediate(op).expect("normalization works on validated constants"))
} else {
// It is guaranteed that any non-slice scalar pair is actually ByRef here.
// When we come back from raw const eval, we are always by-ref. The only way our op here is
// by-val is if we are in const_field, i.e., if this is (a field of) something that we
// "tried to make immediate" before. We wouldn't do that for non-slice scalar pairs or
// structs containing such.
op.try_as_mplace()
};
let val = match immediate {
Ok(mplace) => {
let ptr = mplace.ptr.assert_ptr();
let alloc = ecx.tcx.alloc_map.lock().unwrap_memory(ptr.alloc_id);
ConstValue::ByRef { alloc, offset: ptr.offset }
}
// see comment on `let try_as_immediate` above
Err(ImmTy { imm: Immediate::Scalar(x), .. }) => match x {
ScalarMaybeUndef::Scalar(s) => ConstValue::Scalar(s),
ScalarMaybeUndef::Undef => {
// When coming out of "normal CTFE", we'll always have an `Indirect` operand as
// argument and we will not need this. The only way we can already have an
// `Immediate` is when we are called from `const_field`, and that `Immediate`
// comes from a constant so it can happen have `Undef`, because the indirect
// memory that was read had undefined bytes.
let mplace = op.assert_mem_place();
let ptr = mplace.ptr.assert_ptr();
let alloc = ecx.tcx.alloc_map.lock().unwrap_memory(ptr.alloc_id);
ConstValue::ByRef { alloc, offset: ptr.offset }
}
},
Err(ImmTy { imm: Immediate::ScalarPair(a, b), .. }) => {
let (data, start) = match a.not_undef().unwrap() {
Scalar::Ptr(ptr) => {
(ecx.tcx.alloc_map.lock().unwrap_memory(ptr.alloc_id), ptr.offset.bytes())
}
Scalar::Raw { .. } => (
ecx.tcx.intern_const_alloc(Allocation::from_byte_aligned_bytes(b"" as &[u8])),
0,
),
};
let len = b.to_machine_usize(&ecx.tcx.tcx).unwrap();
let start = start.try_into().unwrap();
let len: usize = len.try_into().unwrap();
ConstValue::Slice { data, start, end: start + len }
}
};
ecx.tcx.mk_const(ty::Const { val: ty::ConstKind::Value(val), ty: op.layout.ty })
}
fn validate_and_turn_into_const<'tcx>(
tcx: TyCtxt<'tcx>,
constant: RawConst<'tcx>,
key: ty::ParamEnvAnd<'tcx, GlobalId<'tcx>>,
) -> ::rustc::mir::interpret::ConstEvalResult<'tcx> {
let cid = key.value;
let def_id = cid.instance.def.def_id();
let is_static = tcx.is_static(def_id);
let ecx = mk_eval_cx(tcx, tcx.def_span(key.value.instance.def_id()), key.param_env, is_static);
let val = (|| {
let mplace = ecx.raw_const_to_mplace(constant)?;
let mut ref_tracking = RefTracking::new(mplace);
while let Some((mplace, path)) = ref_tracking.todo.pop() {
ecx.validate_operand(mplace.into(), path, Some(&mut ref_tracking))?;
}
// Now that we validated, turn this into a proper constant.
// Statics/promoteds are always `ByRef`, for the rest `op_to_const` decides
// whether they become immediates.
if is_static || cid.promoted.is_some() {
let ptr = mplace.ptr.assert_ptr();
Ok(tcx.mk_const(ty::Const {
val: ty::ConstKind::Value(ConstValue::ByRef {
alloc: ecx.tcx.alloc_map.lock().unwrap_memory(ptr.alloc_id),
offset: ptr.offset,
}),
ty: mplace.layout.ty,
}))
} else {
Ok(op_to_const(&ecx, mplace.into()))
}
})();
val.map_err(|error| {
let err = error_to_const_error(&ecx, error);
match err.struct_error(ecx.tcx, "it is undefined behavior to use this value") {
Ok(mut diag) => {
diag.note(note_on_undefined_behavior_error());
diag.emit();
ErrorHandled::Reported
}
Err(err) => err,
}
})
}
pub fn const_eval_validated_provider<'tcx>(
tcx: TyCtxt<'tcx>,
key: ty::ParamEnvAnd<'tcx, GlobalId<'tcx>>,
) -> ::rustc::mir::interpret::ConstEvalResult<'tcx> {
// see comment in const_eval_raw_provider for what we're doing here
if key.param_env.reveal == Reveal::All {
let mut key = key.clone();
key.param_env.reveal = Reveal::UserFacing;
match tcx.const_eval_validated(key) {
// try again with reveal all as requested
Err(ErrorHandled::TooGeneric) => {}
// dedupliate calls
other => return other,
}
}
// We call `const_eval` for zero arg intrinsics, too, in order to cache their value.
// Catch such calls and evaluate them instead of trying to load a constant's MIR.
if let ty::InstanceDef::Intrinsic(def_id) = key.value.instance.def {
let ty = key.value.instance.ty_env(tcx, key.param_env);
let substs = match ty.kind {
ty::FnDef(_, substs) => substs,
_ => bug!("intrinsic with type {:?}", ty),
};
return eval_nullary_intrinsic(tcx, key.param_env, def_id, substs).map_err(|error| {
let span = tcx.def_span(def_id);
let error = ConstEvalErr { error: error.kind, stacktrace: vec![], span };
error.report_as_error(tcx.at(span), "could not evaluate nullary intrinsic")
});
}
tcx.const_eval_raw(key).and_then(|val| validate_and_turn_into_const(tcx, val, key))
}
pub fn const_eval_raw_provider<'tcx>(
tcx: TyCtxt<'tcx>,
key: ty::ParamEnvAnd<'tcx, GlobalId<'tcx>>,
) -> ::rustc::mir::interpret::ConstEvalRawResult<'tcx> {
// Because the constant is computed twice (once per value of `Reveal`), we are at risk of
// reporting the same error twice here. To resolve this, we check whether we can evaluate the
// constant in the more restrictive `Reveal::UserFacing`, which most likely already was
// computed. For a large percentage of constants that will already have succeeded. Only
// associated constants of generic functions will fail due to not enough monomorphization
// information being available.
// In case we fail in the `UserFacing` variant, we just do the real computation.
if key.param_env.reveal == Reveal::All {
let mut key = key.clone();
key.param_env.reveal = Reveal::UserFacing;
match tcx.const_eval_raw(key) {
// try again with reveal all as requested
Err(ErrorHandled::TooGeneric) => {}
// dedupliate calls
other => return other,
}
}
if cfg!(debug_assertions) {
// Make sure we format the instance even if we do not print it.
// This serves as a regression test against an ICE on printing.
// The next two lines concatenated contain some discussion:
// https://rust-lang.zulipchat.com/#narrow/stream/146212-t-compiler.2Fconst-eval/
// subject/anon_const_instance_printing/near/135980032
let instance = key.value.instance.to_string();
trace!("const eval: {:?} ({})", key, instance);
}
let cid = key.value;
let def_id = cid.instance.def.def_id();
if def_id.is_local() && tcx.typeck_tables_of(def_id).tainted_by_errors {
return Err(ErrorHandled::Reported);
}
let is_static = tcx.is_static(def_id);
let span = tcx.def_span(cid.instance.def_id());
let mut ecx = InterpCx::new(
tcx.at(span),
key.param_env,
CompileTimeInterpreter::new(),
MemoryExtra { can_access_statics: is_static },
);
let res = ecx.load_mir(cid.instance.def, cid.promoted);
res.and_then(|body| eval_body_using_ecx(&mut ecx, cid, *body))
.and_then(|place| {
Ok(RawConst { alloc_id: place.ptr.assert_ptr().alloc_id, ty: place.layout.ty })
})
.map_err(|error| {
let err = error_to_const_error(&ecx, error);
// errors in statics are always emitted as fatal errors
if is_static {
// Ensure that if the above error was either `TooGeneric` or `Reported`
// an error must be reported.
let v = err.report_as_error(ecx.tcx, "could not evaluate static initializer");
// If this is `Reveal:All`, then we need to make sure an error is reported but if
// this is `Reveal::UserFacing`, then it's expected that we could get a
// `TooGeneric` error. When we fall back to `Reveal::All`, then it will either
// succeed or we'll report this error then.
if key.param_env.reveal == Reveal::All {
tcx.sess.delay_span_bug(
err.span,
&format!("static eval failure did not emit an error: {:#?}", v),
);
}
v
} else if def_id.is_local() {
// constant defined in this crate, we can figure out a lint level!
match tcx.def_kind(def_id) {
// constants never produce a hard error at the definition site. Anything else is
// a backwards compatibility hazard (and will break old versions of winapi for
// sure)
//
// note that validation may still cause a hard error on this very same constant,
// because any code that existed before validation could not have failed
// validation thus preventing such a hard error from being a backwards
// compatibility hazard
Some(DefKind::Const) | Some(DefKind::AssocConst) => {
let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
err.report_as_lint(
tcx.at(tcx.def_span(def_id)),
"any use of this value will cause an error",
hir_id,
Some(err.span),
)
}
// promoting runtime code is only allowed to error if it references broken
// constants any other kind of error will be reported to the user as a
// deny-by-default lint
_ => {
if let Some(p) = cid.promoted {
let span = tcx.promoted_mir(def_id)[p].span;
if let err_inval!(ReferencedConstant) = err.error {
err.report_as_error(
tcx.at(span),
"evaluation of constant expression failed",
)
} else {
err.report_as_lint(
tcx.at(span),
"reaching this expression at runtime will panic or abort",
tcx.hir().as_local_hir_id(def_id).unwrap(),
Some(err.span),
)
}
// anything else (array lengths, enum initializers, constant patterns) are
// reported as hard errors
} else {
err.report_as_error(ecx.tcx, "evaluation of constant value failed")
}
}
}
} else {
// use of broken constant from other crate
err.report_as_error(ecx.tcx, "could not evaluate constant")
}
})
}