blob: 31e8c32f062ab4adefcc451d395f154db7e3ef83 [file] [log] [blame]
//! Support for inlining external documentation into the current AST.
use std::iter::once;
use rustc_ast as ast;
use rustc_data_structures::fx::FxHashSet;
use rustc_hir as hir;
use rustc_hir::def::{CtorKind, DefKind, Res};
use rustc_hir::def_id::{DefId, CRATE_DEF_INDEX};
use rustc_hir::Mutability;
use rustc_metadata::creader::LoadedMacro;
use rustc_middle::ty;
use rustc_mir::const_eval::is_min_const_fn;
use rustc_span::hygiene::MacroKind;
use rustc_span::symbol::{sym, Symbol};
use rustc_span::Span;
use crate::clean::{self, GetDefId, ToSource, TypeKind};
use crate::core::DocContext;
use crate::doctree;
use super::Clean;
type Attrs<'hir> = rustc_middle::ty::Attributes<'hir>;
/// Attempt to inline a definition into this AST.
///
/// This function will fetch the definition specified, and if it is
/// from another crate it will attempt to inline the documentation
/// from the other crate into this crate.
///
/// This is primarily used for `pub use` statements which are, in general,
/// implementation details. Inlining the documentation should help provide a
/// better experience when reading the documentation in this use case.
///
/// The returned value is `None` if the definition could not be inlined,
/// and `Some` of a vector of items if it was successfully expanded.
pub fn try_inline(
cx: &DocContext<'_>,
res: Res,
name: Symbol,
attrs: Option<Attrs<'_>>,
visited: &mut FxHashSet<DefId>,
) -> Option<Vec<clean::Item>> {
let did = res.opt_def_id()?;
if did.is_local() {
return None;
}
let mut ret = Vec::new();
let attrs_clone = attrs;
let inner = match res {
Res::Def(DefKind::Trait, did) => {
record_extern_fqn(cx, did, clean::TypeKind::Trait);
ret.extend(build_impls(cx, did, attrs));
clean::TraitItem(build_external_trait(cx, did))
}
Res::Def(DefKind::Fn, did) => {
record_extern_fqn(cx, did, clean::TypeKind::Function);
clean::FunctionItem(build_external_function(cx, did))
}
Res::Def(DefKind::Struct, did) => {
record_extern_fqn(cx, did, clean::TypeKind::Struct);
ret.extend(build_impls(cx, did, attrs));
clean::StructItem(build_struct(cx, did))
}
Res::Def(DefKind::Union, did) => {
record_extern_fqn(cx, did, clean::TypeKind::Union);
ret.extend(build_impls(cx, did, attrs));
clean::UnionItem(build_union(cx, did))
}
Res::Def(DefKind::TyAlias, did) => {
record_extern_fqn(cx, did, clean::TypeKind::Typedef);
ret.extend(build_impls(cx, did, attrs));
clean::TypedefItem(build_type_alias(cx, did), false)
}
Res::Def(DefKind::Enum, did) => {
record_extern_fqn(cx, did, clean::TypeKind::Enum);
ret.extend(build_impls(cx, did, attrs));
clean::EnumItem(build_enum(cx, did))
}
Res::Def(DefKind::ForeignTy, did) => {
record_extern_fqn(cx, did, clean::TypeKind::Foreign);
ret.extend(build_impls(cx, did, attrs));
clean::ForeignTypeItem
}
// Never inline enum variants but leave them shown as re-exports.
Res::Def(DefKind::Variant, _) => return None,
// Assume that enum variants and struct types are re-exported next to
// their constructors.
Res::Def(DefKind::Ctor(..), _) | Res::SelfCtor(..) => return Some(Vec::new()),
Res::Def(DefKind::Mod, did) => {
record_extern_fqn(cx, did, clean::TypeKind::Module);
clean::ModuleItem(build_module(cx, did, visited))
}
Res::Def(DefKind::Static, did) => {
record_extern_fqn(cx, did, clean::TypeKind::Static);
clean::StaticItem(build_static(cx, did, cx.tcx.is_mutable_static(did)))
}
Res::Def(DefKind::Const, did) => {
record_extern_fqn(cx, did, clean::TypeKind::Const);
clean::ConstantItem(build_const(cx, did))
}
Res::Def(DefKind::Macro(kind), did) => {
let mac = build_macro(cx, did, name);
let type_kind = match kind {
MacroKind::Bang => TypeKind::Macro,
MacroKind::Attr => TypeKind::Attr,
MacroKind::Derive => TypeKind::Derive,
};
record_extern_fqn(cx, did, type_kind);
mac
}
_ => return None,
};
let target_attrs = load_attrs(cx, did);
let attrs = merge_attrs(cx, target_attrs, attrs_clone);
cx.renderinfo.borrow_mut().inlined.insert(did);
ret.push(clean::Item {
source: cx.tcx.def_span(did).clean(cx),
name: Some(name.clean(cx)),
attrs,
inner,
visibility: clean::Public,
stability: cx.tcx.lookup_stability(did).clean(cx),
deprecation: cx.tcx.lookup_deprecation(did).clean(cx),
def_id: did,
});
Some(ret)
}
pub fn try_inline_glob(
cx: &DocContext<'_>,
res: Res,
visited: &mut FxHashSet<DefId>,
) -> Option<Vec<clean::Item>> {
if res == Res::Err {
return None;
}
let did = res.def_id();
if did.is_local() {
return None;
}
match res {
Res::Def(DefKind::Mod, did) => {
let m = build_module(cx, did, visited);
Some(m.items)
}
// glob imports on things like enums aren't inlined even for local exports, so just bail
_ => None,
}
}
pub fn load_attrs<'hir>(cx: &DocContext<'hir>, did: DefId) -> Attrs<'hir> {
cx.tcx.get_attrs(did)
}
/// Record an external fully qualified name in the external_paths cache.
///
/// These names are used later on by HTML rendering to generate things like
/// source links back to the original item.
pub fn record_extern_fqn(cx: &DocContext<'_>, did: DefId, kind: clean::TypeKind) {
let crate_name = cx.tcx.crate_name(did.krate).to_string();
let relative = cx.tcx.def_path(did).data.into_iter().filter_map(|elem| {
// extern blocks have an empty name
let s = elem.data.to_string();
if !s.is_empty() { Some(s) } else { None }
});
let fqn = if let clean::TypeKind::Macro = kind {
vec![crate_name, relative.last().expect("relative was empty")]
} else {
once(crate_name).chain(relative).collect()
};
if did.is_local() {
cx.renderinfo.borrow_mut().exact_paths.insert(did, fqn);
} else {
cx.renderinfo.borrow_mut().external_paths.insert(did, (fqn, kind));
}
}
pub fn build_external_trait(cx: &DocContext<'_>, did: DefId) -> clean::Trait {
let trait_items =
cx.tcx.associated_items(did).in_definition_order().map(|item| item.clean(cx)).collect();
let auto_trait = cx.tcx.trait_def(did).has_auto_impl;
let predicates = cx.tcx.predicates_of(did);
let generics = (cx.tcx.generics_of(did), predicates).clean(cx);
let generics = filter_non_trait_generics(did, generics);
let (generics, supertrait_bounds) = separate_supertrait_bounds(generics);
let is_spotlight = load_attrs(cx, did).clean(cx).has_doc_flag(sym::spotlight);
let is_auto = cx.tcx.trait_is_auto(did);
clean::Trait {
auto: auto_trait,
unsafety: cx.tcx.trait_def(did).unsafety,
generics,
items: trait_items,
bounds: supertrait_bounds,
is_spotlight,
is_auto,
}
}
fn build_external_function(cx: &DocContext<'_>, did: DefId) -> clean::Function {
let sig = cx.tcx.fn_sig(did);
let constness =
if is_min_const_fn(cx.tcx, did) { hir::Constness::Const } else { hir::Constness::NotConst };
let asyncness = cx.tcx.asyncness(did);
let predicates = cx.tcx.predicates_of(did);
let (generics, decl) = clean::enter_impl_trait(cx, || {
((cx.tcx.generics_of(did), predicates).clean(cx), (did, sig).clean(cx))
});
let (all_types, ret_types) = clean::get_all_types(&generics, &decl, cx);
clean::Function {
decl,
generics,
header: hir::FnHeader { unsafety: sig.unsafety(), abi: sig.abi(), constness, asyncness },
all_types,
ret_types,
}
}
fn build_enum(cx: &DocContext<'_>, did: DefId) -> clean::Enum {
let predicates = cx.tcx.explicit_predicates_of(did);
clean::Enum {
generics: (cx.tcx.generics_of(did), predicates).clean(cx),
variants_stripped: false,
variants: cx.tcx.adt_def(did).variants.clean(cx),
}
}
fn build_struct(cx: &DocContext<'_>, did: DefId) -> clean::Struct {
let predicates = cx.tcx.explicit_predicates_of(did);
let variant = cx.tcx.adt_def(did).non_enum_variant();
clean::Struct {
struct_type: match variant.ctor_kind {
CtorKind::Fictive => doctree::Plain,
CtorKind::Fn => doctree::Tuple,
CtorKind::Const => doctree::Unit,
},
generics: (cx.tcx.generics_of(did), predicates).clean(cx),
fields: variant.fields.clean(cx),
fields_stripped: false,
}
}
fn build_union(cx: &DocContext<'_>, did: DefId) -> clean::Union {
let predicates = cx.tcx.explicit_predicates_of(did);
let variant = cx.tcx.adt_def(did).non_enum_variant();
clean::Union {
struct_type: doctree::Plain,
generics: (cx.tcx.generics_of(did), predicates).clean(cx),
fields: variant.fields.clean(cx),
fields_stripped: false,
}
}
fn build_type_alias(cx: &DocContext<'_>, did: DefId) -> clean::Typedef {
let predicates = cx.tcx.explicit_predicates_of(did);
clean::Typedef {
type_: cx.tcx.type_of(did).clean(cx),
generics: (cx.tcx.generics_of(did), predicates).clean(cx),
item_type: build_type_alias_type(cx, did),
}
}
fn build_type_alias_type(cx: &DocContext<'_>, did: DefId) -> Option<clean::Type> {
let type_ = cx.tcx.type_of(did).clean(cx);
type_.def_id().and_then(|did| build_ty(cx, did))
}
pub fn build_ty(cx: &DocContext<'_>, did: DefId) -> Option<clean::Type> {
match cx.tcx.def_kind(did) {
DefKind::Struct | DefKind::Union | DefKind::Enum | DefKind::Const | DefKind::Static => {
Some(cx.tcx.type_of(did).clean(cx))
}
DefKind::TyAlias => build_type_alias_type(cx, did),
_ => None,
}
}
pub fn build_impls(cx: &DocContext<'_>, did: DefId, attrs: Option<Attrs<'_>>) -> Vec<clean::Item> {
let tcx = cx.tcx;
let mut impls = Vec::new();
for &did in tcx.inherent_impls(did).iter() {
build_impl(cx, did, attrs, &mut impls);
}
impls
}
fn merge_attrs(
cx: &DocContext<'_>,
attrs: Attrs<'_>,
other_attrs: Option<Attrs<'_>>,
) -> clean::Attributes {
// NOTE: If we have additional attributes (from a re-export),
// always insert them first. This ensure that re-export
// doc comments show up before the original doc comments
// when we render them.
let merged_attrs = if let Some(inner) = other_attrs {
let mut both = inner.to_vec();
both.extend_from_slice(attrs);
both
} else {
attrs.to_vec()
};
merged_attrs.clean(cx)
}
pub fn build_impl(
cx: &DocContext<'_>,
did: DefId,
attrs: Option<Attrs<'_>>,
ret: &mut Vec<clean::Item>,
) {
if !cx.renderinfo.borrow_mut().inlined.insert(did) {
return;
}
let attrs = merge_attrs(cx, load_attrs(cx, did), attrs);
let tcx = cx.tcx;
let associated_trait = tcx.impl_trait_ref(did);
// Only inline impl if the implemented trait is
// reachable in rustdoc generated documentation
if !did.is_local() {
if let Some(traitref) = associated_trait {
let did = traitref.def_id;
if !cx.renderinfo.borrow().access_levels.is_public(did) {
return;
}
if let Some(stab) = tcx.lookup_stability(did) {
if stab.level.is_unstable() && stab.feature == sym::rustc_private {
return;
}
}
}
}
let impl_item = match did.as_local() {
Some(did) => {
let hir_id = tcx.hir().local_def_id_to_hir_id(did);
match tcx.hir().expect_item(hir_id).kind {
hir::ItemKind::Impl { self_ty, ref generics, ref items, .. } => {
Some((self_ty, generics, items))
}
_ => panic!("`DefID` passed to `build_impl` is not an `impl"),
}
}
None => None,
};
let for_ = match impl_item {
Some((self_ty, _, _)) => self_ty.clean(cx),
None => tcx.type_of(did).clean(cx),
};
// Only inline impl if the implementing type is
// reachable in rustdoc generated documentation
if !did.is_local() {
if let Some(did) = for_.def_id() {
if !cx.renderinfo.borrow().access_levels.is_public(did) {
return;
}
if let Some(stab) = tcx.lookup_stability(did) {
if stab.level.is_unstable() && stab.feature == sym::rustc_private {
return;
}
}
}
}
let predicates = tcx.explicit_predicates_of(did);
let (trait_items, generics) = match impl_item {
Some((_, generics, items)) => (
items.iter().map(|item| tcx.hir().impl_item(item.id).clean(cx)).collect::<Vec<_>>(),
generics.clean(cx),
),
None => (
tcx.associated_items(did)
.in_definition_order()
.filter_map(|item| {
if associated_trait.is_some() || item.vis == ty::Visibility::Public {
Some(item.clean(cx))
} else {
None
}
})
.collect::<Vec<_>>(),
clean::enter_impl_trait(cx, || (tcx.generics_of(did), predicates).clean(cx)),
),
};
let polarity = tcx.impl_polarity(did);
let trait_ = associated_trait.clean(cx).map(|bound| match bound {
clean::GenericBound::TraitBound(polyt, _) => polyt.trait_,
clean::GenericBound::Outlives(..) => unreachable!(),
});
if trait_.def_id() == tcx.lang_items().deref_trait() {
super::build_deref_target_impls(cx, &trait_items, ret);
}
if let Some(trait_did) = trait_.def_id() {
record_extern_trait(cx, trait_did);
}
let provided = trait_
.def_id()
.map(|did| tcx.provided_trait_methods(did).map(|meth| meth.ident.to_string()).collect())
.unwrap_or_default();
debug!("build_impl: impl {:?} for {:?}", trait_.def_id(), for_.def_id());
ret.push(clean::Item {
inner: clean::ImplItem(clean::Impl {
unsafety: hir::Unsafety::Normal,
generics,
provided_trait_methods: provided,
trait_,
for_,
items: trait_items,
polarity: Some(polarity.clean(cx)),
synthetic: false,
blanket_impl: None,
}),
source: tcx.def_span(did).clean(cx),
name: None,
attrs,
visibility: clean::Inherited,
stability: tcx.lookup_stability(did).clean(cx),
deprecation: tcx.lookup_deprecation(did).clean(cx),
def_id: did,
});
}
fn build_module(cx: &DocContext<'_>, did: DefId, visited: &mut FxHashSet<DefId>) -> clean::Module {
let mut items = Vec::new();
fill_in(cx, did, &mut items, visited);
return clean::Module { items, is_crate: false };
fn fill_in(
cx: &DocContext<'_>,
did: DefId,
items: &mut Vec<clean::Item>,
visited: &mut FxHashSet<DefId>,
) {
// If we're re-exporting a re-export it may actually re-export something in
// two namespaces, so the target may be listed twice. Make sure we only
// visit each node at most once.
for &item in cx.tcx.item_children(did).iter() {
if item.vis == ty::Visibility::Public {
if let Some(def_id) = item.res.mod_def_id() {
if did == def_id || !visited.insert(def_id) {
continue;
}
}
if let Res::PrimTy(p) = item.res {
// Primitive types can't be inlined so generate an import instead.
items.push(clean::Item {
name: None,
attrs: clean::Attributes::default(),
source: clean::Span::empty(),
def_id: DefId::local(CRATE_DEF_INDEX),
visibility: clean::Public,
stability: None,
deprecation: None,
inner: clean::ImportItem(clean::Import::Simple(
item.ident.to_string(),
clean::ImportSource {
path: clean::Path {
global: false,
res: item.res,
segments: vec![clean::PathSegment {
name: clean::PrimitiveType::from(p).as_str().to_string(),
args: clean::GenericArgs::AngleBracketed {
args: Vec::new(),
bindings: Vec::new(),
},
}],
},
did: None,
},
)),
});
} else if let Some(i) = try_inline(cx, item.res, item.ident.name, None, visited) {
items.extend(i)
}
}
}
}
}
pub fn print_inlined_const(cx: &DocContext<'_>, did: DefId) -> String {
if let Some(did) = did.as_local() {
let hir_id = cx.tcx.hir().local_def_id_to_hir_id(did);
rustc_hir_pretty::id_to_string(&cx.tcx.hir(), hir_id)
} else {
cx.tcx.rendered_const(did)
}
}
fn build_const(cx: &DocContext<'_>, did: DefId) -> clean::Constant {
clean::Constant {
type_: cx.tcx.type_of(did).clean(cx),
expr: print_inlined_const(cx, did),
value: clean::utils::print_evaluated_const(cx, did),
is_literal: did.as_local().map_or(false, |did| {
clean::utils::is_literal_expr(cx, cx.tcx.hir().local_def_id_to_hir_id(did))
}),
}
}
fn build_static(cx: &DocContext<'_>, did: DefId, mutable: bool) -> clean::Static {
clean::Static {
type_: cx.tcx.type_of(did).clean(cx),
mutability: if mutable { Mutability::Mut } else { Mutability::Not },
expr: "\n\n\n".to_string(), // trigger the "[definition]" links
}
}
fn build_macro(cx: &DocContext<'_>, did: DefId, name: Symbol) -> clean::ItemEnum {
let imported_from = cx.tcx.original_crate_name(did.krate);
match cx.enter_resolver(|r| r.cstore().load_macro_untracked(did, cx.sess())) {
LoadedMacro::MacroDef(def, _) => {
let matchers: Vec<Span> = if let ast::ItemKind::MacroDef(ref def) = def.kind {
let tts: Vec<_> = def.body.inner_tokens().into_trees().collect();
tts.chunks(4).map(|arm| arm[0].span()).collect()
} else {
unreachable!()
};
let source = format!(
"macro_rules! {} {{\n{}}}",
name.clean(cx),
matchers
.iter()
.map(|span| { format!(" {} => {{ ... }};\n", span.to_src(cx)) })
.collect::<String>()
);
clean::MacroItem(clean::Macro { source, imported_from: Some(imported_from).clean(cx) })
}
LoadedMacro::ProcMacro(ext) => clean::ProcMacroItem(clean::ProcMacro {
kind: ext.macro_kind(),
helpers: ext.helper_attrs.clean(cx),
}),
}
}
/// A trait's generics clause actually contains all of the predicates for all of
/// its associated types as well. We specifically move these clauses to the
/// associated types instead when displaying, so when we're generating the
/// generics for the trait itself we need to be sure to remove them.
/// We also need to remove the implied "recursive" Self: Trait bound.
///
/// The inverse of this filtering logic can be found in the `Clean`
/// implementation for `AssociatedType`
fn filter_non_trait_generics(trait_did: DefId, mut g: clean::Generics) -> clean::Generics {
for pred in &mut g.where_predicates {
match *pred {
clean::WherePredicate::BoundPredicate { ty: clean::Generic(ref s), ref mut bounds }
if *s == "Self" =>
{
bounds.retain(|bound| match *bound {
clean::GenericBound::TraitBound(
clean::PolyTrait { trait_: clean::ResolvedPath { did, .. }, .. },
_,
) => did != trait_did,
_ => true,
});
}
_ => {}
}
}
g.where_predicates.retain(|pred| match *pred {
clean::WherePredicate::BoundPredicate {
ty:
clean::QPath {
self_type: box clean::Generic(ref s),
trait_: box clean::ResolvedPath { did, .. },
name: ref _name,
},
ref bounds,
} => !(bounds.is_empty() || *s == "Self" && did == trait_did),
_ => true,
});
g
}
/// Supertrait bounds for a trait are also listed in the generics coming from
/// the metadata for a crate, so we want to separate those out and create a new
/// list of explicit supertrait bounds to render nicely.
fn separate_supertrait_bounds(
mut g: clean::Generics,
) -> (clean::Generics, Vec<clean::GenericBound>) {
let mut ty_bounds = Vec::new();
g.where_predicates.retain(|pred| match *pred {
clean::WherePredicate::BoundPredicate { ty: clean::Generic(ref s), ref bounds }
if *s == "Self" =>
{
ty_bounds.extend(bounds.iter().cloned());
false
}
_ => true,
});
(g, ty_bounds)
}
pub fn record_extern_trait(cx: &DocContext<'_>, did: DefId) {
if did.is_local() {
return;
}
{
if cx.external_traits.borrow().contains_key(&did)
|| cx.active_extern_traits.borrow().contains(&did)
{
return;
}
}
{
cx.active_extern_traits.borrow_mut().insert(did);
}
debug!("record_extern_trait: {:?}", did);
let trait_ = build_external_trait(cx, did);
cx.external_traits.borrow_mut().insert(did, trait_);
cx.active_extern_traits.borrow_mut().remove(&did);
}