blob: f8666485eeccb71fab09c44bae17fd1de9d79370 [file] [log] [blame]
#[cfg(all(test, not(target_os = "emscripten")))]
mod tests;
use crate::os::unix::prelude::*;
use crate::collections::BTreeMap;
use crate::ffi::{CStr, CString, OsStr, OsString};
use crate::fmt;
use crate::io;
use crate::ptr;
use crate::sys::fd::FileDesc;
use crate::sys::fs::File;
use crate::sys::pipe::{self, AnonPipe};
use crate::sys_common::process::CommandEnv;
#[cfg(not(target_os = "fuchsia"))]
use crate::sys::fs::OpenOptions;
use libc::{c_char, c_int, gid_t, uid_t, EXIT_FAILURE, EXIT_SUCCESS};
cfg_if::cfg_if! {
if #[cfg(target_os = "fuchsia")] {
// fuchsia doesn't have /dev/null
} else if #[cfg(target_os = "redox")] {
const DEV_NULL: &str = "null:\0";
} else {
const DEV_NULL: &str = "/dev/null\0";
}
}
// Android with api less than 21 define sig* functions inline, so it is not
// available for dynamic link. Implementing sigemptyset and sigaddset allow us
// to support older Android version (independent of libc version).
// The following implementations are based on https://git.io/vSkNf
cfg_if::cfg_if! {
if #[cfg(target_os = "android")] {
pub unsafe fn sigemptyset(set: *mut libc::sigset_t) -> libc::c_int {
set.write_bytes(0u8, 1);
return 0;
}
#[allow(dead_code)]
pub unsafe fn sigaddset(set: *mut libc::sigset_t, signum: libc::c_int) -> libc::c_int {
use crate::{slice, mem};
let raw = slice::from_raw_parts_mut(set as *mut u8, mem::size_of::<libc::sigset_t>());
let bit = (signum - 1) as usize;
raw[bit / 8] |= 1 << (bit % 8);
return 0;
}
} else {
pub use libc::{sigemptyset, sigaddset};
}
}
////////////////////////////////////////////////////////////////////////////////
// Command
////////////////////////////////////////////////////////////////////////////////
pub struct Command {
// Currently we try hard to ensure that the call to `.exec()` doesn't
// actually allocate any memory. While many platforms try to ensure that
// memory allocation works after a fork in a multithreaded process, it's
// been observed to be buggy and somewhat unreliable, so we do our best to
// just not do it at all!
//
// Along those lines, the `argv` and `envp` raw pointers here are exactly
// what's gonna get passed to `execvp`. The `argv` array starts with the
// `program` and ends with a NULL, and the `envp` pointer, if present, is
// also null-terminated.
//
// Right now we don't support removing arguments, so there's no much fancy
// support there, but we support adding and removing environment variables,
// so a side table is used to track where in the `envp` array each key is
// located. Whenever we add a key we update it in place if it's already
// present, and whenever we remove a key we update the locations of all
// other keys.
program: CString,
args: Vec<CString>,
argv: Argv,
env: CommandEnv,
cwd: Option<CString>,
uid: Option<uid_t>,
gid: Option<gid_t>,
saw_nul: bool,
closures: Vec<Box<dyn FnMut() -> io::Result<()> + Send + Sync>>,
stdin: Option<Stdio>,
stdout: Option<Stdio>,
stderr: Option<Stdio>,
}
// Create a new type for argv, so that we can make it `Send` and `Sync`
struct Argv(Vec<*const c_char>);
// It is safe to make `Argv` `Send` and `Sync`, because it contains
// pointers to memory owned by `Command.args`
unsafe impl Send for Argv {}
unsafe impl Sync for Argv {}
// passed back to std::process with the pipes connected to the child, if any
// were requested
pub struct StdioPipes {
pub stdin: Option<AnonPipe>,
pub stdout: Option<AnonPipe>,
pub stderr: Option<AnonPipe>,
}
// passed to do_exec() with configuration of what the child stdio should look
// like
pub struct ChildPipes {
pub stdin: ChildStdio,
pub stdout: ChildStdio,
pub stderr: ChildStdio,
}
pub enum ChildStdio {
Inherit,
Explicit(c_int),
Owned(FileDesc),
// On Fuchsia, null stdio is the default, so we simply don't specify
// any actions at the time of spawning.
#[cfg(target_os = "fuchsia")]
Null,
}
pub enum Stdio {
Inherit,
Null,
MakePipe,
Fd(FileDesc),
}
impl Command {
pub fn new(program: &OsStr) -> Command {
let mut saw_nul = false;
let program = os2c(program, &mut saw_nul);
Command {
argv: Argv(vec![program.as_ptr(), ptr::null()]),
args: vec![program.clone()],
program,
env: Default::default(),
cwd: None,
uid: None,
gid: None,
saw_nul,
closures: Vec::new(),
stdin: None,
stdout: None,
stderr: None,
}
}
pub fn set_arg_0(&mut self, arg: &OsStr) {
// Set a new arg0
let arg = os2c(arg, &mut self.saw_nul);
debug_assert!(self.argv.0.len() > 1);
self.argv.0[0] = arg.as_ptr();
self.args[0] = arg;
}
pub fn arg(&mut self, arg: &OsStr) {
// Overwrite the trailing NULL pointer in `argv` and then add a new null
// pointer.
let arg = os2c(arg, &mut self.saw_nul);
self.argv.0[self.args.len()] = arg.as_ptr();
self.argv.0.push(ptr::null());
// Also make sure we keep track of the owned value to schedule a
// destructor for this memory.
self.args.push(arg);
}
pub fn cwd(&mut self, dir: &OsStr) {
self.cwd = Some(os2c(dir, &mut self.saw_nul));
}
pub fn uid(&mut self, id: uid_t) {
self.uid = Some(id);
}
pub fn gid(&mut self, id: gid_t) {
self.gid = Some(id);
}
pub fn saw_nul(&self) -> bool {
self.saw_nul
}
pub fn get_argv(&self) -> &Vec<*const c_char> {
&self.argv.0
}
pub fn get_program(&self) -> &CStr {
&*self.program
}
#[allow(dead_code)]
pub fn get_cwd(&self) -> &Option<CString> {
&self.cwd
}
#[allow(dead_code)]
pub fn get_uid(&self) -> Option<uid_t> {
self.uid
}
#[allow(dead_code)]
pub fn get_gid(&self) -> Option<gid_t> {
self.gid
}
pub fn get_closures(&mut self) -> &mut Vec<Box<dyn FnMut() -> io::Result<()> + Send + Sync>> {
&mut self.closures
}
pub unsafe fn pre_exec(&mut self, f: Box<dyn FnMut() -> io::Result<()> + Send + Sync>) {
self.closures.push(f);
}
pub fn stdin(&mut self, stdin: Stdio) {
self.stdin = Some(stdin);
}
pub fn stdout(&mut self, stdout: Stdio) {
self.stdout = Some(stdout);
}
pub fn stderr(&mut self, stderr: Stdio) {
self.stderr = Some(stderr);
}
pub fn env_mut(&mut self) -> &mut CommandEnv {
&mut self.env
}
pub fn capture_env(&mut self) -> Option<CStringArray> {
let maybe_env = self.env.capture_if_changed();
maybe_env.map(|env| construct_envp(env, &mut self.saw_nul))
}
#[allow(dead_code)]
pub fn env_saw_path(&self) -> bool {
self.env.have_changed_path()
}
pub fn setup_io(
&self,
default: Stdio,
needs_stdin: bool,
) -> io::Result<(StdioPipes, ChildPipes)> {
let null = Stdio::Null;
let default_stdin = if needs_stdin { &default } else { &null };
let stdin = self.stdin.as_ref().unwrap_or(default_stdin);
let stdout = self.stdout.as_ref().unwrap_or(&default);
let stderr = self.stderr.as_ref().unwrap_or(&default);
let (their_stdin, our_stdin) = stdin.to_child_stdio(true)?;
let (their_stdout, our_stdout) = stdout.to_child_stdio(false)?;
let (their_stderr, our_stderr) = stderr.to_child_stdio(false)?;
let ours = StdioPipes { stdin: our_stdin, stdout: our_stdout, stderr: our_stderr };
let theirs = ChildPipes { stdin: their_stdin, stdout: their_stdout, stderr: their_stderr };
Ok((ours, theirs))
}
}
fn os2c(s: &OsStr, saw_nul: &mut bool) -> CString {
CString::new(s.as_bytes()).unwrap_or_else(|_e| {
*saw_nul = true;
CString::new("<string-with-nul>").unwrap()
})
}
// Helper type to manage ownership of the strings within a C-style array.
pub struct CStringArray {
items: Vec<CString>,
ptrs: Vec<*const c_char>,
}
impl CStringArray {
pub fn with_capacity(capacity: usize) -> Self {
let mut result = CStringArray {
items: Vec::with_capacity(capacity),
ptrs: Vec::with_capacity(capacity + 1),
};
result.ptrs.push(ptr::null());
result
}
pub fn push(&mut self, item: CString) {
let l = self.ptrs.len();
self.ptrs[l - 1] = item.as_ptr();
self.ptrs.push(ptr::null());
self.items.push(item);
}
pub fn as_ptr(&self) -> *const *const c_char {
self.ptrs.as_ptr()
}
}
fn construct_envp(env: BTreeMap<OsString, OsString>, saw_nul: &mut bool) -> CStringArray {
let mut result = CStringArray::with_capacity(env.len());
for (mut k, v) in env {
// Reserve additional space for '=' and null terminator
k.reserve_exact(v.len() + 2);
k.push("=");
k.push(&v);
// Add the new entry into the array
if let Ok(item) = CString::new(k.into_vec()) {
result.push(item);
} else {
*saw_nul = true;
}
}
result
}
impl Stdio {
pub fn to_child_stdio(&self, readable: bool) -> io::Result<(ChildStdio, Option<AnonPipe>)> {
match *self {
Stdio::Inherit => Ok((ChildStdio::Inherit, None)),
// Make sure that the source descriptors are not an stdio
// descriptor, otherwise the order which we set the child's
// descriptors may blow away a descriptor which we are hoping to
// save. For example, suppose we want the child's stderr to be the
// parent's stdout, and the child's stdout to be the parent's
// stderr. No matter which we dup first, the second will get
// overwritten prematurely.
Stdio::Fd(ref fd) => {
if fd.raw() >= 0 && fd.raw() <= libc::STDERR_FILENO {
Ok((ChildStdio::Owned(fd.duplicate()?), None))
} else {
Ok((ChildStdio::Explicit(fd.raw()), None))
}
}
Stdio::MakePipe => {
let (reader, writer) = pipe::anon_pipe()?;
let (ours, theirs) = if readable { (writer, reader) } else { (reader, writer) };
Ok((ChildStdio::Owned(theirs.into_fd()), Some(ours)))
}
#[cfg(not(target_os = "fuchsia"))]
Stdio::Null => {
let mut opts = OpenOptions::new();
opts.read(readable);
opts.write(!readable);
let path = unsafe { CStr::from_ptr(DEV_NULL.as_ptr() as *const _) };
let fd = File::open_c(&path, &opts)?;
Ok((ChildStdio::Owned(fd.into_fd()), None))
}
#[cfg(target_os = "fuchsia")]
Stdio::Null => Ok((ChildStdio::Null, None)),
}
}
}
impl From<AnonPipe> for Stdio {
fn from(pipe: AnonPipe) -> Stdio {
Stdio::Fd(pipe.into_fd())
}
}
impl From<File> for Stdio {
fn from(file: File) -> Stdio {
Stdio::Fd(file.into_fd())
}
}
impl ChildStdio {
pub fn fd(&self) -> Option<c_int> {
match *self {
ChildStdio::Inherit => None,
ChildStdio::Explicit(fd) => Some(fd),
ChildStdio::Owned(ref fd) => Some(fd.raw()),
#[cfg(target_os = "fuchsia")]
ChildStdio::Null => None,
}
}
}
impl fmt::Debug for Command {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if self.program != self.args[0] {
write!(f, "[{:?}] ", self.program)?;
}
write!(f, "{:?}", self.args[0])?;
for arg in &self.args[1..] {
write!(f, " {:?}", arg)?;
}
Ok(())
}
}
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
pub struct ExitCode(u8);
impl ExitCode {
pub const SUCCESS: ExitCode = ExitCode(EXIT_SUCCESS as _);
pub const FAILURE: ExitCode = ExitCode(EXIT_FAILURE as _);
#[inline]
pub fn as_i32(&self) -> i32 {
self.0 as i32
}
}