blob: 9f1847943f3262e63cfd43464e2aa91d65853920 [file] [log] [blame]
use crate::cell::UnsafeCell;
use crate::sys::mutex::{self, Mutex};
use crate::time::Duration;
pub struct Condvar {
inner: UnsafeCell<libc::pthread_cond_t>,
}
unsafe impl Send for Condvar {}
unsafe impl Sync for Condvar {}
const TIMESPEC_MAX: libc::timespec =
libc::timespec { tv_sec: <libc::time_t>::MAX, tv_nsec: 1_000_000_000 - 1 };
fn saturating_cast_to_time_t(value: u64) -> libc::time_t {
if value > <libc::time_t>::MAX as u64 { <libc::time_t>::MAX } else { value as libc::time_t }
}
impl Condvar {
pub const fn new() -> Condvar {
// Might be moved and address is changing it is better to avoid
// initialization of potentially opaque OS data before it landed
Condvar { inner: UnsafeCell::new(libc::PTHREAD_COND_INITIALIZER) }
}
#[cfg(any(
target_os = "macos",
target_os = "ios",
target_os = "l4re",
target_os = "android",
target_os = "redox"
))]
pub unsafe fn init(&mut self) {}
#[cfg(not(any(
target_os = "macos",
target_os = "ios",
target_os = "l4re",
target_os = "android",
target_os = "redox"
)))]
pub unsafe fn init(&mut self) {
use crate::mem::MaybeUninit;
let mut attr = MaybeUninit::<libc::pthread_condattr_t>::uninit();
let r = libc::pthread_condattr_init(attr.as_mut_ptr());
assert_eq!(r, 0);
let r = libc::pthread_condattr_setclock(attr.as_mut_ptr(), libc::CLOCK_MONOTONIC);
assert_eq!(r, 0);
let r = libc::pthread_cond_init(self.inner.get(), attr.as_ptr());
assert_eq!(r, 0);
let r = libc::pthread_condattr_destroy(attr.as_mut_ptr());
assert_eq!(r, 0);
}
#[inline]
pub unsafe fn notify_one(&self) {
let r = libc::pthread_cond_signal(self.inner.get());
debug_assert_eq!(r, 0);
}
#[inline]
pub unsafe fn notify_all(&self) {
let r = libc::pthread_cond_broadcast(self.inner.get());
debug_assert_eq!(r, 0);
}
#[inline]
pub unsafe fn wait(&self, mutex: &Mutex) {
let r = libc::pthread_cond_wait(self.inner.get(), mutex::raw(mutex));
debug_assert_eq!(r, 0);
}
// This implementation is used on systems that support pthread_condattr_setclock
// where we configure condition variable to use monotonic clock (instead of
// default system clock). This approach avoids all problems that result
// from changes made to the system time.
#[cfg(not(any(target_os = "macos", target_os = "ios", target_os = "android")))]
pub unsafe fn wait_timeout(&self, mutex: &Mutex, dur: Duration) -> bool {
use crate::mem;
let mut now: libc::timespec = mem::zeroed();
let r = libc::clock_gettime(libc::CLOCK_MONOTONIC, &mut now);
assert_eq!(r, 0);
// Nanosecond calculations can't overflow because both values are below 1e9.
let nsec = dur.subsec_nanos() + now.tv_nsec as u32;
let sec = saturating_cast_to_time_t(dur.as_secs())
.checked_add((nsec / 1_000_000_000) as libc::time_t)
.and_then(|s| s.checked_add(now.tv_sec));
let nsec = nsec % 1_000_000_000;
let timeout =
sec.map(|s| libc::timespec { tv_sec: s, tv_nsec: nsec as _ }).unwrap_or(TIMESPEC_MAX);
let r = libc::pthread_cond_timedwait(self.inner.get(), mutex::raw(mutex), &timeout);
assert!(r == libc::ETIMEDOUT || r == 0);
r == 0
}
// This implementation is modeled after libcxx's condition_variable
// https://github.com/llvm-mirror/libcxx/blob/release_35/src/condition_variable.cpp#L46
// https://github.com/llvm-mirror/libcxx/blob/release_35/include/__mutex_base#L367
#[cfg(any(target_os = "macos", target_os = "ios", target_os = "android"))]
pub unsafe fn wait_timeout(&self, mutex: &Mutex, mut dur: Duration) -> bool {
use crate::ptr;
use crate::time::Instant;
// 1000 years
let max_dur = Duration::from_secs(1000 * 365 * 86400);
if dur > max_dur {
// OSX implementation of `pthread_cond_timedwait` is buggy
// with super long durations. When duration is greater than
// 0x100_0000_0000_0000 seconds, `pthread_cond_timedwait`
// in macOS Sierra return error 316.
//
// This program demonstrates the issue:
// https://gist.github.com/stepancheg/198db4623a20aad2ad7cddb8fda4a63c
//
// To work around this issue, and possible bugs of other OSes, timeout
// is clamped to 1000 years, which is allowable per the API of `wait_timeout`
// because of spurious wakeups.
dur = max_dur;
}
// First, figure out what time it currently is, in both system and
// stable time. pthread_cond_timedwait uses system time, but we want to
// report timeout based on stable time.
let mut sys_now = libc::timeval { tv_sec: 0, tv_usec: 0 };
let stable_now = Instant::now();
let r = libc::gettimeofday(&mut sys_now, ptr::null_mut());
debug_assert_eq!(r, 0);
let nsec = dur.subsec_nanos() as libc::c_long + (sys_now.tv_usec * 1000) as libc::c_long;
let extra = (nsec / 1_000_000_000) as libc::time_t;
let nsec = nsec % 1_000_000_000;
let seconds = saturating_cast_to_time_t(dur.as_secs());
let timeout = sys_now
.tv_sec
.checked_add(extra)
.and_then(|s| s.checked_add(seconds))
.map(|s| libc::timespec { tv_sec: s, tv_nsec: nsec })
.unwrap_or(TIMESPEC_MAX);
// And wait!
let r = libc::pthread_cond_timedwait(self.inner.get(), mutex::raw(mutex), &timeout);
debug_assert!(r == libc::ETIMEDOUT || r == 0);
// ETIMEDOUT is not a totally reliable method of determining timeout due
// to clock shifts, so do the check ourselves
stable_now.elapsed() < dur
}
#[inline]
#[cfg(not(target_os = "dragonfly"))]
pub unsafe fn destroy(&self) {
let r = libc::pthread_cond_destroy(self.inner.get());
debug_assert_eq!(r, 0);
}
#[inline]
#[cfg(target_os = "dragonfly")]
pub unsafe fn destroy(&self) {
let r = libc::pthread_cond_destroy(self.inner.get());
// On DragonFly pthread_cond_destroy() returns EINVAL if called on
// a condvar that was just initialized with
// libc::PTHREAD_COND_INITIALIZER. Once it is used or
// pthread_cond_init() is called, this behaviour no longer occurs.
debug_assert!(r == 0 || r == libc::EINVAL);
}
}