blob: 0cfcaca9060336f2140a0e24d7f6e7647518047b [file] [log] [blame]
//! Checking that constant values used in types can be successfully evaluated.
//!
//! For concrete constants, this is fairly simple as we can just try and evaluate it.
//!
//! When dealing with polymorphic constants, for example `std::mem::size_of::<T>() - 1`,
//! this is not as easy.
//!
//! In this case we try to build an abstract representation of this constant using
//! `mir_abstract_const` which can then be checked for structural equality with other
//! generic constants mentioned in the `caller_bounds` of the current environment.
use rustc_errors::ErrorReported;
use rustc_hir::def::DefKind;
use rustc_index::bit_set::BitSet;
use rustc_index::vec::IndexVec;
use rustc_infer::infer::InferCtxt;
use rustc_middle::mir::abstract_const::{Node, NodeId};
use rustc_middle::mir::interpret::ErrorHandled;
use rustc_middle::mir::{self, Rvalue, StatementKind, TerminatorKind};
use rustc_middle::ty::subst::Subst;
use rustc_middle::ty::subst::SubstsRef;
use rustc_middle::ty::{self, TyCtxt, TypeFoldable};
use rustc_session::lint;
use rustc_span::def_id::{DefId, LocalDefId};
use rustc_span::Span;
pub fn is_const_evaluatable<'cx, 'tcx>(
infcx: &InferCtxt<'cx, 'tcx>,
def: ty::WithOptConstParam<DefId>,
substs: SubstsRef<'tcx>,
param_env: ty::ParamEnv<'tcx>,
span: Span,
) -> Result<(), ErrorHandled> {
debug!("is_const_evaluatable({:?}, {:?})", def, substs);
if infcx.tcx.features().const_evaluatable_checked {
if let Some(ct) = AbstractConst::new(infcx.tcx, def, substs)? {
for pred in param_env.caller_bounds() {
match pred.skip_binders() {
ty::PredicateAtom::ConstEvaluatable(b_def, b_substs) => {
debug!("is_const_evaluatable: caller_bound={:?}, {:?}", b_def, b_substs);
if b_def == def && b_substs == substs {
debug!("is_const_evaluatable: caller_bound ~~> ok");
return Ok(());
} else if AbstractConst::new(infcx.tcx, b_def, b_substs)?
.map_or(false, |b_ct| try_unify(infcx.tcx, ct, b_ct))
{
debug!("is_const_evaluatable: abstract_const ~~> ok");
return Ok(());
}
}
_ => {} // don't care
}
}
}
}
let future_compat_lint = || {
if let Some(local_def_id) = def.did.as_local() {
infcx.tcx.struct_span_lint_hir(
lint::builtin::CONST_EVALUATABLE_UNCHECKED,
infcx.tcx.hir().local_def_id_to_hir_id(local_def_id),
span,
|err| {
err.build("cannot use constants which depend on generic parameters in types")
.emit();
},
);
}
};
// FIXME: We should only try to evaluate a given constant here if it is fully concrete
// as we don't want to allow things like `[u8; std::mem::size_of::<*mut T>()]`.
//
// We previously did not check this, so we only emit a future compat warning if
// const evaluation succeeds and the given constant is still polymorphic for now
// and hopefully soon change this to an error.
//
// See #74595 for more details about this.
let concrete = infcx.const_eval_resolve(param_env, def, substs, None, Some(span));
if concrete.is_ok() && substs.has_param_types_or_consts() {
match infcx.tcx.def_kind(def.did) {
DefKind::AnonConst => {
let mir_body = if let Some(def) = def.as_const_arg() {
infcx.tcx.optimized_mir_of_const_arg(def)
} else {
infcx.tcx.optimized_mir(def.did)
};
if mir_body.is_polymorphic {
future_compat_lint();
}
}
_ => future_compat_lint(),
}
}
debug!(?concrete, "is_const_evaluatable");
concrete.map(drop)
}
/// A tree representing an anonymous constant.
///
/// This is only able to represent a subset of `MIR`,
/// and should not leak any information about desugarings.
#[derive(Clone, Copy)]
pub struct AbstractConst<'tcx> {
// FIXME: Consider adding something like `IndexSlice`
// and use this here.
inner: &'tcx [Node<'tcx>],
substs: SubstsRef<'tcx>,
}
impl AbstractConst<'tcx> {
pub fn new(
tcx: TyCtxt<'tcx>,
def: ty::WithOptConstParam<DefId>,
substs: SubstsRef<'tcx>,
) -> Result<Option<AbstractConst<'tcx>>, ErrorReported> {
let inner = match (def.did.as_local(), def.const_param_did) {
(Some(did), Some(param_did)) => {
tcx.mir_abstract_const_of_const_arg((did, param_did))?
}
_ => tcx.mir_abstract_const(def.did)?,
};
Ok(inner.map(|inner| AbstractConst { inner, substs }))
}
#[inline]
pub fn subtree(self, node: NodeId) -> AbstractConst<'tcx> {
AbstractConst { inner: &self.inner[..=node.index()], substs: self.substs }
}
#[inline]
pub fn root(self) -> Node<'tcx> {
self.inner.last().copied().unwrap()
}
}
struct AbstractConstBuilder<'a, 'tcx> {
tcx: TyCtxt<'tcx>,
body: &'a mir::Body<'tcx>,
/// The current WIP node tree.
nodes: IndexVec<NodeId, Node<'tcx>>,
locals: IndexVec<mir::Local, NodeId>,
/// We only allow field accesses if they access
/// the result of a checked operation.
checked_op_locals: BitSet<mir::Local>,
}
impl<'a, 'tcx> AbstractConstBuilder<'a, 'tcx> {
fn error(&mut self, span: Option<Span>, msg: &str) -> Result<!, ErrorReported> {
self.tcx
.sess
.struct_span_err(self.body.span, "overly complex generic constant")
.span_label(span.unwrap_or(self.body.span), msg)
.help("consider moving this anonymous constant into a `const` function")
.emit();
Err(ErrorReported)
}
fn new(
tcx: TyCtxt<'tcx>,
body: &'a mir::Body<'tcx>,
) -> Result<Option<AbstractConstBuilder<'a, 'tcx>>, ErrorReported> {
let mut builder = AbstractConstBuilder {
tcx,
body,
nodes: IndexVec::new(),
locals: IndexVec::from_elem(NodeId::MAX, &body.local_decls),
checked_op_locals: BitSet::new_empty(body.local_decls.len()),
};
// We don't have to look at concrete constants, as we
// can just evaluate them.
if !body.is_polymorphic {
return Ok(None);
}
// We only allow consts without control flow, so
// we check for cycles here which simplifies the
// rest of this implementation.
if body.is_cfg_cyclic() {
builder.error(None, "cyclic anonymous constants are forbidden")?;
}
Ok(Some(builder))
}
fn place_to_local(
&mut self,
span: Span,
p: &mir::Place<'tcx>,
) -> Result<mir::Local, ErrorReported> {
const ZERO_FIELD: mir::Field = mir::Field::from_usize(0);
// Do not allow any projections.
//
// One exception are field accesses on the result of checked operations,
// which are required to support things like `1 + 2`.
if let Some(p) = p.as_local() {
debug_assert!(!self.checked_op_locals.contains(p));
Ok(p)
} else if let &[mir::ProjectionElem::Field(ZERO_FIELD, _)] = p.projection.as_ref() {
// Only allow field accesses if the given local
// contains the result of a checked operation.
if self.checked_op_locals.contains(p.local) {
Ok(p.local)
} else {
self.error(Some(span), "unsupported projection")?;
}
} else {
self.error(Some(span), "unsupported projection")?;
}
}
fn operand_to_node(
&mut self,
span: Span,
op: &mir::Operand<'tcx>,
) -> Result<NodeId, ErrorReported> {
debug!("operand_to_node: op={:?}", op);
match op {
mir::Operand::Copy(p) | mir::Operand::Move(p) => {
let local = self.place_to_local(span, p)?;
Ok(self.locals[local])
}
mir::Operand::Constant(ct) => Ok(self.nodes.push(Node::Leaf(ct.literal))),
}
}
/// We do not allow all binary operations in abstract consts, so filter disallowed ones.
fn check_binop(op: mir::BinOp) -> bool {
use mir::BinOp::*;
match op {
Add | Sub | Mul | Div | Rem | BitXor | BitAnd | BitOr | Shl | Shr | Eq | Lt | Le
| Ne | Ge | Gt => true,
Offset => false,
}
}
/// While we currently allow all unary operations, we still want to explicitly guard against
/// future changes here.
fn check_unop(op: mir::UnOp) -> bool {
use mir::UnOp::*;
match op {
Not | Neg => true,
}
}
fn build_statement(&mut self, stmt: &mir::Statement<'tcx>) -> Result<(), ErrorReported> {
debug!("AbstractConstBuilder: stmt={:?}", stmt);
match stmt.kind {
StatementKind::Assign(box (ref place, ref rvalue)) => {
let local = self.place_to_local(stmt.source_info.span, place)?;
match *rvalue {
Rvalue::Use(ref operand) => {
self.locals[local] =
self.operand_to_node(stmt.source_info.span, operand)?;
Ok(())
}
Rvalue::BinaryOp(op, ref lhs, ref rhs) if Self::check_binop(op) => {
let lhs = self.operand_to_node(stmt.source_info.span, lhs)?;
let rhs = self.operand_to_node(stmt.source_info.span, rhs)?;
self.locals[local] = self.nodes.push(Node::Binop(op, lhs, rhs));
if op.is_checkable() {
bug!("unexpected unchecked checkable binary operation");
} else {
Ok(())
}
}
Rvalue::CheckedBinaryOp(op, ref lhs, ref rhs) if Self::check_binop(op) => {
let lhs = self.operand_to_node(stmt.source_info.span, lhs)?;
let rhs = self.operand_to_node(stmt.source_info.span, rhs)?;
self.locals[local] = self.nodes.push(Node::Binop(op, lhs, rhs));
self.checked_op_locals.insert(local);
Ok(())
}
Rvalue::UnaryOp(op, ref operand) if Self::check_unop(op) => {
let operand = self.operand_to_node(stmt.source_info.span, operand)?;
self.locals[local] = self.nodes.push(Node::UnaryOp(op, operand));
Ok(())
}
_ => self.error(Some(stmt.source_info.span), "unsupported rvalue")?,
}
}
// These are not actually relevant for us here, so we can ignore them.
StatementKind::StorageLive(_) | StatementKind::StorageDead(_) => Ok(()),
_ => self.error(Some(stmt.source_info.span), "unsupported statement")?,
}
}
/// Possible return values:
///
/// - `None`: unsupported terminator, stop building
/// - `Some(None)`: supported terminator, finish building
/// - `Some(Some(block))`: support terminator, build `block` next
fn build_terminator(
&mut self,
terminator: &mir::Terminator<'tcx>,
) -> Result<Option<mir::BasicBlock>, ErrorReported> {
debug!("AbstractConstBuilder: terminator={:?}", terminator);
match terminator.kind {
TerminatorKind::Goto { target } => Ok(Some(target)),
TerminatorKind::Return => Ok(None),
TerminatorKind::Call {
ref func,
ref args,
destination: Some((ref place, target)),
// We do not care about `cleanup` here. Any branch which
// uses `cleanup` will fail const-eval and they therefore
// do not matter when checking for const evaluatability.
//
// Do note that even if `panic::catch_unwind` is made const,
// we still do not have to care about this, as we do not look
// into functions.
cleanup: _,
// Do not allow overloaded operators for now,
// we probably do want to allow this in the future.
//
// This is currently fairly irrelevant as it requires `const Trait`s.
from_hir_call: true,
fn_span,
} => {
let local = self.place_to_local(fn_span, place)?;
let func = self.operand_to_node(fn_span, func)?;
let args = self.tcx.arena.alloc_from_iter(
args.iter()
.map(|arg| self.operand_to_node(terminator.source_info.span, arg))
.collect::<Result<Vec<NodeId>, _>>()?,
);
self.locals[local] = self.nodes.push(Node::FunctionCall(func, args));
Ok(Some(target))
}
// We only allow asserts for checked operations.
//
// These asserts seem to all have the form `!_local.0` so
// we only allow exactly that.
TerminatorKind::Assert { ref cond, expected: false, target, .. } => {
let p = match cond {
mir::Operand::Copy(p) | mir::Operand::Move(p) => p,
mir::Operand::Constant(_) => bug!("unexpected assert"),
};
const ONE_FIELD: mir::Field = mir::Field::from_usize(1);
debug!("proj: {:?}", p.projection);
if let &[mir::ProjectionElem::Field(ONE_FIELD, _)] = p.projection.as_ref() {
// Only allow asserts checking the result of a checked operation.
if self.checked_op_locals.contains(p.local) {
return Ok(Some(target));
}
}
self.error(Some(terminator.source_info.span), "unsupported assertion")?;
}
_ => self.error(Some(terminator.source_info.span), "unsupported terminator")?,
}
}
/// Builds the abstract const by walking the mir from start to finish
/// and bailing out when encountering an unsupported operation.
fn build(mut self) -> Result<&'tcx [Node<'tcx>], ErrorReported> {
let mut block = &self.body.basic_blocks()[mir::START_BLOCK];
// We checked for a cyclic cfg above, so this should terminate.
loop {
debug!("AbstractConstBuilder: block={:?}", block);
for stmt in block.statements.iter() {
self.build_statement(stmt)?;
}
if let Some(next) = self.build_terminator(block.terminator())? {
block = &self.body.basic_blocks()[next];
} else {
return Ok(self.tcx.arena.alloc_from_iter(self.nodes));
}
}
}
}
/// Builds an abstract const, do not use this directly, but use `AbstractConst::new` instead.
pub(super) fn mir_abstract_const<'tcx>(
tcx: TyCtxt<'tcx>,
def: ty::WithOptConstParam<LocalDefId>,
) -> Result<Option<&'tcx [mir::abstract_const::Node<'tcx>]>, ErrorReported> {
if tcx.features().const_evaluatable_checked {
match tcx.def_kind(def.did) {
// FIXME(const_evaluatable_checked): We currently only do this for anonymous constants,
// meaning that we do not look into associated constants. I(@lcnr) am not yet sure whether
// we want to look into them or treat them as opaque projections.
//
// Right now we do neither of that and simply always fail to unify them.
DefKind::AnonConst => (),
_ => return Ok(None),
}
let body = tcx.mir_const(def).borrow();
AbstractConstBuilder::new(tcx, &body)?.map(AbstractConstBuilder::build).transpose()
} else {
Ok(None)
}
}
pub(super) fn try_unify_abstract_consts<'tcx>(
tcx: TyCtxt<'tcx>,
((a, a_substs), (b, b_substs)): (
(ty::WithOptConstParam<DefId>, SubstsRef<'tcx>),
(ty::WithOptConstParam<DefId>, SubstsRef<'tcx>),
),
) -> bool {
(|| {
if let Some(a) = AbstractConst::new(tcx, a, a_substs)? {
if let Some(b) = AbstractConst::new(tcx, b, b_substs)? {
return Ok(try_unify(tcx, a, b));
}
}
Ok(false)
})()
.unwrap_or_else(|ErrorReported| true)
// FIXME(const_evaluatable_checked): We should instead have this
// method return the resulting `ty::Const` and return `ConstKind::Error`
// on `ErrorReported`.
}
/// Tries to unify two abstract constants using structural equality.
pub(super) fn try_unify<'tcx>(
tcx: TyCtxt<'tcx>,
a: AbstractConst<'tcx>,
b: AbstractConst<'tcx>,
) -> bool {
match (a.root(), b.root()) {
(Node::Leaf(a_ct), Node::Leaf(b_ct)) => {
let a_ct = a_ct.subst(tcx, a.substs);
let b_ct = b_ct.subst(tcx, b.substs);
match (a_ct.val, b_ct.val) {
// We can just unify errors with everything to reduce the amount of
// emitted errors here.
(ty::ConstKind::Error(_), _) | (_, ty::ConstKind::Error(_)) => true,
(ty::ConstKind::Param(a_param), ty::ConstKind::Param(b_param)) => {
a_param == b_param
}
(ty::ConstKind::Value(a_val), ty::ConstKind::Value(b_val)) => a_val == b_val,
// If we have `fn a<const N: usize>() -> [u8; N + 1]` and `fn b<const M: usize>() -> [u8; 1 + M]`
// we do not want to use `assert_eq!(a(), b())` to infer that `N` and `M` have to be `1`. This
// means that we only allow inference variables if they are equal.
(ty::ConstKind::Infer(a_val), ty::ConstKind::Infer(b_val)) => a_val == b_val,
// FIXME(const_evaluatable_checked): We may want to either actually try
// to evaluate `a_ct` and `b_ct` if they are are fully concrete or something like
// this, for now we just return false here.
_ => false,
}
}
(Node::Binop(a_op, al, ar), Node::Binop(b_op, bl, br)) if a_op == b_op => {
try_unify(tcx, a.subtree(al), b.subtree(bl))
&& try_unify(tcx, a.subtree(ar), b.subtree(br))
}
(Node::UnaryOp(a_op, av), Node::UnaryOp(b_op, bv)) if a_op == b_op => {
try_unify(tcx, a.subtree(av), b.subtree(bv))
}
(Node::FunctionCall(a_f, a_args), Node::FunctionCall(b_f, b_args))
if a_args.len() == b_args.len() =>
{
try_unify(tcx, a.subtree(a_f), b.subtree(b_f))
&& a_args
.iter()
.zip(b_args)
.all(|(&an, &bn)| try_unify(tcx, a.subtree(an), b.subtree(bn)))
}
_ => false,
}
}