blob: 28697ec4e3b9fe4cc106d4f8e4a350a47a823c7c [file] [log] [blame]
use crate::infer::InferCtxtExt as _;
use crate::traits::{self, PredicateObligation};
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::sync::Lrc;
use rustc_hir as hir;
use rustc_hir::def_id::{DefId, DefIdMap, LocalDefId};
use rustc_hir::Node;
use rustc_infer::infer::error_reporting::unexpected_hidden_region_diagnostic;
use rustc_infer::infer::free_regions::FreeRegionRelations;
use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
use rustc_infer::infer::{self, InferCtxt, InferOk};
use rustc_middle::ty::fold::{BottomUpFolder, TypeFoldable, TypeFolder, TypeVisitor};
use rustc_middle::ty::subst::{GenericArg, GenericArgKind, InternalSubsts, SubstsRef};
use rustc_middle::ty::{self, Ty, TyCtxt};
use rustc_session::config::nightly_options;
use rustc_span::Span;
pub type OpaqueTypeMap<'tcx> = DefIdMap<OpaqueTypeDecl<'tcx>>;
/// Information about the opaque types whose values we
/// are inferring in this function (these are the `impl Trait` that
/// appear in the return type).
#[derive(Copy, Clone, Debug)]
pub struct OpaqueTypeDecl<'tcx> {
/// The opaque type (`ty::Opaque`) for this declaration.
pub opaque_type: Ty<'tcx>,
/// The substitutions that we apply to the opaque type that this
/// `impl Trait` desugars to. e.g., if:
///
/// fn foo<'a, 'b, T>() -> impl Trait<'a>
///
/// winds up desugared to:
///
/// type Foo<'x, X> = impl Trait<'x>
/// fn foo<'a, 'b, T>() -> Foo<'a, T>
///
/// then `substs` would be `['a, T]`.
pub substs: SubstsRef<'tcx>,
/// The span of this particular definition of the opaque type. So
/// for example:
///
/// ```
/// type Foo = impl Baz;
/// fn bar() -> Foo {
/// ^^^ This is the span we are looking for!
/// ```
///
/// In cases where the fn returns `(impl Trait, impl Trait)` or
/// other such combinations, the result is currently
/// over-approximated, but better than nothing.
pub definition_span: Span,
/// The type variable that represents the value of the opaque type
/// that we require. In other words, after we compile this function,
/// we will be created a constraint like:
///
/// Foo<'a, T> = ?C
///
/// where `?C` is the value of this type variable. =) It may
/// naturally refer to the type and lifetime parameters in scope
/// in this function, though ultimately it should only reference
/// those that are arguments to `Foo` in the constraint above. (In
/// other words, `?C` should not include `'b`, even though it's a
/// lifetime parameter on `foo`.)
pub concrete_ty: Ty<'tcx>,
/// Returns `true` if the `impl Trait` bounds include region bounds.
/// For example, this would be true for:
///
/// fn foo<'a, 'b, 'c>() -> impl Trait<'c> + 'a + 'b
///
/// but false for:
///
/// fn foo<'c>() -> impl Trait<'c>
///
/// unless `Trait` was declared like:
///
/// trait Trait<'c>: 'c
///
/// in which case it would be true.
///
/// This is used during regionck to decide whether we need to
/// impose any additional constraints to ensure that region
/// variables in `concrete_ty` wind up being constrained to
/// something from `substs` (or, at minimum, things that outlive
/// the fn body). (Ultimately, writeback is responsible for this
/// check.)
pub has_required_region_bounds: bool,
/// The origin of the opaque type.
pub origin: hir::OpaqueTyOrigin,
}
/// Whether member constraints should be generated for all opaque types
pub enum GenerateMemberConstraints {
/// The default, used by typeck
WhenRequired,
/// The borrow checker needs member constraints in any case where we don't
/// have a `'static` bound. This is because the borrow checker has more
/// flexibility in the values of regions. For example, given `f<'a, 'b>`
/// the borrow checker can have an inference variable outlive `'a` and `'b`,
/// but not be equal to `'static`.
IfNoStaticBound,
}
pub trait InferCtxtExt<'tcx> {
fn instantiate_opaque_types<T: TypeFoldable<'tcx>>(
&self,
parent_def_id: LocalDefId,
body_id: hir::HirId,
param_env: ty::ParamEnv<'tcx>,
value: &T,
value_span: Span,
) -> InferOk<'tcx, (T, OpaqueTypeMap<'tcx>)>;
fn constrain_opaque_types<FRR: FreeRegionRelations<'tcx>>(
&self,
opaque_types: &OpaqueTypeMap<'tcx>,
free_region_relations: &FRR,
);
fn constrain_opaque_type<FRR: FreeRegionRelations<'tcx>>(
&self,
def_id: DefId,
opaque_defn: &OpaqueTypeDecl<'tcx>,
mode: GenerateMemberConstraints,
free_region_relations: &FRR,
);
/*private*/
fn generate_member_constraint(
&self,
concrete_ty: Ty<'tcx>,
opaque_defn: &OpaqueTypeDecl<'tcx>,
opaque_type_def_id: DefId,
first_own_region_index: usize,
);
/*private*/
fn member_constraint_feature_gate(
&self,
opaque_defn: &OpaqueTypeDecl<'tcx>,
opaque_type_def_id: DefId,
conflict1: ty::Region<'tcx>,
conflict2: ty::Region<'tcx>,
) -> bool;
fn infer_opaque_definition_from_instantiation(
&self,
def_id: DefId,
substs: SubstsRef<'tcx>,
instantiated_ty: Ty<'tcx>,
span: Span,
) -> Ty<'tcx>;
}
impl<'a, 'tcx> InferCtxtExt<'tcx> for InferCtxt<'a, 'tcx> {
/// Replaces all opaque types in `value` with fresh inference variables
/// and creates appropriate obligations. For example, given the input:
///
/// impl Iterator<Item = impl Debug>
///
/// this method would create two type variables, `?0` and `?1`. It would
/// return the type `?0` but also the obligations:
///
/// ?0: Iterator<Item = ?1>
/// ?1: Debug
///
/// Moreover, it returns a `OpaqueTypeMap` that would map `?0` to
/// info about the `impl Iterator<..>` type and `?1` to info about
/// the `impl Debug` type.
///
/// # Parameters
///
/// - `parent_def_id` -- the `DefId` of the function in which the opaque type
/// is defined
/// - `body_id` -- the body-id with which the resulting obligations should
/// be associated
/// - `param_env` -- the in-scope parameter environment to be used for
/// obligations
/// - `value` -- the value within which we are instantiating opaque types
/// - `value_span` -- the span where the value came from, used in error reporting
fn instantiate_opaque_types<T: TypeFoldable<'tcx>>(
&self,
parent_def_id: LocalDefId,
body_id: hir::HirId,
param_env: ty::ParamEnv<'tcx>,
value: &T,
value_span: Span,
) -> InferOk<'tcx, (T, OpaqueTypeMap<'tcx>)> {
debug!(
"instantiate_opaque_types(value={:?}, parent_def_id={:?}, body_id={:?}, \
param_env={:?}, value_span={:?})",
value, parent_def_id, body_id, param_env, value_span,
);
let mut instantiator = Instantiator {
infcx: self,
parent_def_id,
body_id,
param_env,
value_span,
opaque_types: Default::default(),
obligations: vec![],
};
let value = instantiator.instantiate_opaque_types_in_map(value);
InferOk { value: (value, instantiator.opaque_types), obligations: instantiator.obligations }
}
/// Given the map `opaque_types` containing the opaque
/// `impl Trait` types whose underlying, hidden types are being
/// inferred, this method adds constraints to the regions
/// appearing in those underlying hidden types to ensure that they
/// at least do not refer to random scopes within the current
/// function. These constraints are not (quite) sufficient to
/// guarantee that the regions are actually legal values; that
/// final condition is imposed after region inference is done.
///
/// # The Problem
///
/// Let's work through an example to explain how it works. Assume
/// the current function is as follows:
///
/// ```text
/// fn foo<'a, 'b>(..) -> (impl Bar<'a>, impl Bar<'b>)
/// ```
///
/// Here, we have two `impl Trait` types whose values are being
/// inferred (the `impl Bar<'a>` and the `impl
/// Bar<'b>`). Conceptually, this is sugar for a setup where we
/// define underlying opaque types (`Foo1`, `Foo2`) and then, in
/// the return type of `foo`, we *reference* those definitions:
///
/// ```text
/// type Foo1<'x> = impl Bar<'x>;
/// type Foo2<'x> = impl Bar<'x>;
/// fn foo<'a, 'b>(..) -> (Foo1<'a>, Foo2<'b>) { .. }
/// // ^^^^ ^^
/// // | |
/// // | substs
/// // def_id
/// ```
///
/// As indicating in the comments above, each of those references
/// is (in the compiler) basically a substitution (`substs`)
/// applied to the type of a suitable `def_id` (which identifies
/// `Foo1` or `Foo2`).
///
/// Now, at this point in compilation, what we have done is to
/// replace each of the references (`Foo1<'a>`, `Foo2<'b>`) with
/// fresh inference variables C1 and C2. We wish to use the values
/// of these variables to infer the underlying types of `Foo1` and
/// `Foo2`. That is, this gives rise to higher-order (pattern) unification
/// constraints like:
///
/// ```text
/// for<'a> (Foo1<'a> = C1)
/// for<'b> (Foo1<'b> = C2)
/// ```
///
/// For these equation to be satisfiable, the types `C1` and `C2`
/// can only refer to a limited set of regions. For example, `C1`
/// can only refer to `'static` and `'a`, and `C2` can only refer
/// to `'static` and `'b`. The job of this function is to impose that
/// constraint.
///
/// Up to this point, C1 and C2 are basically just random type
/// inference variables, and hence they may contain arbitrary
/// regions. In fact, it is fairly likely that they do! Consider
/// this possible definition of `foo`:
///
/// ```text
/// fn foo<'a, 'b>(x: &'a i32, y: &'b i32) -> (impl Bar<'a>, impl Bar<'b>) {
/// (&*x, &*y)
/// }
/// ```
///
/// Here, the values for the concrete types of the two impl
/// traits will include inference variables:
///
/// ```text
/// &'0 i32
/// &'1 i32
/// ```
///
/// Ordinarily, the subtyping rules would ensure that these are
/// sufficiently large. But since `impl Bar<'a>` isn't a specific
/// type per se, we don't get such constraints by default. This
/// is where this function comes into play. It adds extra
/// constraints to ensure that all the regions which appear in the
/// inferred type are regions that could validly appear.
///
/// This is actually a bit of a tricky constraint in general. We
/// want to say that each variable (e.g., `'0`) can only take on
/// values that were supplied as arguments to the opaque type
/// (e.g., `'a` for `Foo1<'a>`) or `'static`, which is always in
/// scope. We don't have a constraint quite of this kind in the current
/// region checker.
///
/// # The Solution
///
/// We generally prefer to make `<=` constraints, since they
/// integrate best into the region solver. To do that, we find the
/// "minimum" of all the arguments that appear in the substs: that
/// is, some region which is less than all the others. In the case
/// of `Foo1<'a>`, that would be `'a` (it's the only choice, after
/// all). Then we apply that as a least bound to the variables
/// (e.g., `'a <= '0`).
///
/// In some cases, there is no minimum. Consider this example:
///
/// ```text
/// fn baz<'a, 'b>() -> impl Trait<'a, 'b> { ... }
/// ```
///
/// Here we would report a more complex "in constraint", like `'r
/// in ['a, 'b, 'static]` (where `'r` is some region appearing in
/// the hidden type).
///
/// # Constrain regions, not the hidden concrete type
///
/// Note that generating constraints on each region `Rc` is *not*
/// the same as generating an outlives constraint on `Tc` iself.
/// For example, if we had a function like this:
///
/// ```rust
/// fn foo<'a, T>(x: &'a u32, y: T) -> impl Foo<'a> {
/// (x, y)
/// }
///
/// // Equivalent to:
/// type FooReturn<'a, T> = impl Foo<'a>;
/// fn foo<'a, T>(..) -> FooReturn<'a, T> { .. }
/// ```
///
/// then the hidden type `Tc` would be `(&'0 u32, T)` (where `'0`
/// is an inference variable). If we generated a constraint that
/// `Tc: 'a`, then this would incorrectly require that `T: 'a` --
/// but this is not necessary, because the opaque type we
/// create will be allowed to reference `T`. So we only generate a
/// constraint that `'0: 'a`.
///
/// # The `free_region_relations` parameter
///
/// The `free_region_relations` argument is used to find the
/// "minimum" of the regions supplied to a given opaque type.
/// It must be a relation that can answer whether `'a <= 'b`,
/// where `'a` and `'b` are regions that appear in the "substs"
/// for the opaque type references (the `<'a>` in `Foo1<'a>`).
///
/// Note that we do not impose the constraints based on the
/// generic regions from the `Foo1` definition (e.g., `'x`). This
/// is because the constraints we are imposing here is basically
/// the concern of the one generating the constraining type C1,
/// which is the current function. It also means that we can
/// take "implied bounds" into account in some cases:
///
/// ```text
/// trait SomeTrait<'a, 'b> { }
/// fn foo<'a, 'b>(_: &'a &'b u32) -> impl SomeTrait<'a, 'b> { .. }
/// ```
///
/// Here, the fact that `'b: 'a` is known only because of the
/// implied bounds from the `&'a &'b u32` parameter, and is not
/// "inherent" to the opaque type definition.
///
/// # Parameters
///
/// - `opaque_types` -- the map produced by `instantiate_opaque_types`
/// - `free_region_relations` -- something that can be used to relate
/// the free regions (`'a`) that appear in the impl trait.
fn constrain_opaque_types<FRR: FreeRegionRelations<'tcx>>(
&self,
opaque_types: &OpaqueTypeMap<'tcx>,
free_region_relations: &FRR,
) {
debug!("constrain_opaque_types()");
for (&def_id, opaque_defn) in opaque_types {
self.constrain_opaque_type(
def_id,
opaque_defn,
GenerateMemberConstraints::WhenRequired,
free_region_relations,
);
}
}
/// See `constrain_opaque_types` for documentation.
fn constrain_opaque_type<FRR: FreeRegionRelations<'tcx>>(
&self,
def_id: DefId,
opaque_defn: &OpaqueTypeDecl<'tcx>,
mode: GenerateMemberConstraints,
free_region_relations: &FRR,
) {
debug!("constrain_opaque_type()");
debug!("constrain_opaque_type: def_id={:?}", def_id);
debug!("constrain_opaque_type: opaque_defn={:#?}", opaque_defn);
let tcx = self.tcx;
let concrete_ty = self.resolve_vars_if_possible(&opaque_defn.concrete_ty);
debug!("constrain_opaque_type: concrete_ty={:?}", concrete_ty);
let first_own_region = match opaque_defn.origin {
hir::OpaqueTyOrigin::FnReturn | hir::OpaqueTyOrigin::AsyncFn => {
// We lower
//
// fn foo<'l0..'ln>() -> impl Trait<'l0..'lm>
//
// into
//
// type foo::<'p0..'pn>::Foo<'q0..'qm>
// fn foo<l0..'ln>() -> foo::<'static..'static>::Foo<'l0..'lm>.
//
// For these types we onlt iterate over `'l0..lm` below.
tcx.generics_of(def_id).parent_count
}
// These opaque type inherit all lifetime parameters from their
// parent, so we have to check them all.
hir::OpaqueTyOrigin::Binding | hir::OpaqueTyOrigin::Misc => 0,
};
let span = tcx.def_span(def_id);
// If there are required region bounds, we can use them.
if opaque_defn.has_required_region_bounds {
let predicates_of = tcx.predicates_of(def_id);
debug!("constrain_opaque_type: predicates: {:#?}", predicates_of,);
let bounds = predicates_of.instantiate(tcx, opaque_defn.substs);
debug!("constrain_opaque_type: bounds={:#?}", bounds);
let opaque_type = tcx.mk_opaque(def_id, opaque_defn.substs);
let required_region_bounds =
required_region_bounds(tcx, opaque_type, bounds.predicates.into_iter());
debug_assert!(!required_region_bounds.is_empty());
for required_region in required_region_bounds {
concrete_ty.visit_with(&mut ConstrainOpaqueTypeRegionVisitor {
op: |r| self.sub_regions(infer::CallReturn(span), required_region, r),
});
}
if let GenerateMemberConstraints::IfNoStaticBound = mode {
self.generate_member_constraint(concrete_ty, opaque_defn, def_id, first_own_region);
}
return;
}
// There were no `required_region_bounds`,
// so we have to search for a `least_region`.
// Go through all the regions used as arguments to the
// opaque type. These are the parameters to the opaque
// type; so in our example above, `substs` would contain
// `['a]` for the first impl trait and `'b` for the
// second.
let mut least_region = None;
for subst_arg in &opaque_defn.substs[first_own_region..] {
let subst_region = match subst_arg.unpack() {
GenericArgKind::Lifetime(r) => r,
GenericArgKind::Type(_) | GenericArgKind::Const(_) => continue,
};
// Compute the least upper bound of it with the other regions.
debug!("constrain_opaque_types: least_region={:?}", least_region);
debug!("constrain_opaque_types: subst_region={:?}", subst_region);
match least_region {
None => least_region = Some(subst_region),
Some(lr) => {
if free_region_relations.sub_free_regions(self.tcx, lr, subst_region) {
// keep the current least region
} else if free_region_relations.sub_free_regions(self.tcx, subst_region, lr) {
// switch to `subst_region`
least_region = Some(subst_region);
} else {
// There are two regions (`lr` and
// `subst_region`) which are not relatable. We
// can't find a best choice. Therefore,
// instead of creating a single bound like
// `'r: 'a` (which is our preferred choice),
// we will create a "in bound" like `'r in
// ['a, 'b, 'c]`, where `'a..'c` are the
// regions that appear in the impl trait.
// For now, enforce a feature gate outside of async functions.
self.member_constraint_feature_gate(opaque_defn, def_id, lr, subst_region);
return self.generate_member_constraint(
concrete_ty,
opaque_defn,
def_id,
first_own_region,
);
}
}
}
}
let least_region = least_region.unwrap_or(tcx.lifetimes.re_static);
debug!("constrain_opaque_types: least_region={:?}", least_region);
if let GenerateMemberConstraints::IfNoStaticBound = mode {
if least_region != tcx.lifetimes.re_static {
self.generate_member_constraint(concrete_ty, opaque_defn, def_id, first_own_region);
}
}
concrete_ty.visit_with(&mut ConstrainOpaqueTypeRegionVisitor {
op: |r| self.sub_regions(infer::CallReturn(span), least_region, r),
});
}
/// As a fallback, we sometimes generate an "in constraint". For
/// a case like `impl Foo<'a, 'b>`, where `'a` and `'b` cannot be
/// related, we would generate a constraint `'r in ['a, 'b,
/// 'static]` for each region `'r` that appears in the hidden type
/// (i.e., it must be equal to `'a`, `'b`, or `'static`).
///
/// `conflict1` and `conflict2` are the two region bounds that we
/// detected which were unrelated. They are used for diagnostics.
fn generate_member_constraint(
&self,
concrete_ty: Ty<'tcx>,
opaque_defn: &OpaqueTypeDecl<'tcx>,
opaque_type_def_id: DefId,
first_own_region: usize,
) {
// Create the set of choice regions: each region in the hidden
// type can be equal to any of the region parameters of the
// opaque type definition.
let choice_regions: Lrc<Vec<ty::Region<'tcx>>> = Lrc::new(
opaque_defn.substs[first_own_region..]
.iter()
.filter_map(|arg| match arg.unpack() {
GenericArgKind::Lifetime(r) => Some(r),
GenericArgKind::Type(_) | GenericArgKind::Const(_) => None,
})
.chain(std::iter::once(self.tcx.lifetimes.re_static))
.collect(),
);
concrete_ty.visit_with(&mut ConstrainOpaqueTypeRegionVisitor {
op: |r| {
self.member_constraint(
opaque_type_def_id,
opaque_defn.definition_span,
concrete_ty,
r,
&choice_regions,
)
},
});
}
/// Member constraints are presently feature-gated except for
/// async-await. We expect to lift this once we've had a bit more
/// time.
fn member_constraint_feature_gate(
&self,
opaque_defn: &OpaqueTypeDecl<'tcx>,
opaque_type_def_id: DefId,
conflict1: ty::Region<'tcx>,
conflict2: ty::Region<'tcx>,
) -> bool {
// If we have `#![feature(member_constraints)]`, no problems.
if self.tcx.features().member_constraints {
return false;
}
let span = self.tcx.def_span(opaque_type_def_id);
// Without a feature-gate, we only generate member-constraints for async-await.
let context_name = match opaque_defn.origin {
// No feature-gate required for `async fn`.
hir::OpaqueTyOrigin::AsyncFn => return false,
// Otherwise, generate the label we'll use in the error message.
hir::OpaqueTyOrigin::Binding
| hir::OpaqueTyOrigin::FnReturn
| hir::OpaqueTyOrigin::Misc => "impl Trait",
};
let msg = format!("ambiguous lifetime bound in `{}`", context_name);
let mut err = self.tcx.sess.struct_span_err(span, &msg);
let conflict1_name = conflict1.to_string();
let conflict2_name = conflict2.to_string();
let label_owned;
let label = match (&*conflict1_name, &*conflict2_name) {
("'_", "'_") => "the elided lifetimes here do not outlive one another",
_ => {
label_owned = format!(
"neither `{}` nor `{}` outlives the other",
conflict1_name, conflict2_name,
);
&label_owned
}
};
err.span_label(span, label);
if nightly_options::is_nightly_build() {
err.help("add #![feature(member_constraints)] to the crate attributes to enable");
}
err.emit();
true
}
/// Given the fully resolved, instantiated type for an opaque
/// type, i.e., the value of an inference variable like C1 or C2
/// (*), computes the "definition type" for an opaque type
/// definition -- that is, the inferred value of `Foo1<'x>` or
/// `Foo2<'x>` that we would conceptually use in its definition:
///
/// type Foo1<'x> = impl Bar<'x> = AAA; <-- this type AAA
/// type Foo2<'x> = impl Bar<'x> = BBB; <-- or this type BBB
/// fn foo<'a, 'b>(..) -> (Foo1<'a>, Foo2<'b>) { .. }
///
/// Note that these values are defined in terms of a distinct set of
/// generic parameters (`'x` instead of `'a`) from C1 or C2. The main
/// purpose of this function is to do that translation.
///
/// (*) C1 and C2 were introduced in the comments on
/// `constrain_opaque_types`. Read that comment for more context.
///
/// # Parameters
///
/// - `def_id`, the `impl Trait` type
/// - `substs`, the substs used to instantiate this opaque type
/// - `instantiated_ty`, the inferred type C1 -- fully resolved, lifted version of
/// `opaque_defn.concrete_ty`
fn infer_opaque_definition_from_instantiation(
&self,
def_id: DefId,
substs: SubstsRef<'tcx>,
instantiated_ty: Ty<'tcx>,
span: Span,
) -> Ty<'tcx> {
debug!(
"infer_opaque_definition_from_instantiation(def_id={:?}, instantiated_ty={:?})",
def_id, instantiated_ty
);
// Use substs to build up a reverse map from regions to their
// identity mappings. This is necessary because of `impl
// Trait` lifetimes are computed by replacing existing
// lifetimes with 'static and remapping only those used in the
// `impl Trait` return type, resulting in the parameters
// shifting.
let id_substs = InternalSubsts::identity_for_item(self.tcx, def_id);
let map: FxHashMap<GenericArg<'tcx>, GenericArg<'tcx>> =
substs.iter().enumerate().map(|(index, subst)| (subst, id_substs[index])).collect();
// Convert the type from the function into a type valid outside
// the function, by replacing invalid regions with 'static,
// after producing an error for each of them.
let definition_ty = instantiated_ty.fold_with(&mut ReverseMapper::new(
self.tcx,
self.is_tainted_by_errors(),
def_id,
map,
instantiated_ty,
span,
));
debug!("infer_opaque_definition_from_instantiation: definition_ty={:?}", definition_ty);
definition_ty
}
}
// Visitor that requires that (almost) all regions in the type visited outlive
// `least_region`. We cannot use `push_outlives_components` because regions in
// closure signatures are not included in their outlives components. We need to
// ensure all regions outlive the given bound so that we don't end up with,
// say, `ReVar` appearing in a return type and causing ICEs when other
// functions end up with region constraints involving regions from other
// functions.
//
// We also cannot use `for_each_free_region` because for closures it includes
// the regions parameters from the enclosing item.
//
// We ignore any type parameters because impl trait values are assumed to
// capture all the in-scope type parameters.
struct ConstrainOpaqueTypeRegionVisitor<OP> {
op: OP,
}
impl<'tcx, OP> TypeVisitor<'tcx> for ConstrainOpaqueTypeRegionVisitor<OP>
where
OP: FnMut(ty::Region<'tcx>),
{
fn visit_binder<T: TypeFoldable<'tcx>>(&mut self, t: &ty::Binder<T>) -> bool {
t.as_ref().skip_binder().visit_with(self);
false // keep visiting
}
fn visit_region(&mut self, r: ty::Region<'tcx>) -> bool {
match *r {
// ignore bound regions, keep visiting
ty::ReLateBound(_, _) => false,
_ => {
(self.op)(r);
false
}
}
}
fn visit_ty(&mut self, ty: Ty<'tcx>) -> bool {
// We're only interested in types involving regions
if !ty.flags().intersects(ty::TypeFlags::HAS_FREE_REGIONS) {
return false; // keep visiting
}
match ty.kind() {
ty::Closure(_, ref substs) => {
// Skip lifetime parameters of the enclosing item(s)
for upvar_ty in substs.as_closure().upvar_tys() {
upvar_ty.visit_with(self);
}
substs.as_closure().sig_as_fn_ptr_ty().visit_with(self);
}
ty::Generator(_, ref substs, _) => {
// Skip lifetime parameters of the enclosing item(s)
// Also skip the witness type, because that has no free regions.
for upvar_ty in substs.as_generator().upvar_tys() {
upvar_ty.visit_with(self);
}
substs.as_generator().return_ty().visit_with(self);
substs.as_generator().yield_ty().visit_with(self);
substs.as_generator().resume_ty().visit_with(self);
}
_ => {
ty.super_visit_with(self);
}
}
false
}
}
struct ReverseMapper<'tcx> {
tcx: TyCtxt<'tcx>,
/// If errors have already been reported in this fn, we suppress
/// our own errors because they are sometimes derivative.
tainted_by_errors: bool,
opaque_type_def_id: DefId,
map: FxHashMap<GenericArg<'tcx>, GenericArg<'tcx>>,
map_missing_regions_to_empty: bool,
/// initially `Some`, set to `None` once error has been reported
hidden_ty: Option<Ty<'tcx>>,
/// Span of function being checked.
span: Span,
}
impl ReverseMapper<'tcx> {
fn new(
tcx: TyCtxt<'tcx>,
tainted_by_errors: bool,
opaque_type_def_id: DefId,
map: FxHashMap<GenericArg<'tcx>, GenericArg<'tcx>>,
hidden_ty: Ty<'tcx>,
span: Span,
) -> Self {
Self {
tcx,
tainted_by_errors,
opaque_type_def_id,
map,
map_missing_regions_to_empty: false,
hidden_ty: Some(hidden_ty),
span,
}
}
fn fold_kind_mapping_missing_regions_to_empty(
&mut self,
kind: GenericArg<'tcx>,
) -> GenericArg<'tcx> {
assert!(!self.map_missing_regions_to_empty);
self.map_missing_regions_to_empty = true;
let kind = kind.fold_with(self);
self.map_missing_regions_to_empty = false;
kind
}
fn fold_kind_normally(&mut self, kind: GenericArg<'tcx>) -> GenericArg<'tcx> {
assert!(!self.map_missing_regions_to_empty);
kind.fold_with(self)
}
}
impl TypeFolder<'tcx> for ReverseMapper<'tcx> {
fn tcx(&self) -> TyCtxt<'tcx> {
self.tcx
}
fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
match r {
// Ignore bound regions and `'static` regions that appear in the
// type, we only need to remap regions that reference lifetimes
// from the function declaraion.
// This would ignore `'r` in a type like `for<'r> fn(&'r u32)`.
ty::ReLateBound(..) | ty::ReStatic => return r,
// If regions have been erased (by writeback), don't try to unerase
// them.
ty::ReErased => return r,
// The regions that we expect from borrow checking.
ty::ReEarlyBound(_) | ty::ReFree(_) | ty::ReEmpty(ty::UniverseIndex::ROOT) => {}
ty::ReEmpty(_) | ty::RePlaceholder(_) | ty::ReVar(_) => {
// All of the regions in the type should either have been
// erased by writeback, or mapped back to named regions by
// borrow checking.
bug!("unexpected region kind in opaque type: {:?}", r);
}
}
let generics = self.tcx().generics_of(self.opaque_type_def_id);
match self.map.get(&r.into()).map(|k| k.unpack()) {
Some(GenericArgKind::Lifetime(r1)) => r1,
Some(u) => panic!("region mapped to unexpected kind: {:?}", u),
None if self.map_missing_regions_to_empty || self.tainted_by_errors => {
self.tcx.lifetimes.re_root_empty
}
None if generics.parent.is_some() => {
if let Some(hidden_ty) = self.hidden_ty.take() {
unexpected_hidden_region_diagnostic(
self.tcx,
self.tcx.def_span(self.opaque_type_def_id),
hidden_ty,
r,
)
.emit();
}
self.tcx.lifetimes.re_root_empty
}
None => {
self.tcx
.sess
.struct_span_err(self.span, "non-defining opaque type use in defining scope")
.span_label(
self.span,
format!(
"lifetime `{}` is part of concrete type but not used in \
parameter list of the `impl Trait` type alias",
r
),
)
.emit();
self.tcx().lifetimes.re_static
}
}
}
fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
match *ty.kind() {
ty::Closure(def_id, substs) => {
// I am a horrible monster and I pray for death. When
// we encounter a closure here, it is always a closure
// from within the function that we are currently
// type-checking -- one that is now being encapsulated
// in an opaque type. Ideally, we would
// go through the types/lifetimes that it references
// and treat them just like we would any other type,
// which means we would error out if we find any
// reference to a type/region that is not in the
// "reverse map".
//
// **However,** in the case of closures, there is a
// somewhat subtle (read: hacky) consideration. The
// problem is that our closure types currently include
// all the lifetime parameters declared on the
// enclosing function, even if they are unused by the
// closure itself. We can't readily filter them out,
// so here we replace those values with `'empty`. This
// can't really make a difference to the rest of the
// compiler; those regions are ignored for the
// outlives relation, and hence don't affect trait
// selection or auto traits, and they are erased
// during codegen.
let generics = self.tcx.generics_of(def_id);
let substs = self.tcx.mk_substs(substs.iter().enumerate().map(|(index, kind)| {
if index < generics.parent_count {
// Accommodate missing regions in the parent kinds...
self.fold_kind_mapping_missing_regions_to_empty(kind)
} else {
// ...but not elsewhere.
self.fold_kind_normally(kind)
}
}));
self.tcx.mk_closure(def_id, substs)
}
ty::Generator(def_id, substs, movability) => {
let generics = self.tcx.generics_of(def_id);
let substs = self.tcx.mk_substs(substs.iter().enumerate().map(|(index, kind)| {
if index < generics.parent_count {
// Accommodate missing regions in the parent kinds...
self.fold_kind_mapping_missing_regions_to_empty(kind)
} else {
// ...but not elsewhere.
self.fold_kind_normally(kind)
}
}));
self.tcx.mk_generator(def_id, substs, movability)
}
ty::Param(..) => {
// Look it up in the substitution list.
match self.map.get(&ty.into()).map(|k| k.unpack()) {
// Found it in the substitution list; replace with the parameter from the
// opaque type.
Some(GenericArgKind::Type(t1)) => t1,
Some(u) => panic!("type mapped to unexpected kind: {:?}", u),
None => {
self.tcx
.sess
.struct_span_err(
self.span,
&format!(
"type parameter `{}` is part of concrete type but not \
used in parameter list for the `impl Trait` type alias",
ty
),
)
.emit();
self.tcx().ty_error()
}
}
}
_ => ty.super_fold_with(self),
}
}
fn fold_const(&mut self, ct: &'tcx ty::Const<'tcx>) -> &'tcx ty::Const<'tcx> {
trace!("checking const {:?}", ct);
// Find a const parameter
match ct.val {
ty::ConstKind::Param(..) => {
// Look it up in the substitution list.
match self.map.get(&ct.into()).map(|k| k.unpack()) {
// Found it in the substitution list, replace with the parameter from the
// opaque type.
Some(GenericArgKind::Const(c1)) => c1,
Some(u) => panic!("const mapped to unexpected kind: {:?}", u),
None => {
self.tcx
.sess
.struct_span_err(
self.span,
&format!(
"const parameter `{}` is part of concrete type but not \
used in parameter list for the `impl Trait` type alias",
ct
),
)
.emit();
self.tcx().const_error(ct.ty)
}
}
}
_ => ct,
}
}
}
struct Instantiator<'a, 'tcx> {
infcx: &'a InferCtxt<'a, 'tcx>,
parent_def_id: LocalDefId,
body_id: hir::HirId,
param_env: ty::ParamEnv<'tcx>,
value_span: Span,
opaque_types: OpaqueTypeMap<'tcx>,
obligations: Vec<PredicateObligation<'tcx>>,
}
impl<'a, 'tcx> Instantiator<'a, 'tcx> {
fn instantiate_opaque_types_in_map<T: TypeFoldable<'tcx>>(&mut self, value: &T) -> T {
debug!("instantiate_opaque_types_in_map(value={:?})", value);
let tcx = self.infcx.tcx;
value.fold_with(&mut BottomUpFolder {
tcx,
ty_op: |ty| {
if ty.references_error() {
return tcx.ty_error();
} else if let ty::Opaque(def_id, substs) = ty.kind() {
// Check that this is `impl Trait` type is
// declared by `parent_def_id` -- i.e., one whose
// value we are inferring. At present, this is
// always true during the first phase of
// type-check, but not always true later on during
// NLL. Once we support named opaque types more fully,
// this same scenario will be able to arise during all phases.
//
// Here is an example using type alias `impl Trait`
// that indicates the distinction we are checking for:
//
// ```rust
// mod a {
// pub type Foo = impl Iterator;
// pub fn make_foo() -> Foo { .. }
// }
//
// mod b {
// fn foo() -> a::Foo { a::make_foo() }
// }
// ```
//
// Here, the return type of `foo` references a
// `Opaque` indeed, but not one whose value is
// presently being inferred. You can get into a
// similar situation with closure return types
// today:
//
// ```rust
// fn foo() -> impl Iterator { .. }
// fn bar() {
// let x = || foo(); // returns the Opaque assoc with `foo`
// }
// ```
if let Some(def_id) = def_id.as_local() {
let opaque_hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
let parent_def_id = self.parent_def_id;
let def_scope_default = || {
let opaque_parent_hir_id = tcx.hir().get_parent_item(opaque_hir_id);
parent_def_id == tcx.hir().local_def_id(opaque_parent_hir_id)
};
let (in_definition_scope, origin) = match tcx.hir().find(opaque_hir_id) {
Some(Node::Item(item)) => match item.kind {
// Anonymous `impl Trait`
hir::ItemKind::OpaqueTy(hir::OpaqueTy {
impl_trait_fn: Some(parent),
origin,
..
}) => (parent == self.parent_def_id.to_def_id(), origin),
// Named `type Foo = impl Bar;`
hir::ItemKind::OpaqueTy(hir::OpaqueTy {
impl_trait_fn: None,
origin,
..
}) => (
may_define_opaque_type(tcx, self.parent_def_id, opaque_hir_id),
origin,
),
_ => (def_scope_default(), hir::OpaqueTyOrigin::Misc),
},
_ => bug!(
"expected item, found {}",
tcx.hir().node_to_string(opaque_hir_id),
),
};
if in_definition_scope {
return self.fold_opaque_ty(ty, def_id.to_def_id(), substs, origin);
}
debug!(
"instantiate_opaque_types_in_map: \
encountered opaque outside its definition scope \
def_id={:?}",
def_id,
);
}
}
ty
},
lt_op: |lt| lt,
ct_op: |ct| ct,
})
}
fn fold_opaque_ty(
&mut self,
ty: Ty<'tcx>,
def_id: DefId,
substs: SubstsRef<'tcx>,
origin: hir::OpaqueTyOrigin,
) -> Ty<'tcx> {
let infcx = self.infcx;
let tcx = infcx.tcx;
debug!("instantiate_opaque_types: Opaque(def_id={:?}, substs={:?})", def_id, substs);
// Use the same type variable if the exact same opaque type appears more
// than once in the return type (e.g., if it's passed to a type alias).
if let Some(opaque_defn) = self.opaque_types.get(&def_id) {
debug!("instantiate_opaque_types: returning concrete ty {:?}", opaque_defn.concrete_ty);
return opaque_defn.concrete_ty;
}
let span = tcx.def_span(def_id);
debug!("fold_opaque_ty {:?} {:?}", self.value_span, span);
let ty_var = infcx
.next_ty_var(TypeVariableOrigin { kind: TypeVariableOriginKind::TypeInference, span });
let predicates_of = tcx.predicates_of(def_id);
debug!("instantiate_opaque_types: predicates={:#?}", predicates_of,);
let bounds = predicates_of.instantiate(tcx, substs);
let param_env = tcx.param_env(def_id);
let InferOk { value: bounds, obligations } =
infcx.partially_normalize_associated_types_in(span, self.body_id, param_env, &bounds);
self.obligations.extend(obligations);
debug!("instantiate_opaque_types: bounds={:?}", bounds);
let required_region_bounds =
required_region_bounds(tcx, ty, bounds.predicates.iter().cloned());
debug!("instantiate_opaque_types: required_region_bounds={:?}", required_region_bounds);
// Make sure that we are in fact defining the *entire* type
// (e.g., `type Foo<T: Bound> = impl Bar;` needs to be
// defined by a function like `fn foo<T: Bound>() -> Foo<T>`).
debug!("instantiate_opaque_types: param_env={:#?}", self.param_env,);
debug!("instantiate_opaque_types: generics={:#?}", tcx.generics_of(def_id),);
// Ideally, we'd get the span where *this specific `ty` came
// from*, but right now we just use the span from the overall
// value being folded. In simple cases like `-> impl Foo`,
// these are the same span, but not in cases like `-> (impl
// Foo, impl Bar)`.
let definition_span = self.value_span;
self.opaque_types.insert(
def_id,
OpaqueTypeDecl {
opaque_type: ty,
substs,
definition_span,
concrete_ty: ty_var,
has_required_region_bounds: !required_region_bounds.is_empty(),
origin,
},
);
debug!("instantiate_opaque_types: ty_var={:?}", ty_var);
for predicate in &bounds.predicates {
if let ty::PredicateAtom::Projection(projection) = predicate.skip_binders() {
if projection.ty.references_error() {
// No point on adding these obligations since there's a type error involved.
return ty_var;
}
}
}
self.obligations.reserve(bounds.predicates.len());
for predicate in bounds.predicates {
// Change the predicate to refer to the type variable,
// which will be the concrete type instead of the opaque type.
// This also instantiates nested instances of `impl Trait`.
let predicate = self.instantiate_opaque_types_in_map(&predicate);
let cause = traits::ObligationCause::new(span, self.body_id, traits::SizedReturnType);
// Require that the predicate holds for the concrete type.
debug!("instantiate_opaque_types: predicate={:?}", predicate);
self.obligations.push(traits::Obligation::new(cause, self.param_env, predicate));
}
ty_var
}
}
/// Returns `true` if `opaque_hir_id` is a sibling or a child of a sibling of `def_id`.
///
/// Example:
/// ```rust
/// pub mod foo {
/// pub mod bar {
/// pub trait Bar { .. }
///
/// pub type Baz = impl Bar;
///
/// fn f1() -> Baz { .. }
/// }
///
/// fn f2() -> bar::Baz { .. }
/// }
/// ```
///
/// Here, `def_id` is the `LocalDefId` of the defining use of the opaque type (e.g., `f1` or `f2`),
/// and `opaque_hir_id` is the `HirId` of the definition of the opaque type `Baz`.
/// For the above example, this function returns `true` for `f1` and `false` for `f2`.
pub fn may_define_opaque_type(
tcx: TyCtxt<'_>,
def_id: LocalDefId,
opaque_hir_id: hir::HirId,
) -> bool {
let mut hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
// Named opaque types can be defined by any siblings or children of siblings.
let scope = tcx.hir().get_defining_scope(opaque_hir_id);
// We walk up the node tree until we hit the root or the scope of the opaque type.
while hir_id != scope && hir_id != hir::CRATE_HIR_ID {
hir_id = tcx.hir().get_parent_item(hir_id);
}
// Syntactically, we are allowed to define the concrete type if:
let res = hir_id == scope;
trace!(
"may_define_opaque_type(def={:?}, opaque_node={:?}) = {}",
tcx.hir().find(hir_id),
tcx.hir().get(opaque_hir_id),
res
);
res
}
/// Given a set of predicates that apply to an object type, returns
/// the region bounds that the (erased) `Self` type must
/// outlive. Precisely *because* the `Self` type is erased, the
/// parameter `erased_self_ty` must be supplied to indicate what type
/// has been used to represent `Self` in the predicates
/// themselves. This should really be a unique type; `FreshTy(0)` is a
/// popular choice.
///
/// N.B., in some cases, particularly around higher-ranked bounds,
/// this function returns a kind of conservative approximation.
/// That is, all regions returned by this function are definitely
/// required, but there may be other region bounds that are not
/// returned, as well as requirements like `for<'a> T: 'a`.
///
/// Requires that trait definitions have been processed so that we can
/// elaborate predicates and walk supertraits.
crate fn required_region_bounds(
tcx: TyCtxt<'tcx>,
erased_self_ty: Ty<'tcx>,
predicates: impl Iterator<Item = ty::Predicate<'tcx>>,
) -> Vec<ty::Region<'tcx>> {
debug!("required_region_bounds(erased_self_ty={:?})", erased_self_ty);
assert!(!erased_self_ty.has_escaping_bound_vars());
traits::elaborate_predicates(tcx, predicates)
.filter_map(|obligation| {
debug!("required_region_bounds(obligation={:?})", obligation);
match obligation.predicate.skip_binders() {
ty::PredicateAtom::Projection(..)
| ty::PredicateAtom::Trait(..)
| ty::PredicateAtom::Subtype(..)
| ty::PredicateAtom::WellFormed(..)
| ty::PredicateAtom::ObjectSafe(..)
| ty::PredicateAtom::ClosureKind(..)
| ty::PredicateAtom::RegionOutlives(..)
| ty::PredicateAtom::ConstEvaluatable(..)
| ty::PredicateAtom::ConstEquate(..)
| ty::PredicateAtom::TypeWellFormedFromEnv(..) => None,
ty::PredicateAtom::TypeOutlives(ty::OutlivesPredicate(ref t, ref r)) => {
// Search for a bound of the form `erased_self_ty
// : 'a`, but be wary of something like `for<'a>
// erased_self_ty : 'a` (we interpret a
// higher-ranked bound like that as 'static,
// though at present the code in `fulfill.rs`
// considers such bounds to be unsatisfiable, so
// it's kind of a moot point since you could never
// construct such an object, but this seems
// correct even if that code changes).
if t == &erased_self_ty && !r.has_escaping_bound_vars() {
Some(*r)
} else {
None
}
}
}
})
.collect()
}